

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90387pmt-gs-112

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number Parameter	MB90F387 MB90F387S	MB90387 MB90387S	MB90V495G		
8/10-bit A/D converter	 Number of channels: 8 Resolution: Selectable 10-bit or 8-bit. Conversion time: 6.125 μs (at 16 MHz machine clock, including sampling time) Sequential conversion of two or more successive channels is allowed. (Setting a maximum of 8 channels is allowed.) Single conversion mode: Selected channel is converted only once. Sequential conversion mode: Selected channel is converted repetitively. Halt conversion mode: Conversion of selected channel is stopped and activated alternately. 				
UART(SCI)	Number of channels: 1 Clock-synchronous transfer: 62.5 kbps to 2 Mbps Clock-asynchronous transfer: 9,615 bps to 500 kbps Communication is allowed by bi-directional serial communication function and master slave type connection.				
CAN B built-in message buffers. Transmission rate of 10 kbps to 1 Mbps (by 16 MHz machine clock) CAN wake-up					

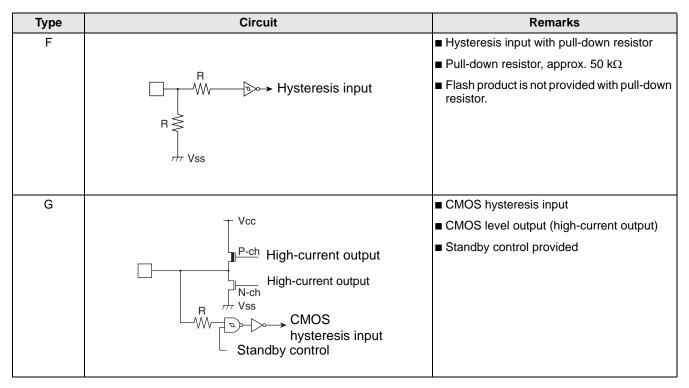
*1: Settings of DIP switch S2 for using emulation pod MB2145-507. For details, see MB2145-507 Hardware Manual (2.7 Power Pin solely for Emulator).

*2: MB90387S, MB90F387S

2. Packages And Product Models

Package	MB90F387, MB90F387S	MB90387, MB90387S
LQA048	\bigcirc	\bigcirc

 \bigcirc : Yes \times : No


Note: Refer to Package Dimension for details of the package.

3. Product Comparison

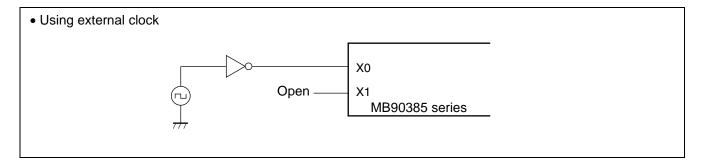
Memory Space

When testing with test product for evaluation, check the differences between the product and a product to be used actually. Pay attention to the following points:

- The MB90V495G has no built-in ROM. However, a special-purpose development tool allows the operations as those of one with built-in ROM. ROM capacity depends on settings on a development tool.
- On MB90V495G, an image from FF4000^H to FFFFFF^H is viewed on 00 bank and an image of FE0000^H to FF3FFF^H is viewed only on FE bank and FF bank. (Modified on settings of a development tool.)
- On MB90F387/F387S/387/387S, an image from FF4000H to FFFFFFH is viewed on 00 bank and an image of FE0000H to FF3FFFH is viewed only on FF bank.

7. Handling Devices

Do Not Exceed Maximum Rating (preventing "latch up")


- On a CMOS IC, latch-up may occur when applying a voltage higher than Vcc or a voltage lower than Vss to input or output pin, which has no middle or high withstand voltage. Latch-up may also occur when a voltage exceeding maximum rating is applied across Vcc pin and Vss pin.
- Latch-up causes drastic increase of power current, which may lead to destruction of elements by heat. Extreme caution must be taken not to exceed maximum rating.
- When turning on and off analog power source, take extra care not to apply an analog power voltages (AVcc and AVR) and analog input voltage that are higher than digital power voltage (Vcc).

Handling Unused Pins

Leaving unused input pins open may cause permanent destruction by malfunction or latch-up. Apply pull-up or pull-down process to the unused pins using resistors of 2 kΩ or higher. Leave unused input/output pins open under output status, or process as input pins if they are under input status.

Using External Clock

■ When using an external clock, drive only X0 pin and leave X1 pin open. An example of using an external clock is shown below.

Notes When Using No Sub Clock

■ If an oscillator is not connected to X0A and X1A pin, apply pull-down resistor to X0A pin and leave X1A pin open.

About Power Supply Pins

- If two or more Vcc and Vss pins exist, the pins that should be at the same potential are connected to each other inside the device. For reducing unwanted emissions and preventing malfunction of strobe signals caused by increase of ground level, however, be sure to connect the Vcc and Vss pins to the power source and the ground externally.
- Pay attention to connect a power supply to Vcc and Vss of MB90385 series device in a lowest-possible impedance.
- Near pins of MB90385 series device, connecting a bypass capacitor is recommended at 0.1 µF across Vcc pin and Vss pin.

Crystal Oscillator Circuit

- Noises around X0 and X1 pins cause malfunctions on a MB90385 series device. Design a print circuit so that X0 and X1 pins, an crystal oscillator (or a ceramic oscillator), and bypass capacitor to the ground become as close as possible to each other. Furthermore, avoid wires to X0 and X1 pins crossing each other as much as possible.
- Print circuit designing that surrounds X0 and X1 pins with grounding wires, which ensures stable operation, is strongly recommended.

Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

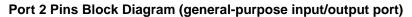
Sequence of Turning on Power of A/D Converter and Applying Analog Input

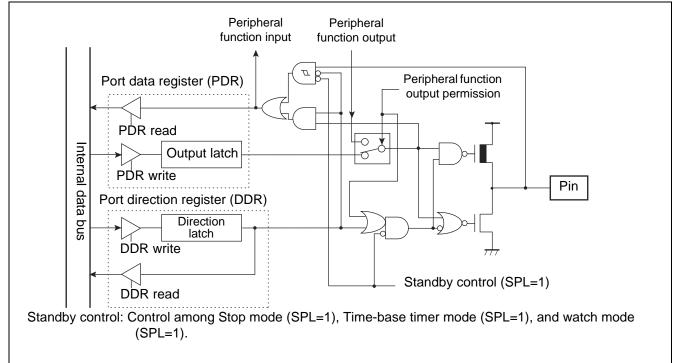
- Be sure to turn on digital power (Vcc) before applying signals to the A/D converter and applying analog input signals (AN0 to AN7 pins).
- Be sure to turn off the power of A/D converter and analog input before turning off the digital power source.
- Be sure not to apply AVR exceeding AVcc when turning on and off. (No problems occur if analog and digital power is turned on and off simultaneously.)

Handling Pins When A/D Converter is Not Used

■ If the A/D converter is not used, connect the pins under the following conditions: "AVcc=AVR=Vcc," and "AVss=Vss"

Note on Turning on Power


For preventing malfunctions on built-in step-down circuit, maintain a minimum of 50 μs of voltage rising time (between 0.2 V and 2.7V) when turning on the power.


Stabilization of Supply Voltage

■ A sudden change in the supply voltage may cause the device to malfunction even within the specified Vcc supply voltage operating range. Therefore, the Vcc supply voltage should be stabilized.

For reference, the supply voltage should be controlled so that Vcc ripple variations (peak-to-peak values) at commercial frequencies (50 Hz / 60 Hz) fall below 10% of the standard Vcc supply voltage and the coefficient of fluctuation does not exceed 0.1 V/ms at instantaneous power switching.

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
000038н		(Reserve	ed area) *		
to 00003Fн					
000040н	PPGC0	PPG0 operation mode control register	R/W, W	8/16-bit PPG timer 0/	0Х000ХХ1в
000041н	PPGC1	PPG1 operation mode control register	R/W, W		0Х00001в
000042н	PPG01	PPG0/1 count clock selection register	R/W		000000XXB
000043н		(Reserve	ed area) *		
000044н	PPGC2	PPG2 operation mode control register	R/W, W	8/16-bit PPG timer 2/	0X000XX1в
000045н	PPGC3	PPG3 operation mode control register	R/W, W	3	0Х00001в
000046н	PPG23	PPG2/3 count clock selection register	R/W	1 [000000XXв
000047н to 00004Fн		(Reserve	ed area) *	· ·	
000050н	IPCP0	Input capture data register 0	R	16-bit input/output	XXXXXXXXB
000051н				timer	XXXXXXXXB
000052н	IPCP1	Input capture data register 1	R	1 [XXXXXXXXB
000053н					XXXXXXXXB
000054н	ICS01	Input capture control status register	R/W	1 [0000000в
000055н	ICS23				0000000в
000056н	TCDT	Timer counter data register	R/W	1 [0000000в
000057н					0000000в
000058н	TCCS	Timer counter control status register	R/W	1 [0000000в
000059н		(Reserve	ed area) *	· ·	
00005Ан	IPCP2	Input capture data register 2	R	16-bit input/output	XXXXXXXXB
00005Вн				timer	XXXXXXXXB
00005Сн	IPCP3	Input capture data register 3	R		XXXXXXXXB
00005Dн					XXXXXXXXB
00005Eнto 000065н		(Reserve	ed area) *		
000066н	TMCSR0	Timer control status register	R/W	16-bit reload timer 0	0000000в
000067н			R/W		XXXX0000 _B
000068н	TMCSR1		R/W	16-bit reload timer 1	0000000в
000069н			R/W		XXXX0000b
00006Анto 00006Ен		(Reserve	ed area) *		
00006Fн	ROMM	ROM mirroring function selection register	W	ROM mirroring function selection module	XXXXXXX1B
000070н to 00007Fн		(Reserve	ed area) *		
000080н	BVALR	Message buffer enabling register	R/W	CAN controller	0000000в
000081н			ed area) *		
000082н	TREQR	Send request register	R/W	CAN controller	0000000в

Port 2 Registers

- Port 2 registers include port 2 data register (PDR2) and port 2 direction register (DDR2).
- The bits configuring the register correspond to port 2 pins on a one-to-one basis.

Relation between Port 2 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 2	PDR2,DDR2	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	P27	P26	P25	P24	P23	P22	P21	P20

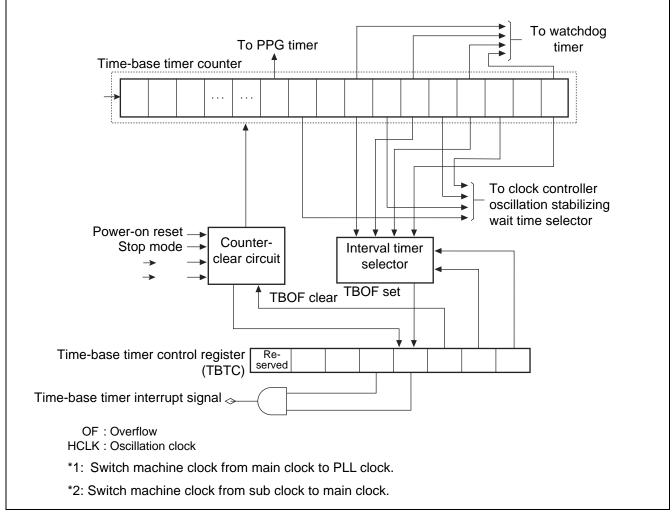
12.2 Time-Base Timer

The time-base time is an 18-bit free-run counter (time-base timer counter) that counts up in synchronization with the main clock (dividing main oscillation clock by 2).

- Four choices of interval time are selectable, and generation of interrupt request is allowed for each interval time.
- Provides operation clock signal to oscillation stabilizing wait timer and peripheral functions.

Interval Timer Function

- When the counter of time-base timer reaches an interval time specified by interval time selection bit (TBTC:TBC1, TBC0), an overflow (carrying-over) occurs (TBTC: TBOF=1) and interrupt request is generated.
- If an interrupt by overflow is permitted (TBTC: TBIE=1), an interrupt is generated when overflow occurs (TBTC: TBOF=1).
- The following four interval time settings are selectable:


Interval Time of Time-base Timer

Count Clock	Interval Time
2/HCLK (0.5 μs)	2 ¹² /HCLK (Approx. 1.0 ms)
	2 ¹⁴ /HCLK (Approx. 4.1 ms)
	216/HCLK (Approx. 16.4 ms)
	2 ¹⁹ /HCLK (Approx. 131.1 ms)

HCLK: Oscillation clock

Values in parentheses "()" are those under operation of 4-MHz oscillation clock.

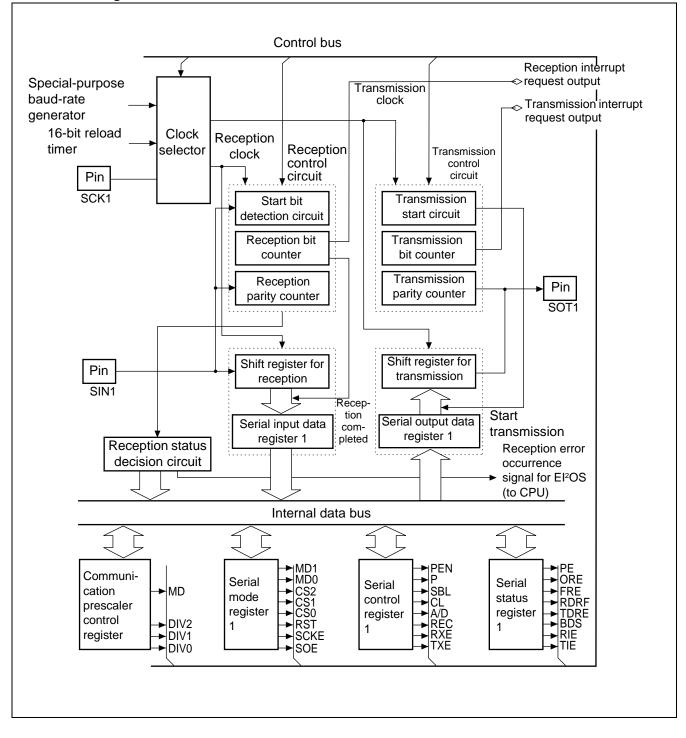
Time-base Timer Block Diagram

Actual interrupt request number of time-base timer is as follows: Interrupt request number: #16 (10_H)

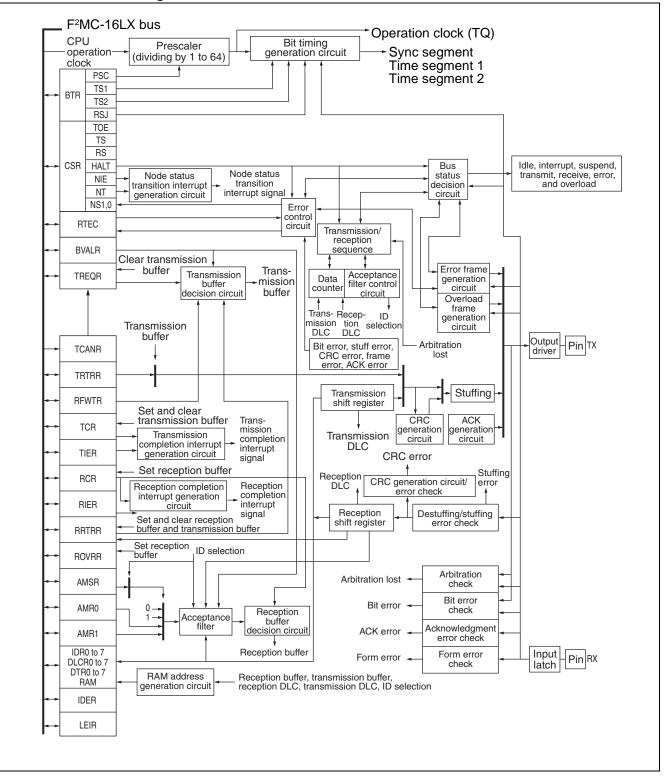
12.7 8/16-bit PPG Timer Outline

The 8/16-bit PPG timer is a 2-channel reload timer module (PPG0 and PPG1) that allows outputting pulses of arbitrary cycle and duty cycle. Combination of the two channels allows selection among the following operations:

- 8-bit PPG output 2-channel independent operation mode
- 16-bit PPG output operation mode
- 8-bit and 8-bit PPG output operation mode


MB90385 series device has two 8/16-bit built-in PPG timers. This section describes functions of PPG0/1. PPG2/3 have the same functions as those of PPG0/1.

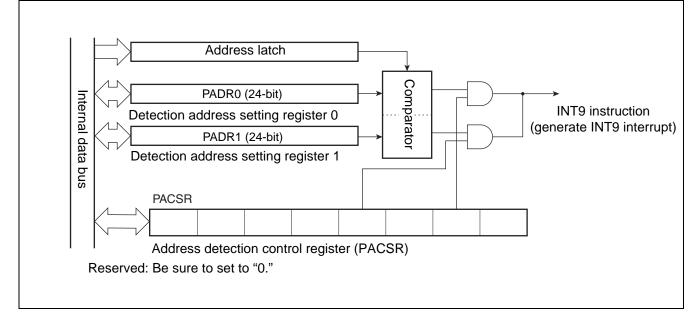
Functions of 8/16-bit PPG Timer


The 8/16-bit PPG timer is composed of four 8-bit reload register (PRLH0/PRLL0, PRLH1/PRLL1) and two PPG down counters (PCNT0, PCNT1).

- Widths of "H" and "L" in output pulse are specifiable independently. Cycle and duty factor of output pulse is specifiable arbitrarily.
- Count clock is selectable among 6 internal clocks.
- The timer is usable as an interval timer, by generating interrupt requests for each interval.
- The time is usable as a D/A converter, with an external circuit.

UART Block Diagram

CAN Controller Block Diagram

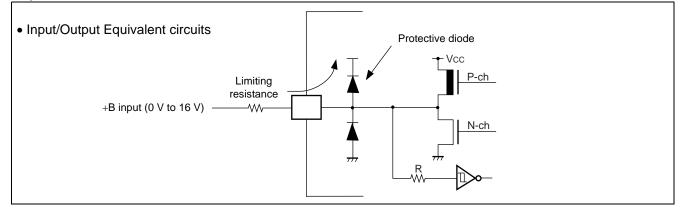

12.13 Address Matching Detection Function Outline

The address matching detection function checks if an address of an instruction to be processed next to a currently-processed instruction is identical with an address specified in the detection address register. If the addresses match with each other, an instruction to be processed next in program is forcibly replaced with INT9 instruction, and process branches to the interrupt process program. Using INT9 interrupt, this function is available for correcting program by batch processing.

Address Matching Detection Function Outline

- An address of an instruction to be processed next to a currently-processed instruction of the program is always retained in an address latch via internal data bus. By the address matching detection function, the address value retained in the address latch is always compared with an address specified in detection address setting register. If the compared address values match with each other, an instruction to be processed next by CPU is forcibly replaced with INT9 instruction, and an interrupt process program is executed.
- Two detection address setting registers are provided (PADR0 and PADR1), and each register is provided with interrupt permission bit. Generation of interrupt, which is caused by address matching between the address retained in address latch and the address specified in address setting register, is permitted and prohibited on a register-by-register basis.

Address Matching Detection Function Block Diagram



Address latch

Retains address value output to internal data bus.

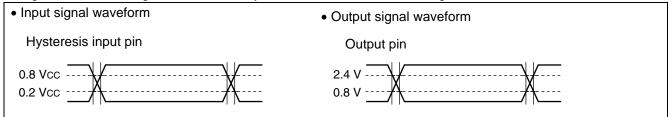
- Address detection control register (PACSR) Specifies if interrupt is permitted or prohibited when addresses match with each other.
- Detection address setting (PADR0, PADR1) Specifies addresses to be compared with values in address latch.

- Use within recommended operating conditions.
- Use at DC voltage (current).
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits:

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

13.3 DC Characteristics

			(****	- 5.0 V±107	Value	1V35 – 0.0 V	, 14 –	–40 °C to +105
Parameter	Symbol	Pin Name	Conditions	Min		Мах	Unit	Remarks
"H" level input	Vins	CMOS hysteresis input pin	_	0.8 Vcc	Тур —	Vcc + 0.3	V	
voltage	Vінм	MD input pin	_	Vcc - 0.3	_	Vcc + 0.3	V	
"L" level input	Vils	CMOS hysteresis input pin	_	Vss - 0.3	_	0.2 Vcc	V	
voltage	Vilm	MD input pin	—	Vss - 0.3	—	Vss + 0.3	V	
"H" level output	Voh1	Pins other than P14 to P17	Vcc = 4.5 V, Іон = -4.0 mA	Vcc - 0.5	_	—	V	
voltage	Vон2	P14 to P17	Vcc = 4.5 V, Іон = -14.0 mA	Vcc - 0.5	_	—	V	
"L" level output	Vol1	Pins other than P14 to P17	$V_{CC} = 4.5 V,$ $I_{OL} = 4.0 mA$	—	_	0.4	V	
voltage	Vol2	P14 to P17	Vcc = 4.5 V, Io∟ = 20.0 mA	—	—	0.4	V	
Input leak current	lι∟	All input pins	Vcc = 5.5 V, Vss < Vi < Vcc	-5	_	+5	μA	
Power supply current*	Icc	Vcc	Vcc = 5.0 V, Internally operating at 16 MHz, normal operation.	—	25	30	mA	
			Vcc = 5.0 V, Internally operating at 16 MHz, writing on Flash memory.	_	45	50	mA	MB90F387/S
			Vcc = 5.0 V, Internally operating at 16 MHz, deleting on Flash memory.	_	45	50	mA	MB90F387/S
	lccs		Vcc = 5.0 V, Internally operating at 16 MHz, sleeping.	_	8	12	mA	
	Icts		Vcc = 5.0 V, Internally operating at 2 MHz, transition from main	—	0.75	1.0	mA	MB90F387/S
			clock mode, in time-base timer mode.		0.2	0.35		MB90387/S

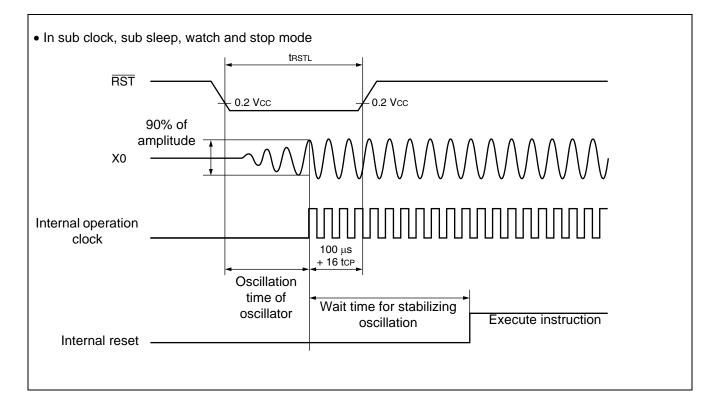

(Vcc = 5.0 V±10%, Vss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

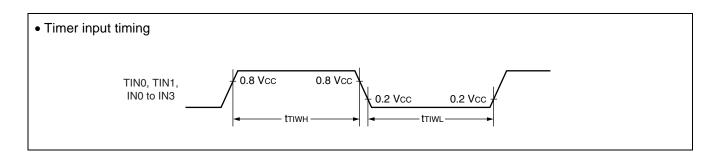
Deremeter	Symbol	Pin Name	Conditions		Value		Unit	Remarks
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
Power supply current*	lcc∟	Vcc	Vcc = 5.0 V, Internally operating at 8 kHz, subclock operation,		0.3	1.2	mA	MB90F387/S
			$T_A = +25^{\circ}C$		40	100	μΑ	MB90387/S
	ICCLS		$V_{CC} = 5.0 V$, Internally operating at 8 kHz, subclock, sleep mode, $T_{A} = + 25^{\circ}C$	_	10	30	μA	
	Ісст		Vcc = 5.0 V, Internally operating at 8 kHz, watch mode, $T_A = + 25^{\circ}C$		8	25	μΑ	
	Іссн		Stopping, T _A = + 25°C	_	5	20	μΑ	
Input capacity	CIN	Other than AVcc, AVss, AVR, C, Vcc, Vss	-	_	5	15	pF	
Pull-up resistor	Rup	RST	-	25	50	100	kΩ	
Pull-down resistor	Rdown	MD2	-	25	50	100	kΩ	Flash product is not provided with pull-down resistor.

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 \circ C to +105 \circ C)$

*: Test conditions of power supply current are based on a device using external clock.

Rating values of alternating current is defined by the measurement reference voltage values shown below:

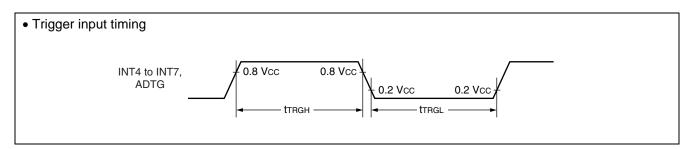

13.4.2 Reset Input Timing

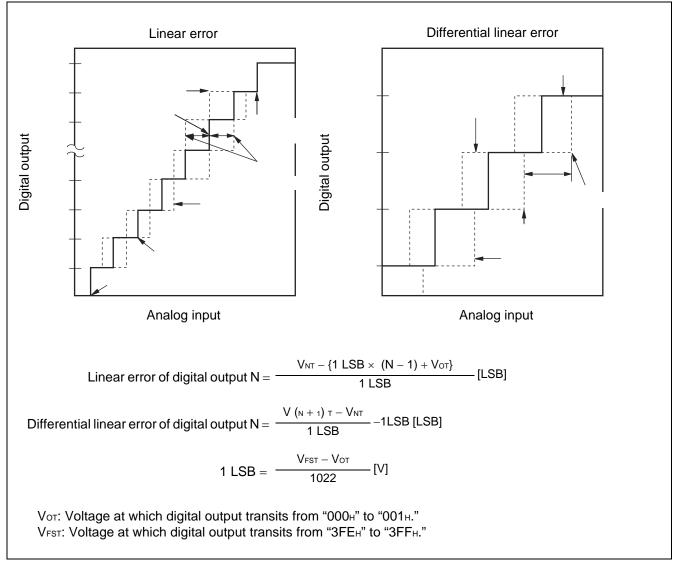

Parameter	Symbol	Pin Name Value			Unit	Remarks
Falameter	Symbol		Min	Мах	Onit	Reillarks
Reset input time	t RSTL	RST	16 tce*3	-	ns	Normal operation
			Oscillation time of oscillator ^{*1} + $100 \ \mu s$ + $16 \ tcP^{*3}$	-		In sub clock ^{*2} , sub sleep ^{*2} , watch ^{*2} and stop mode
			100	_	μS	In timebase timer

*1: Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.

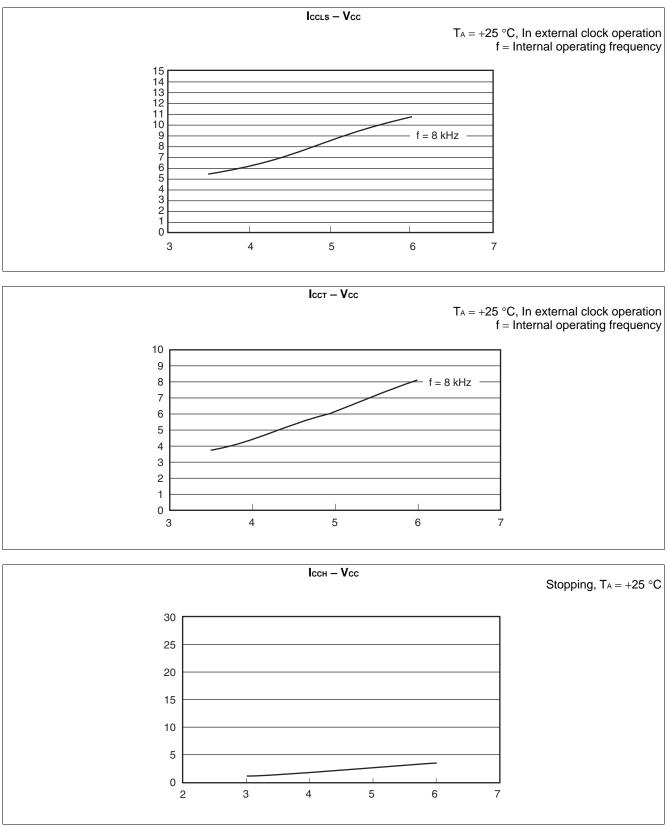
*2: Except for MB90F387S and MB90387S.

*3: Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).

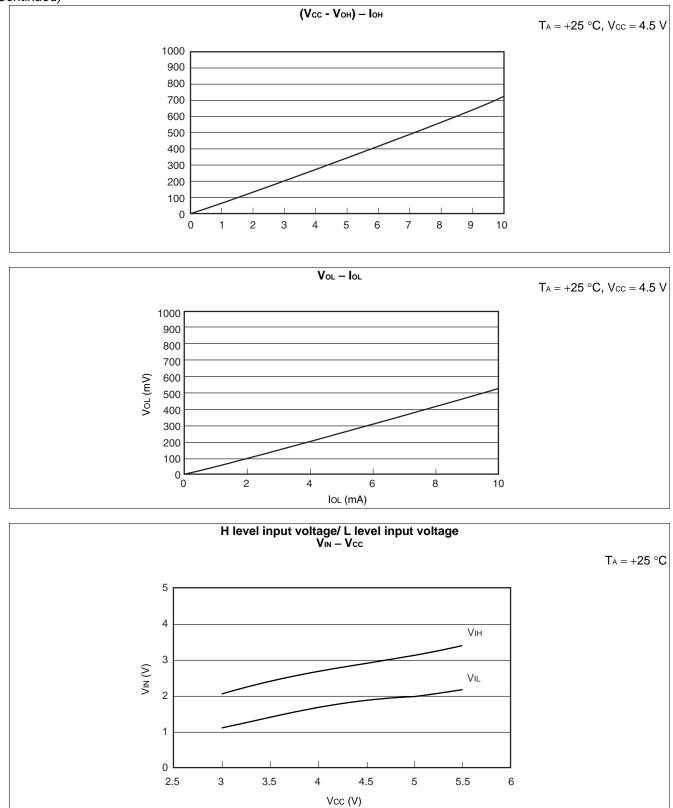



13.4.6 Trigger Input Timing

(Vcc = 4.5 V to 5.5 V, Vss = 0.0 V, $T_A = -40 \text{ °C to } +105 \text{ °C}$)


Parameter	Symbol Pin Name		Pin Name Conditions		ue	Unit	Remarks
Farameter	Symbol	FIII Name	Conditions	Min	Max	Onit	Remains
Input pulse width	ttrgh ttrgl	INT4 to INT7, ADTG	_	5 tcp *	_	ns	

*: Refer to Clock Timing ratings for tcp (internal operation clock cycle time).



(Continued)

(Continued)

(Continued)

17. Major Changes

Spansion Publication Number: DS07-13717-5E

Page	Section	Change Results
4	■ PRODUCT LINEUP	Changed the number of channel of 8/16 bit PPG timer. or one 16-bit channel \rightarrow or two 16-bit channels
13	■ BLOCK DIAGRAM	Changed the direction of arrow of TIN0, TIN1 signals of 16-bit reload timer. right arrow (output) \rightarrow left arrow (input)
67	 ELECTRIC CHARACTERISTICS 4. AC Characteristics (4) UART timing 	Changed the value of Serial clock. Serial clock "H" pulse width: 4tcp→2tcp Serial clock "L" pulse width: 4tcp→2tcp

NOTE: Please see "Document History" about later revised information.