

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90387pmt-g-184

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number Parameter	MB90F387 MB90F387S	MB90387 MB90387S	MB90V495G			
8/10-bit A/D converter	 Number of channels: 8 Resolution: Selectable 10-bit or 8-bit. Conversion time: 6.125 μs (at 16 MHz machine clock, including sampling time) Sequential conversion of two or more successive channels is allowed. (Setting a maximum of 8 channels is allowed.) Single conversion mode: Selected channel is converted only once. Sequential conversion mode: Selected channel is converted repetitively. Halt conversion mode: Conversion of selected channel is stopped and activated alternately. 					
UART(SCI)	Number of channels: 1 Clock-synchronous transfer: 62.5 kbps to 2 Mbps Clock-asynchronous transfer: 9,615 bps to 500 kbps Communication is allowed by bi-directional serial communication function and master slave type connection.					
CAN	Compliant with Ver 2.0A and Ver 2.0B CAN specifications. 8 built-in message buffers. Transmission rate of 10 kbps to 1 Mbps (by 16 MHz machine clock) CAN wake-up					

*1: Settings of DIP switch S2 for using emulation pod MB2145-507. For details, see MB2145-507 Hardware Manual (2.7 Power Pin solely for Emulator).

*2: MB90387S, MB90F387S

2. Packages And Product Models

Package	MB90F387, MB90F387S	MB90387, MB90387S
LQA048	0	0

 \bigcirc : Yes \times : No

Note: Refer to Package Dimension for details of the package.

3. Product Comparison

Memory Space

When testing with test product for evaluation, check the differences between the product and a product to be used actually. Pay attention to the following points:

- The MB90V495G has no built-in ROM. However, a special-purpose development tool allows the operations as those of one with built-in ROM. ROM capacity depends on settings on a development tool.
- On MB90V495G, an image from FF4000^H to FFFFF^H is viewed on 00 bank and an image of FE0000^H to FF3FFF^H is viewed only on FE bank and FF bank. (Modified on settings of a development tool.)
- On MB90F387/F387S/387/387S, an image from FF4000H to FFFFFFH is viewed on 00 bank and an image of FE0000H to FF3FFFH is viewed only on FF bank.

4. Pin Assignment

Notes When Using No Sub Clock

■ If an oscillator is not connected to X0A and X1A pin, apply pull-down resistor to X0A pin and leave X1A pin open.

About Power Supply Pins

- If two or more Vcc and Vss pins exist, the pins that should be at the same potential are connected to each other inside the device. For reducing unwanted emissions and preventing malfunction of strobe signals caused by increase of ground level, however, be sure to connect the Vcc and Vss pins to the power source and the ground externally.
- Pay attention to connect a power supply to Vcc and Vss of MB90385 series device in a lowest-possible impedance.
- Near pins of MB90385 series device, connecting a bypass capacitor is recommended at 0.1 µF across Vcc pin and Vss pin.

Crystal Oscillator Circuit

- Noises around X0 and X1 pins cause malfunctions on a MB90385 series device. Design a print circuit so that X0 and X1 pins, an crystal oscillator (or a ceramic oscillator), and bypass capacitor to the ground become as close as possible to each other. Furthermore, avoid wires to X0 and X1 pins crossing each other as much as possible.
- Print circuit designing that surrounds X0 and X1 pins with grounding wires, which ensures stable operation, is strongly recommended.

Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

Sequence of Turning on Power of A/D Converter and Applying Analog Input

- Be sure to turn on digital power (Vcc) before applying signals to the A/D converter and applying analog input signals (AN0 to AN7 pins).
- Be sure to turn off the power of A/D converter and analog input before turning off the digital power source.
- Be sure not to apply AVR exceeding AVcc when turning on and off. (No problems occur if analog and digital power is turned on and off simultaneously.)

Handling Pins When A/D Converter is Not Used

■ If the A/D converter is not used, connect the pins under the following conditions: "AVcc=AVR=Vcc," and "AVss=Vss"

Note on Turning on Power

For preventing malfunctions on built-in step-down circuit, maintain a minimum of 50 μs of voltage rising time (between 0.2 V and 2.7V) when turning on the power.

Stabilization of Supply Voltage

■ A sudden change in the supply voltage may cause the device to malfunction even within the specified Vcc supply voltage operating range. Therefore, the Vcc supply voltage should be stabilized.

For reference, the supply voltage should be controlled so that Vcc ripple variations (peak-to-peak values) at commercial frequencies (50 Hz / 60 Hz) fall below 10% of the standard Vcc supply voltage and the coefficient of fluctuation does not exceed 0.1 V/ms at instantaneous power switching.

8. Block Diagram

9. Memory Map

MB90385 series allows specifying a memory access mode "single chip mode."

9.1 Memory Allocation of MB90385

MB90385 series model has 24-bit wide internal address bus and up to 24-bit bus of external address bus. A maximum of 16-Mbyte memory space of external access memory is accessible.

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
003С38н, 003С39н	DLCR4	DLC register 4	R/W	CAN controller	XXXXXXXXB, XXXXXXXB
003С3Ан, 003С3Вн	DLCR5	DLC register 5	R/W		XXXXXXXXB, XXXXXXXB
003С3Сн, 003С3Dн	DLCR6	DLC register 6	R/W		XXXXXXXXB, XXXXXXXB
003С3Ен, 003С3Ен	DLCR7	DLC register 7	R/W		XXXXXXXXB, XXXXXXXB
003C40н to 003C47н	DTR0	Data register 0	R/W		XXXXXXXXB to XXXXXXXB
003C48н to 003C4Fн	DTR1	Data register 1	R/W		XXXXXXXXB to XXXXXXXB
003C50н to 003C57н	DTR2	Data register 2	R/W		XXXXXXXXB to XXXXXXXB
003C58н to 003C5Fн	DTR3	Data register 3	R/W		XXXXXXXXB to XXXXXXXB
003C60н to 003C67н	DTR4	Data register 4	R/W		XXXXXXXXB to XXXXXXXB
003C68н to 003C6Fн	DTR5	Data register 5	R/W		XXXXXXXXB to XXXXXXXB
003C70н to 003C77н	DTR6	Data register 6	R/W		XXXXXXXXB to XXXXXXXB
003C78н to 003C7Fн	DTR7	Data register 7	R/W		XXXXXXXXB to XXXXXXXB
003C80н to 003CFFн		(Reserv	ed area) *		
003D00н, 003D01н	CSR	Control status register	R/W, R	CAN controller	0XXXX001в, 00XXX000в
003D02н	LEIR	Last event display register	R/W		000XX000b
003D03н		(Reserv	ed area) *		
003D04н, 003D05н	RTEC	Send/receive error counter	R	CAN controller	0000000в, 0000000в
003D06н, 003D07н	BTR	Bit timing register	R/W		11111111 _в , Х1111111 _в
003D08н	IDER	IDE register	R/W		XXXXXXXXB
003D09н		(Reserv	ed area) *		
003D0Aн	TRTRR	Send RTR register	R/W	CAN controller	0000000в
003D0Bн		(Reserv	ed area) *		1
003D0Cн	RFWTR	Remote frame receive wait register	R/W	CAN controller	XXXXXXXXB

11. Interrupt Sources, Interrupt Vectors, And Interrupt Control Registers

	El ² OS	I	nterrup	ot Vector	Interrupt C	Dai o aitu (*3	
Interrupt Source	Readiness	Nur	nber	Address	ICR	Address	- Priority ^{**}
Reset	×	#08	08н	FFFFDCH	-	-	High
INT 9 instruction	×	#09	09н	FFFFD8H	-	-	\uparrow
Exceptional treatment	×	#10	0Ан	FFFFD4н	-	-	1
CAN controller reception completed (RX)	,	#11	0Вн	FFFFD0H	ICR00	0000B0н*1	
CAN controller transmission completed (TX) / Node status transition (NS)	,	#12	0Сн	FFFFCCH			
Reserved	×	#13	0Dн	FFFFC8H	ICR01	0000B1н	-
Reserved	×	#14	0Ен	FFFFC4H	-		
CAN wakeup	Δ	#15	0 F н	FFFFC0H	ICR02	0000B2 _H *1	-
Time-base timer	×	#16	10н	FFFFBCH	-		
16-bit reload timer 0	Δ	#17	11н	FFFFB8⊦	ICR03	0000B3н*1	1
8/10-bit A/D converter	Δ	#18	12н	FFFFB4⊦	-		
16-bit free-run timer overflow	Δ	#19	13 н	FFFFB0H	ICR04	0000B4н*1	-
Reserved	×	#20	14н	FFFFACH	-		
Reserved	×	#21	15 н	FFFFA8H	ICR05	0000B5н*1	-
PPG timer ch0, ch1 underflow	,	#22	16 н	FFFFA4H			
Input capture 0-input	Δ	#23	17 н	FFFFA0H	ICR06	0000B6н*1	-
External interrupt (INT4/INT5)	Δ	#24	18 н	FFFF9CH	-		
Input capture 1-input	Δ	#25	19 н	FFFF98н	ICR07	0000B7н*2	-
PPG timer ch2, ch3 underflow	,	#26	1Ан	FFFF94H			
External interrupt (INT6/INT7)	Δ	#27	1Вн	FFFF90H	ICR08	0000B8н*1	-
Watch timer	Δ	#28	1Сн	FFFF8CH	-		
Reserved	×	#29	1Dн	FFFF88⊦	ICR09	0000B9н*1	1
Input capture 2-input Input capture 3-input	,	#30	1Ен	FFFF84⊦			
Reserved	×	#31	1Fн	FFFF80H	ICR10	0000BAн*1	-
Reserved	×	#32	20н	FFFF7Cн			
Reserved	×	#33	21н	FFFF78н	ICR11	0000BB _H *1	1
Reserved	×	#34	22н	FFFF74н	1		
Reserved	×	#35	23н	FFFF70H	ICR12	0000BCH*1	\downarrow
16-bit reload timer 1	0	#36	24н	FFFF6CH			Low

Port 2 Registers

- Port 2 registers include port 2 data register (PDR2) and port 2 direction register (DDR2).
- The bits configuring the register correspond to port 2 pins on a one-to-one basis.

Relation between Port 2 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 2	PDR2,DDR2	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	P27	P26	P25	P24	P23	P22	P21	P20

Port 4 Pins Block Diagram

Port 4 Registers

- Port 4 registers include port 4 data register (PDR4) and port 4 direction register (DDR4).
- The bits configuring the register correspond to port 4 pins on a one-to-one basis.

Relation between Port 4 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 4	PDR4, DDR4	-	-	-	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	-	-	-	P44	P43	P42	P41	P40

Port 5 Pins Block Diagram

Port 5 Registers

- Port 5 registers include port 5 data register (PDR5), port 5 direction register (DDR5), and analog input permission register (ADER).
- Analog input permission register (ADER) allows or disallows input of analog signal to the analog input pin.
- The bits configuring the register correspond to port 5 pins on a one-to-one basis.

Relation between Port 5 Registers and Pins

Port Name		Bits of Register and Corresponding Pins							
Port 5	PDR5, DDR5	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	ADER	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0
	Corresponding pins	P57	P56	P55	P54	P53	P52	P51	P50

Time-base Timer Block Diagram

Actual interrupt request number of time-base timer is as follows: Interrupt request number: #16 (10_H)

12.3 Watchdog Timer

The watchdog timer is a 2-bit counter that uses time-base timer or watch timer as count clock. If the counter is not cleared within an interval time, CPU is reset.

Watchdog Timer Functions

- The watchdog timer is a timer counter that prevents runaway of a program. Once a watchdog timer is activated, the counter of watchdog timer must always be cleared within a specified time of interval. If specified interval time elapses without clearing the counter of a watchdog timer, CPU resetting occurs. This is the function of a watchdog timer.
- The interval time of a watchdog timer is determined by a clock cycle, which is input as a count clock. Watchdog resetting occurs between a minimum time and a maximum time specified.
- The output target of a clock source is specified by the watchdog clock selection bit (WTC: WDCS) in the watch timer control register.
- Interval time of a watchdog timer is specified by the time-base timer output selection bit / watch timer output selection bit (WDTC: WT1, WT0) in the watchdog timer control register.

Min	Мах	Clock Cycle	Min	Мах	Clock Cycle
Approx. 3.58 ms	Approx. 4.61 ms	(2 ¹⁴ ±2 ¹¹) /HCLK	Approx. 0.457 s	Approx. 0.576 s	(2 ¹² ±2 ⁹) /SCLK
Approx. 14.33 ms	Approx. 18.3 ms	(2 ¹⁶ ±2 ¹³) /HCLK	Approx. 3.584 s	Approx. 4.608 s	(2 ¹⁵ ±2 ¹²) /SCLK
Approx. 57.23 ms	Approx. 73.73 ms	(2 ¹⁸ ±2 ¹⁵) /HCLK	Approx. 7.168 s	Approx. 9.216 s	(2 ¹⁶ ±2 ¹³) /SCLK
Approx. 458.75 ms	Approx. 589.82 ms	(2 ²¹ ±2 ¹⁸) /HCLK	Approx. 14.336 s	Approx. 18.432 s	(2 ¹⁷ ±2 ¹⁴) /SCLK

Interval Timer of Watchdog Timer

HCLK: Oscillation clock (4 MHz), CSCLK: Sub clock (8.192 kHz)

Notes:

- If the time-base timer is cleared when watchdog timer count clock is used as time base timer output (carry-over signal), watchdog reset time may become longer.
- When using the sub clock as machine clock, be sure to specify watchdog timer clock source selection bit (WDCS) in watch timer control register (WTC) at "0," selecting output of watch timer.

12.5 16-bit Reload Timer

The 16-bit reload timer has the following functions:

- Count clock is selectable among 3 internal clocks and external event clock.
- Activation trigger is selectable between software trigger and external trigger.
- Generation of CPU interrupt is allowed upon occurrence of underflow on 16-bit timer register. Available as an interval timer using the interrupt function.
- When underflow of 16-bit timer register (TMR) occurs, one of two reload modes is selectable between one-shot mode that halts counting operation of TMR, and reload mode that reloads 16-bit reload register value to TMR, continuing TMR counting operation.
- The 16-bit reload timer is ready for expanded intelligent I/O service (El²OS).
- MB90385 series device has 2 channels of built-in 16-bit reload timer.

Operation Mode of 16-bit Reload Timer

Count Clock	Activation Trigger	Operation upon Underflow
Internal clock mode	Software trigger, external trigger	One-shot mode, reload mode
Event count mode	Software trigger	One-shot mode, reload mode

Internal Clock Mode

- The 16-bit reload timer is set to internal clock mode, by setting count clock selection bit (TMCSR: CSL1, CSL0) to "00_B", "01_B", "10_B".
- In the internal clock mode, the counter decrements in synchronization with the internal clock.
- Three types of count clock cycles are selectable by count clock selection bit (TMCSR: CSL1, CSL0) in timer control status register.
- Edge detection of software trigger or external trigger is specified as an activation trigger.

8/16-bit PPG Timer 1 Block Diagram

DTP/External Interrupt/CAN Wakeup Block Diagram

8/10-bit A/D Converter Block Diagram

12.11 UART Outline

UART is a general-purpose serial data communication interface for synchronous and asynchronous communication using external devices.

- Provided with bi-directional communication function for both clock-synchronous and clock-asynchronous modes.
- Provided with master/slave communication function (multi-processor mode). (Only master side is available.)
- Interrupt request is generated upon completion of reception, completion of transmission and detection of reception error.
- Ready for expanded intelligent service, El²OS.

Table 12-3. UART Functions

	Description
Data buffer	Full-duplex double buffer
Transmission mode	Clock synchronous (No start/stop bit, no parity bit) Clock asynchronous (start-stop synchronous)
Baud rate	Built-in special-purpose baud-rate generator. Setting is selectable among 8 values. Input of external values is allowed. Use of clock from external timer (16-bit reload timer 0) is allowed.
Data length	7 bits (only asynchronous normal mode) 8 bits
Signaling system	Non Return to Zero (NRZ) system
Reception error detection	Framing error Overrun error Parity error (not detectable in operation mode 1 (multi-processor mode))
Interrupt request	Receive interrupt (reception completed, reception error detected) Transmission interrupt (transmission completed) Ready for expanded intelligent I/O service (EI ² OS) in both transmission and reception
Master/slave communication function (asynchronous, multi-processor mode)	Communication between 1 (master) and n (slaves) are available (usable as master only).

Note: Start/stop bit is not added upon clock-synchronous transmission. Data only is transmitted.

Table 12-4. UART Operation Modes

Operation Mode		Data L	ength	Synchronization	Stop Bit Longth
		With Parity	Without Parity	Synchronization	Stop Bit Length
0	Asynchronous mode (normal mode)	7-bit c	or 8-bit	Asynchronous	1- bit or 2-bit *2
1	Multi processor mode	8+1*1	-	Asynchronous	
2	Synchronous mode	8	_	Synchronous	No

-: Disallowed

1: "+1" is an address/data selection bit used for communication control (bit 11 of SCR1 register: A/D).

2: Only 1 bit is detected as a stop bit on data reception.

12.14 ROM Mirror Function Selection Module Outline

The ROM mirror function selection module sets the data in ROM assigned to FF bank so that the data is read by access to 00 bank.

FF Bank Access by ROM Mirror Function

13.4.4 UART Timing

Paramotor	Symbol	Pin Name	Conditions	Value		Unit	Pomarke
Farameter			Conditions	Min	Max	Unit	Remarks
Serial clock cycle time	tscyc	SCK1	Internal shift clock	4 tcp *	_	ns	
SCK $\downarrow \rightarrow$ SOT delay time	t slov	SCK1, SOT1	= 80 pF+1TTL.	-80	+80	ns	
Valid SIN \rightarrow SCK \uparrow	tıvsн	SCK1, SIN1		100	_	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	SCK1, SIN1		60	_	ns	
Serial clock "H" pulse width	t s∺s∟	SCK1	External shift clock	2 tcp*	_	ns	
Serial clock "L" pulse width	t slsh	SCK1	mode output pin is: CL = 80 pF+1TTL	2 tcp*	_	ns	
SCK $\downarrow \rightarrow$ SOT delay time	t slov	SCK1, SOT1	00 p <u>-</u> .	-	150	ns	
Valid SIN \rightarrow SCK \uparrow	tıvsн	SCK1, SIN1		60	_	ns	
$SCK \uparrow \to valid \ SIN \ hold \ time$	tsнıx	SCK1, SIN1		60	_	ns	

(Vcc = 4.5 V to 5.5 V, Vss = 0.0 V, T_A = -40 °C to +105 °C)

*: Refer to Clock Timing ratings for $t_{\mbox{\tiny CP}}$ (internal operation clock cycle time).

Notes:

■ AC Characteristics in CLK synchronous mode.

 \blacksquare C_L is a load capacitance value on pins for testing.

13.4.5 Timer Input Timing

 $(V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Pomarke
Farameter				Min	Max		itema ka
Input pulse width	tтіwн	TIN0, TIN1	-	4 tcp*	-	ns	
	t⊤iwL	IN0 to IN3					

*: Refer to Clock Timing ratings for tcp (internal operation clock cycle time).

13.4.6 Trigger Input Timing

(Vcc = 4.5 V to 5.5 V, Vss = 0.0 V, $T_A = -40 \text{ °C to } +105 \text{ °C}$)

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Pomarks
				Min	Max	Onit	Kemarka
Input pulse width	ttrgh ttrgl	INT4 to INT7, ADTG	_	5 tcp *	_	ns	

*: Refer to Clock Timing ratings for tcp (internal operation clock cycle time).

