

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90387spmt-g-366sn-ye1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Product Lineup	. 4
Packages And Product Models	. 5
Product Comparison	. 5
Pin Assignment	. 6
Pin Description	. 7
I/O Circuit Type	. 9
Handling Devices	10
Block Diagram	12
Memory Map Memory Allocation of MB90385 Memory Map	12 12 13
I/О Мар	14
Interrupt Sources, Interrupt Vectors, And Interrupt Control	ol
Registers	21
Peripheral Resources	22
I/O Ports	22
Time-Base Timer	28
Watchdog Timer	30
16-bit Input/Output Timer	32
16-bit Reload Timer	35
Watch Timer Outline	37
8/16-bit PPG Timer Outline	39

Delay Interrupt Generation Module Outline 4 DTP/External Interrupt and CAN Wakeup Outline 4 8/10-bit A/D Converter 4 UART Outline 4 CAN Controller 4 Address Matching Detection Function Outline 5 ROM Mirror Function Selection Module Outline 5	42 43 45 47 49 51 52					
	03 					
Electrical Characteristics 5 Absolute Maximum Rating 5 Recommended Operating Conditions 5 DC Characteristics 5 AC Characteristics 6 A/D Converter 6 Definition of A/D Converter Terms 6 Notes on A/D Converter Section 7 Flash Memory Program/Erase Characteristics 7	55 55 57 58 60 67 68 70 70					
Example Characteristics 7	71					
Ordering Information 7	77					
Package Dimension7	78					
Major Changes7	79					
Document History	80					
Sales, Solutions, and Legal Information						

5. Pin Description

Pin No.	Pin Name	Circuit Type	Function
1	AVcc	-	Vcc power input pin for A/D converter.
2	AVR	-	Power (Vref+) input pin for A/D converter. Use as input for Vcc or lower.
3 to 10	P50 to P57	E	General-purpose input/output ports.
	AN0 to AN7		Functions as analog input pins for A/D converter. Valid when analog input setting is "enabled."
11	P37	D	General-purpose input/output port.
	ADTG		Function as an external trigger input pin for A/D converter. Use the pin by setting as input port.
12	P20	D	General-purpose input/output port.
	TIN0		Function as an event input pin for reload timer 0. Use the pin by setting as input port.
13	P21	D	General-purpose input/output port.
	TOT0		Function as an event output pin for reload timer 0. Valid only when output setting is "enabled."
14	P22	D	General-purpose input/output port.
	TIN1		Function as an event input pin for reload timer 1. Use the pin by setting as input port.
15	P23	D	General-purpose input/output port.
	TOT1		Function as an event output pin for reload timer 1. Valid only when output setting is "enabled."
16 to 19	P24 to P27	D	General-purpose input/output ports.
	INT4 to INT7		Functions as external interrupt input pins. Use the pins by setting as input port.
20	MD2	F	Input pin for specifying operation mode. Connect directly to Vss.
21	MD1	С	Input pin for specifying operation mode. Connect directly to Vcc.
22	MD0	С	Input pin for specifying operation mode. Connect directly to Vcc.
23	RST	В	External reset input pin.
24	Vcc	-	Power source (5 V) input pin.
25	Vss	-	Power source (0 V) input pin.
26	С	_	Capacitor pin for stabilizing power source. Connect a ceramic capacitor of approximately 0.1 $\mu\text{F}.$
27	X0	A	Pin for high-rate oscillation.
28	X1	A	Pin for high-rate oscillation.
29 to 32	P10 to P13	D	General-purpose input/output ports.
	IN0 to IN3		Functions as trigger input pins of input capture ch.0 to ch.3. Use the pins by setting as input ports.
33 to 36	P14 to P17	G	General-purpose input/output ports. High-current output ports.
	PPG0 to PPG3		Functions as output pins of PPG timers 01 and 23. Valid when output setting is "enabled."
37	P40	D	General-purpose input/output port.
	SIN1		Serial data input pin for UART. Use the pin by setting as input port.
38	P41	D	General-purpose input/output port.
	SCK1		Serial clock input pin for UART. Valid only when serial clock input/output setting on UART is "enabled."

9.2 Memory Map

Note: When internal ROM is operating, F²MC-16LX allows viewing ROM data image on FF bank at upper-level of 00 bank. This function is called "mirroring ROM," which allows effective use of C compiler small model.

F²MC-16LX assigns the same low order 16-bit address to FF bank and 00 bank, which allows referencing table in ROM without specifying "far" using pointer.

For example, when accessing to "00C000H", ROM data at "FFC000H" is accessed actually. However, because ROM area of FF bank exceeds 48 Kbytes, viewing all areas is not possible on 00 bank image. Because ROM data of "FF4000H" to "FFFFFH" is viewed on "004000H" to "00FFFFH" image, store a ROM data table in area "FF4000H" to "FFFFFH."

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
0000В0н	ICR00	Interrupt control register 00	R/W	Interrupt controller	00000111в
0000B1н	ICR01	Interrupt control register 01			00000111в
0000В2н	ICR02	Interrupt control register 02			00000111в
0000ВЗн	ICR03	Interrupt control register 03			00000111в
0000B4н	ICR04	Interrupt control register 04			00000111в
0000В5н	ICR05	Interrupt control register 05			00000111в
0000В6н	ICR06	Interrupt control register 06			00000111в
0000В7н	ICR07	Interrupt control register 07			00000111в
0000В8н	ICR08	Interrupt control register 08			00000111в
0000В9н	ICR09	Interrupt control register 09			00000111в
0000ВАн	ICR10	Interrupt control register 10			00000111в
0000ВВн	ICR11	Interrupt control register 11			00000111в
0000ВСн	ICR12	Interrupt control register 12			00000111в
0000BDн	ICR13	Interrupt control register 13			00000111в
0000ВЕн	ICR14	Interrupt control register 14			00000111в
0000BFн	ICR15	Interrupt control register 15			00000111в
0000C0н to 0000FFн		(Reserv	ed area) *		
001FF0н	PADR0	Detection address setting register 0 (low-order)	R/W	Address matching detection function	XXXXXXXXB
001FF1н		Detection address setting register 0 (middle-order)			XXXXXXXXB
001FF2н		Detection address setting register 0 (high-order)			XXXXXXXXB
001FF3н	PADR1	Detection address setting register 1 (low-order)	R/W		XXXXXXXXB
001FF4н		Detection address setting register 1 (middle-order)			XXXXXXXXB
001FF5н		Detection address setting register 1 (high-order)			XXXXXXXXB
003900н	TMR0/	16-bit timer register 0/16-bit reload	R,W	16-bit reload timer 0	XXXXXXXXB
003901н	TMRLR0	register			XXXXXXXXB
003902н	TMR1/	16-bit timer register 1/16-bit reload	R,W	16-bit reload timer 1	XXXXXXXXB
003903н	TMRLR1	register			XXXXXXXXB
003904н to 00390Fн		(Reserv	ed area) *		

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value					
003С38н, 003С39н	DLCR4	DLC register 4	R/W	CAN controller	XXXXXXXXB, XXXXXXXB					
003С3Ан, 003С3Вн	DLCR5	DLC register 5	R/W		XXXXXXXXB, XXXXXXXB					
003С3Сн, 003С3Dн	DLCR6	DLC register 6	R/W		XXXXXXXXB, XXXXXXXB					
003С3Ен, 003С3Ен	DLCR7	DLC register 7	R/W		XXXXXXXXB, XXXXXXXB					
003C40н to 003C47н	DTR0	Data register 0	R/W		XXXXXXXXB to XXXXXXXB					
003C48н to 003C4Fн	DTR1	Data register 1	R/W		XXXXXXXXB to XXXXXXXB					
003С50н to 003С57н	DTR2	Data register 2	R/W		XXXXXXXXB to XXXXXXXB					
003C58н to 003C5Fн	DTR3	Data register 3	R/W		XXXXXXXXB to XXXXXXXB					
003C60н to 003C67н	DTR4	Data register 4	R/W		XXXXXXXXB to XXXXXXXB					
003C68н to 003C6Fн	DTR5	Data register 5	R/W		XXXXXXXXB to XXXXXXXB					
003C70н to 003C77н	DTR6	Data register 6	R/W		XXXXXXXXB to XXXXXXXB					
003C78н to 003C7Fн	DTR7	Data register 7	R/W		XXXXXXXXB to XXXXXXXB					
003C80н to 003CFFн		(Reserv	ed area) *							
003D00н, 003D01н	CSR	Control status register	R/W, R	CAN controller	0XXXX001в, 00XXX000в					
003D02н	LEIR	Last event display register	R/W		000XX000b					
003D03н		(Reserv	ed area) *							
003D04н, 003D05н	RTEC	Send/receive error counter	R	CAN controller	0000000в, 0000000в					
003D06н, 003D07н	BTR	Bit timing register	R/W		11111111 _в , Х1111111 _в					
003D08н	IDER	IDE register	R/W		XXXXXXXXB					
003D09н	iD09н (Reserved area) *									
003D0Aн	TRTRR	Send RTR register	R/W	CAN controller	0000000в					
003D0Bн		(Reserv	ed area) *		1					
003D0Cн	RFWTR	Remote frame receive wait register	R/W	CAN controller	XXXXXXXXB					

Port 4 Pins Block Diagram

Port 4 Registers

- Port 4 registers include port 4 data register (PDR4) and port 4 direction register (DDR4).
- The bits configuring the register correspond to port 4 pins on a one-to-one basis.

Relation between Port 4 Registers and Pins

Port Name	E	Bits of Register and Corresponding Pins							
Port 4	PDR4, DDR4	-	-	-	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	-	-	-	P44	P43	P42	P41	P40

Time-base Timer Block Diagram

Actual interrupt request number of time-base timer is as follows: Interrupt request number: #16 (10_H)

16-bit Free-run Timer

Counter value of 16-bit free-run timer is used as reference time (base time) of input capture.

Input Capture

Input capture detects rising edge, falling edge or both edges and retains a counter value of 16-bit free-run timer. Detection of edge on input signal is allowed to generate interrupt.

16-bit Free-run Timer Block Diagram

Detailed Pin Assignment on Block Diagram

The 16-bit input/output timer includes a 16-bit free-run timer. Interrupt request number of the 16-bit free-run timer is as follows: Interrupt request number: 19 (13_H)

Prescaler

The prescaler divides a machine clock and provides a counter clock to the 16-bit up counter. Dividing ratio of the machine clock is specified by timer counter control status register (TCCS) among four values.

Timer Counter Data Register (TCDT)

The timer counter data register is a 16-bit up counter. A current counter value of the 16-bit free-run timer is read. Writing a value during halt of the counter allows setting an arbitrary counter value.

Input Capture Block Diagram

12.6 Watch Timer Outline

The watch timer is a 15-bit free-run counter that increments in synchronization with sub clock.

- Interval time is selectable among 7 choices, and generation of interrupt request is allowed for each interval.
- Provides operation clock to the subclock oscillation stabilizing wait timer and watchdog timer.
- Always uses subclock as a count clock regardless of settings of clock selection register (CKSCR).

Interval Timer Function

- In the watch timer, a bit corresponding to the interval time overflows (carry-over) when an interval time, which is specified by interval time selection bit, is reached. Then overflow flag bit is set (WTC: WTOF=1).
- If an interrupt by overflow is permitted (WTC: WTIE=1), an interrupt request is generated upon setting an overflow flag bit.
- Interval time of watch timer is selectable among the following seven choices:

Interval Time of Watch Timer

Sub Clock Cycle	Interval Time
1/SCLK (122 μs)	2 ⁸ /SCLK (31.25 ms)
	2º/SCLK (62.5 ms)
	2 ¹⁰ /SCLK (125 ms)
	2 ¹¹ /SCLK (250 ms)
	2 ¹² /SCLK (500 ms)
	2 ¹³ /SCLK (1.0 s)
	2 ¹⁴ /SCLK (2.0 s)

SCLK: Sub clock frequency

Values in parentheses "()" are calculation when operating with 8.192 kHz clock.

8/16-bit PPG Timer 0 Block Diagram

12.8 Delay Interrupt Generation Module Outline

The delay interrupt generation module is a module that generates interrupts for switching tasks. Generation of a hardware interrupt request is performed by software.

Delay Interrupt Generation Module Outline

Using the delay interrupt generation module, hardware interrupt request is generated and released by software.

Table 12-1. Delay Interrupt Generation Module Outline

	Function and Control
Cause of interrupt	Set "1" in R0 bit of delay interrupt request generation/release register (DIRR: R0=1), generating an interrupt request. Set "0" in R0 bit of delay interrupt request generation/release register (DIRR: R0=0), releasing an interrupt request.
Interrupt number	#42 (2Ан)
Interrupt control	No setting of permission register is provided.
Interrupt flag	Retained in DIRR: R0 bit
El ² OS	Not ready for expanded intelligent I/O service.

Delay Interrupt Generation Module Block Diagram

Interrupt Request Latch

A latch that retains settings on delay interrupt request generation/release register (generation or release of delay interrupt request).

Delay Interrupt Request Generation/Release Register (DIRR)

Generates or releases delay interrupt request.

Interrupt Number

An interrupt number used in delay interrupt generation module is as follows: Interrupt number: #42 (2AH)

DTP/External Interrupt/CAN Wakeup Block Diagram

13.2 Recommended Operating Conditions

(Vss = AVss = 0.0V)

Parameter	Symbol	Value				Pomarke	
Farameter		Min	Тур	Max	Unit	itemarks	
Power supply voltage	Vcc	3.5	5.0	5.5	V	Under normal operation	
		3.0	_	5.5	V	Retain status of stop operation	
	AVcc	4.0	-	5.5	V	*2	
Smoothing capacitor	Cs	0.1	-	1.0	μF	*1	
Operating temperature	TA	-40	-	+105	°C		

*1: Use a ceramic capacitor, or a capacitor of similar frequency characteristics. On the Vcc pin, use a bypass capacitor that has a larger capacity than that of Cs.

Refer to the following figure for connection of smoothing capacitor Cs.

*2: AVcc is a voltage at which accuracy is guaranteed. AVcc should not exceed Vcc.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

13.3 DC Characteristics

				Value					
Parameter	Symbol	Pin Name	Conditions				Unit	Remarks	
	-			Min	Тур	Max			
"H" level input	Vihs	CMOS hysteresis input pin	—	0.8 Vcc	—	Vcc + 0.3	V		
voltage	Vінм	MD input pin	—	Vcc - 0.3	_	Vcc + 0.3	V		
"L" level input	Vils	CMOS hysteresis input pin	—	Vss - 0.3	_	0.2 Vcc	V		
voltage "H" level output	VILM	MD input pin	—	Vss - 0.3		Vss + 0.3	V		
"H" level output	Vон1	Pins other than P14 to P17	Vcc = 4.5 V, Іон = -4.0 mA	Vcc - 0.5	—		V		
voltage	Vон2	P14 to P17	Vcc = 4.5 V, Іон = -14.0 mA	Vcc - 0.5	_		V		
"L" level output	Vol1	Pins other than P14 to P17	Vcc = 4.5 V, IoL = 4.0 mA	—	—	0.4	V		
voltage	Vol2	P14 to P17	Vcc = 4.5 V, IoL = 20.0 mA	—	—	0.4	V		
Input leak current	lı∟	All input pins		-5	—	+5	μA		
Power supply current*	lcc	Vcc	Vcc = 5.0 V, Internally operating at 16 MHz, normal operation.	—	25	30	mA		
				Vcc = 5.0 V, Internally operating at 16 MHz, writing on Flash memory.	—	45	50	mA	MB90F387/S
			Vcc = 5.0 V, Internally operating at 16 MHz, deleting on Flash memory.		45	50	mA	MB90F387/S	
	lccs	-	Vcc = 5.0 V, Internally operating at 16 MHz, sleeping.	—	8	12	mA		
	Істѕ		Vcc = 5.0 V, Internally operating at	—	0.75	1.0	mA	MB90F387/S	
			2 MHz, transition from main clock mode, in time-base timer mode.		0.2	0.35		MB90387/S	

(Vcc = 5.0 V±10%, Vss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

Parameter	Symbol	Bin Nama	Conditions		Value	Unit	Demerke	
Farameter	Symbol	Fill Nallie	Conditions	Min	Тур	Max	Unit	Remarks
Power supply current*	Icc∟	Vcc	Vcc = 5.0 V, Internally operating at 8 kHz, subclock operation	_	0.3	1.2	mA	MB90F387/S
			$T_A = +25^{\circ}C$	_	40	100	μΑ	MB90387/S
	ICCLS		$V_{CC} = 5.0 V$, Internally operating at 8 kHz, subclock, sleep mode, $T_{A} = + 25^{\circ}C$	_	10	30	μA	
	Ісст		Vcc = 5.0 V, Internally operating at 8 kHz, watch mode, $T_A = + 25^{\circ}C$	—	8	25	μA	
	Іссн		Stopping, T _A =+ 25°C	—	5	20	μΑ	
Input capacity	CIN	Other than AVcc, AVss, AVR, C, Vcc, Vss	-	_	5	15	pF	
Pull-up resistor	Rup	RST	_	25	50	100	kΩ	
Pull-down resistor	RDOWN	MD2	-	25	50	100	kΩ	Flash product is not provided with pull-down resistor.

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 \circ C to +105 \circ C)$

*: Test conditions of power supply current are based on a device using external clock.

(Continued)

(Continued)

(Continued)

Document History

Document Title: MB90387/387S/F387/F387S, MB90V495G, 16-bit Microcontrollers F ² MC-16LX MB90385 Series Document Number:002-07765				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	_	AKIH	12/19/2008	Migrated to Cypress and assigned document number 002-07765. No change to document contents or format.
*A	6059071	SSAS	02/05/2018	Updated to Cypress template Package: FPT-48P-M26> LQA048