

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90387pmt-gs-142

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Product Lineup

Part Number Parameter		MB90F387 MB90F387S	MB90387 MB90387S	MB90V495G				
Classification		Flash ROM	Mask ROM	Evaluation product				
ROM capacity		64 Kby	rtes	_				
RAM capacity		2 Kbyt	es	6 Kbytes				
Process			CMOS					
Package		LQFP-48 (pin pit	ch 0.50 mm)	PGA-256				
Operating power	supply voltage	3.5 V to 9	5.5 V	4.5 V to 5.5 V				
Special power su emulator*1	pply for	-		None				
CPU functions		Number of basic instructions Instruction bit length Instruction length Data bit length	Number of basic instructions: 351 instructionsInstruction bit length: 8 bits and 16 bitsInstruction length: 1 byte to 7 bytesData bit length: 1 bit, 8 bits, 16 bits					
		Minimum instruction execution ti	me: 62.5 ns (at 16 MHz mach	nine clock)				
		Interrupt processing time: 1.5 µs	at minimum (at 16 MHz mac	hine clock)				
Low power consu (standby) mode	Imption	Sleep mode / Watch mode / Time	e-base timer mode / Stop mo	de / CPU intermittent				
I/O port		General-purpose input/output ports (CMOS output): 34 ports (36 ports*2) including 4 high-current output ports (P14 to P17)						
Time-base timer		18-bit free-run counter Interrupt cycle: 1.024 ms, 4.096 ms, 16.834 ms, 131.072 ms (with oscillation clock frequency at 4 MHz)						
Watchdog timer		Reset generation cycle: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (with oscillation clock frequency at 4 MHz)						
16-bit input/ output timer	16-bit free-run timer	Number of channels: 1 Interrupt upon occurrence of overflow						
	Input capture	Number of channels: 4 Retaining free-run timer value se	umber of channels: 4 etaining free-run timer value set by pin input (rising edge, falling edge, and both edges)					
16-bit reload time	r	Number of channels: 2 16-bit reload timer operation Count clock cycle: 0.25 μs, 0.5 μs, 2.0 μs (at 16-MHz machine clock frequency) External event count is allowed.						
Watch timer		15-bit free-run counter Interrupt cycle: 31.25 ms, 62.5 ms, 12 ms, 250 ms, 500 ms, 1.0 s, 2.0 s (with 8.192 kHz sub clock)						
8/16-bit PPG timer		Number of channels: 2 (four 8-bi PPG operation is allowed with fo Outputting pulse wave of arbitrar Count clock: 62.5 ns to 1 μ s (with 16 MHz machine clock)	it channels are available also our 8-bit channels or two 16-b ry cycle or arbitrary duty is all	.) it channels. owed.				
Delay interrupt ge	enerator module	Interrupt generator module for ta	isk switching. Used for realtin	ne OS.				
DTP/External inte	errupt	Number of inputs: 4 Activated by rising edge, falling edge, "H" level or "L" level input. External interrupt or expanded intelligent I/O service (El ² OS) is available.						

Pin No.	Pin Name	Circuit Type	Function
39	P42	D	General-purpose input/output port.
	SOT1		Serial data input pin for UART. Valid only when serial data input/output setting on UART is "enabled."
40	P43	D	General-purpose input/output port.
	ТХ		Transmission output pin for CAN. Valid only when output setting is "enabled."
41	P44	D	General-purpose input/output port.
	RX		Transmission output pin for CAN. Valid only when output setting is "enabled."
42 to 45	P30 to P33	D	General-purpose input/output ports.
46	X0A*	А	Pin for low-rate oscillation.
	P35*		General-purpose input/output port.
47	X1A*	А	Pin for low-rate oscillation.
	P36*		General-purpose input/output port.
48	AVss	-	Vss power source input pin for A/D converter.

*: MB90387, MB90F387: X1A, X0A MB90387S, MB90F387S: P36, P35

9.2 Memory Map

Note: When internal ROM is operating, F²MC-16LX allows viewing ROM data image on FF bank at upper-level of 00 bank. This function is called "mirroring ROM," which allows effective use of C compiler small model.

F²MC-16LX assigns the same low order 16-bit address to FF bank and 00 bank, which allows referencing table in ROM without specifying "far" using pointer.

For example, when accessing to "00C000H", ROM data at "FFC000H" is accessed actually. However, because ROM area of FF bank exceeds 48 Kbytes, viewing all areas is not possible on 00 bank image. Because ROM data of "FF4000H" to "FFFFFH" is viewed on "004000H" to "00FFFFH" image, store a ROM data table in area "FF4000H" to "FFFFFH."

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value	
003С38н, 003С39н	DLCR4	DLC register 4	R/W	CAN controller	XXXXXXXXB, XXXXXXXB	
003С3Ан, 003С3Вн	DLCR5	DLC register 5	er 5 R/W			
003С3Сн, 003С3Dн	DLCR6	DLC register 6	XXXXXXXXB, XXXXXXXB			
003С3Ен, 003С3Ен	DLCR7	DLC register 7	R/W		XXXXXXXXB, XXXXXXXB	
003C40н to 003C47н	DTR0	Data register 0	R/W		XXXXXXXXB to XXXXXXXB	
003C48н to 003C4Fн	DTR1	Data register 1	R/W		XXXXXXXXB to XXXXXXXB	
003С50н to 003С57н	DTR2	Data register 2	R/W		XXXXXXXXB to XXXXXXXB	
003C58н to 003C5Fн	DTR3	Data register 3	R/W		XXXXXXXXB to XXXXXXXB	
003C60н to 003C67н	DTR4	Data register 4	R/W		XXXXXXXXB to XXXXXXXB	
003C68н to 003C6Fн	DTR5	Data register 5	R/W		XXXXXXXXB to XXXXXXXB	
003C70н to 003C77н	DTR6	Data register 6	R/W		XXXXXXXXB to XXXXXXXB	
003C78н to 003C7Fн	DTR7	Data register 7	R/W		XXXXXXXXB to XXXXXXXB	
003C80н to 003CFFн		(Reserv	ed area) *			
003D00н, 003D01н	CSR	Control status register	R/W, R	CAN controller	0XXXX001в, 00XXX000в	
003D02н	LEIR	Last event display register	R/W		000XX000b	
003D03н		(Reserv	ed area) *			
003D04н, 003D05н	RTEC	Send/receive error counter	R	CAN controller	0000000в, 0000000в	
003D06н, 003D07н	BTR	Bit timing register R/W			11111111 _в , Х1111111 _в	
003D08н	IDER	IDE register	R/W		XXXXXXXXB	
003D09н		(Reserv	ed area) *			
003D0Aн	TRTRR	Send RTR register	R/W	CAN controller	0000000в	
003D0Bн		(Reserv	ed area) *		1	
003D0Cн	RFWTR	Remote frame receive wait register	R/W	CAN controller	XXXXXXXXB	

Port 3 Registers

- Port 3 registers include port 3 data register (PDR3) and port 3 direction register (DDR3).
- The bits configuring the register correspond to port 3 pins on a one-to-one basis.

Relation between Port 3 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 3	PDR3, DDR3	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	P37	P36*	P35*		P33	P32	P31	P30

*: P35 and P36 do not exist on MB90387and MB90F387.

16-bit Free-run Timer

Counter value of 16-bit free-run timer is used as reference time (base time) of input capture.

Input Capture

Input capture detects rising edge, falling edge or both edges and retains a counter value of 16-bit free-run timer. Detection of edge on input signal is allowed to generate interrupt.

16-bit Free-run Timer Block Diagram

Detailed Pin Assignment on Block Diagram

The 16-bit input/output timer includes a 16-bit free-run timer. Interrupt request number of the 16-bit free-run timer is as follows: Interrupt request number: 19 (13_H)

Prescaler

The prescaler divides a machine clock and provides a counter clock to the 16-bit up counter. Dividing ratio of the machine clock is specified by timer counter control status register (TCCS) among four values.

Timer Counter Data Register (TCDT)

The timer counter data register is a 16-bit up counter. A current counter value of the 16-bit free-run timer is read. Writing a value during halt of the counter allows setting an arbitrary counter value.

12.7 8/16-bit PPG Timer Outline

The 8/16-bit PPG timer is a 2-channel reload timer module (PPG0 and PPG1) that allows outputting pulses of arbitrary cycle and duty cycle. Combination of the two channels allows selection among the following operations:

- 8-bit PPG output 2-channel independent operation mode
- 16-bit PPG output operation mode
- 8-bit and 8-bit PPG output operation mode

MB90385 series device has two 8/16-bit built-in PPG timers. This section describes functions of PPG0/1. PPG2/3 have the same functions as those of PPG0/1.

Functions of 8/16-bit PPG Timer

The 8/16-bit PPG timer is composed of four 8-bit reload register (PRLH0/PRLL0, PRLH1/PRLL1) and two PPG down counters (PCNT0, PCNT1).

- Widths of "H" and "L" in output pulse are specifiable independently. Cycle and duty factor of output pulse is specifiable arbitrarily.
- Count clock is selectable among 6 internal clocks.
- The timer is usable as an interval timer, by generating interrupt requests for each interval.
- The time is usable as a D/A converter, with an external circuit.

12.9 DTP/External Interrupt and CAN Wakeup Outline

DTP/external interrupt transfers an interrupt request generated by an external peripheral device or a data transmission request to CPU, generating external interrupt request and activating expanded intelligent I/O service. Input RX of CAN controller is used as external interrupt input.

DTP/External Interrupt and CAN Wakeup Function

An interrupt request input from external peripheral device to external input pins (INT7 to INT4) and RX pin, just as interrupt request of peripheral device, generates an interrupt request. The interrupt request generates an external interrupt and activates expanded intelligent I/O service (EI²OS).

If the expanded intelligent I/O service (EI²OS) has been disabled by interrupt control register (ICR: ISE=0), external interrupt function is enabled and branches to interrupt processing.

If the EI²OS has been enabled, (ICR: ISE=1), DTP function is enabled and automatic data transmission is performed by EI²OS. After performing specified number of data transmission processes, the process branches to interrupt processing.

	External Interrupt	DTP Function							
Input pin	5 pins (RX, and INT4 to INT7)	5 pins (RX, and INT4 to INT7)							
Interrupt cause	Specify for each pin with detection level setting re	egister (ELVR).							
	Input of "H" level/"L" level/rising edge/falling Input of "H" level/ "L" level edge.								
Interrupt number	#15 (0Fн), #24 (18н), #27 (1Вн)								
Interrupt control	Enabling or disabling output of interrupt request, using DTP/external interrupt permission register (ENIR).								
Interrupt flag	Retaining interrupt cause with DTP/external inter	rupt cause register (EIRR).							
Process selection	Disable El ² OS (ICR: ISE=0)	Enable El ² OS (ICR: ISE=1)							
Process	Branch to external interrupt process	After automatic data transmission by EI ² OS for specified number of times, branch to interrupt process.							

Table 12-2. DTP/External Interrupt	and CAN Wake	up Outline
------------------------------------	--------------	------------

DTP/External Interrupt/CAN Wakeup Block Diagram

12.12 CAN Controller

The Controller Area Network (CAN) is a serial communication protocol compliant with CANVer2.0A and Ver2.0B. The protocol allows data transmission and reception in both standard frame format and expanded frame format.

Features of CAN Controller

- CAN controller format is compliant with CANVer2.0A and Ver2.0B.
- The protocol allows data transmission and reception in standard frame format and expanded frame format.
- Automatic transmission of data frame by remote frame reception is allowed.
- Baud rate ranges from 10 kbps to 1 Mbps (with 16-MHz machine clock).

Table 12-5. Data Transmission Baud Rate

Machine Clock	Baud Rate (Max)				
16 MHz	1 Mbps				
12 MHz	1 Mbps				
8 MHz	1 Mbps				
4 MHz	500 kbps				
2 MHz	250 kbps				

- Provided with 8 transmission/reception message buffers.
- Transmission/reception is allowed at ID 11 bit in standard format, and at ID 29 bit in expanded frame format.
- Specifying 0 byte to 8 bytes is allowed in message data.
- Multi-level message buffer configuration is allowed.
- CAN controller has two built-in acceptance masks. Mask settings are independently allowed for the two acceptance masks on reception IDs.
- The two acceptance masks allow reception in standard frame format and expanded frame format.
- For types of masking, all-bit comparison, all-bit masking, and partial masking with acceptance mask register 0/1, are specifiable.

12.13 Address Matching Detection Function Outline

The address matching detection function checks if an address of an instruction to be processed next to a currently-processed instruction is identical with an address specified in the detection address register. If the addresses match with each other, an instruction to be processed next in program is forcibly replaced with INT9 instruction, and process branches to the interrupt process program. Using INT9 interrupt, this function is available for correcting program by batch processing.

Address Matching Detection Function Outline

- An address of an instruction to be processed next to a currently-processed instruction of the program is always retained in an address latch via internal data bus. By the address matching detection function, the address value retained in the address latch is always compared with an address specified in detection address setting register. If the compared address values match with each other, an instruction to be processed next by CPU is forcibly replaced with INT9 instruction, and an interrupt process program is executed.
- Two detection address setting registers are provided (PADR0 and PADR1), and each register is provided with interrupt permission bit. Generation of interrupt, which is caused by address matching between the address retained in address latch and the address specified in address setting register, is permitted and prohibited on a register-by-register basis.

Address Matching Detection Function Block Diagram

Address latch

Retains address value output to internal data bus.

- Address detection control register (PACSR) Specifies if interrupt is permitted or prohibited when addresses match with each other.
- Detection address setting (PADR0, PADR1) Specifies addresses to be compared with values in address latch.

13.2 Recommended Operating Conditions

(Vss = AVss = 0.0V)

Parameter	Symbol	Value				Pomarks	
Farameter	Symbol	Min	Тур	Max	Unit	Remarks	
Power supply voltage	Vcc	3.5	5.0	5.5	V	Under normal operation	
		3.0	_	5.5	V	Retain status of stop operation	
	AVcc	4.0	-	5.5	V	*2	
Smoothing capacitor	Cs	0.1	-	1.0	μF	*1	
Operating temperature	TA	-40	-	+105	°C		

*1: Use a ceramic capacitor, or a capacitor of similar frequency characteristics. On the Vcc pin, use a bypass capacitor that has a larger capacity than that of Cs.

Refer to the following figure for connection of smoothing capacitor Cs.

*2: AVcc is a voltage at which accuracy is guaranteed. AVcc should not exceed Vcc.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

13.3 DC Characteristics

Parameter	Symbol	Pin Name	Conditions		value	Unit	Remarks	
				Min	Тур	Max		
"H" level input	Vihs	CMOS hysteresis input pin	—	0.8 Vcc	—	Vcc + 0.3	V	
voltage	Vінм	MD input pin	—	Vcc - 0.3	_	Vcc + 0.3	V	
"L" level input	Vils	CMOS hysteresis input pin	—	Vss - 0.3	_	0.2 Vcc	V	
voltage VILM		MD input pin	—	Vss - 0.3		Vss + 0.3	V	
"H" level output voltage Vон1 Voн2		Pins other than P14 to P17	Vcc = 4.5 V, Іон = -4.0 mA	Vcc – 0.5	—		V	
		P14 to P17	Vcc = 4.5 V, Іон = -14.0 mA	Vcc - 0.5	_		V	
"L" level output	Vol1	Pins other than P14 to P17	Vcc = 4.5 V, IoL = 4.0 mA	—	—	0.4	V	
voltage Vol2 P14 to P17		P14 to P17	Vcc = 4.5 V, IoL = 20.0 mA	—	—	0.4	V	
Input leak current	lı∟	All input pins		-5	—	+5	μA	
Power Ico supply current*	lcc	Vcc	Vcc = 5.0 V, Internally operating at 16 MHz, normal operation.	—	25	30	mA	
			Vcc = 5.0 V, Internally operating at 16 MHz, writing on Flash memory.	—	45	50	mA	MB90F387/S
			Vcc = 5.0 V, Internally operating at 16 MHz, deleting on Flash memory.		45	50	mA	MB90F387/S
	lccs	-	Vcc = 5.0 V, Internally operating at 16 MHz, sleeping.	—	8	12	mA	
	Істѕ		Vcc = 5.0 V, Internally operating at	—	0.75	1.0	mA	MB90F387/S
			2 MHz, transition from main clock mode, in time-base timer mode.		0.2	0.35		MB90387/S

(Vcc = 5.0 V±10%, Vss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

13.4.3 Power-on Reset

Paramotor	Symbol	Din Namo	Conditions	Va	lue	Unit	Pomarks	
Falameter	Symbol Fill Name		Conditions	Min	Max	Onit	remarks	
Power supply rise time	tR	Vcc	-	0.05	30	ms		
Power supply shutdown time	toff	Vcc		1	_	ms	Waiting time until power-on	

13.5 A/D Converter

				Value			
Parameter	Symbol	Pin Name	Min	Тур	Max	Unit	Remarks
Resolution	_	-	-	_	10	bit	
Total error	-	-	_	_	± 3.0	LSB	
Nonlinear error	-	_	_	_	± 2.5	LSB	
Differential linear error	-	_	_	_	± 1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVss – 1.5 LSB	AV _{ss} + 0.5 LSB	AVss + 2.5 LSB	V	1 LSB = (AVR – AVss) / 1024
Full-scale transition voltage	Vfst	AN0 to AN7	AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	V	
Compare time	-	-	66 tcp *1	_	_	ns	With 16 MHz machine clock 5.5 V \geq AV _{cc} \geq 4.5 V
			88 tcp *1	-	_	ns	With 16 MHz machine clock 4.5 V > AVcc ≥ 4.0 V
Sampling time	-	-	32 tcp *1	_	_	ns	With 16 MHz machine clock $5.5 \text{ V} \ge AV_{CC} \ge 4.5 \text{ V}$
			128 tcp *1	_	_	ns	With 16 MHz machine clock 4.5 V > AVcc ≥ 4.0 V
Analog port input current	lain	AN0 to AN7	_	-	10	μΑ	
Analog input voltage	Vain	AN0 to AN7	AVss	-	AVR	V	
Reference voltage	-	AVR	AVss + 2.7	_	AVcc	V	
Power supply current	la	AVcc	_	3.5	7.5	mA	
	Іан	AVcc	_	_	5	μA	*2
Reference voltage	IR	AVR	-	165	250	μΑ	
supplying current	Iгн	AVR	-	_	5	μΑ	*2
Variation among channels	-	AN0 to AN7	-	-	4	LSB	

 $(Vcc = AVcc = 4.0 \text{ V to } 5.5 \text{ V}, \text{ Vss} = AVss = 0.0 \text{ V}, 3.0 \text{ V} \le AVR - AVss, \text{ T}_{\text{A}} = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$

*1: Refer to Clock Timing on AC Characteristics.

*2: If A/D converter is not operating, a current when CPU is stopped is applicable (Vcc=AVcc=AVR=5.0 V).

13.6 Definition of A/D Converter Terms

Resolution:	Analog variation that is recognized by an A/D converter.
Linear error:	Deviation between a line across zero-transition line ("00 0000 00 0" $\leftarrow \rightarrow$ "00 0000 0001") and full-scale transition line ("11 1111 11 0" $\leftarrow \rightarrow$ "11 1111 1111") and actual conversion characteristics.
Differential linear error:	Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.
Total error:	Difference between an actual value and an ideal value. A total error includes zero transition error, full- scale transition error, and linear error.

(Continued)

(Continued)