

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

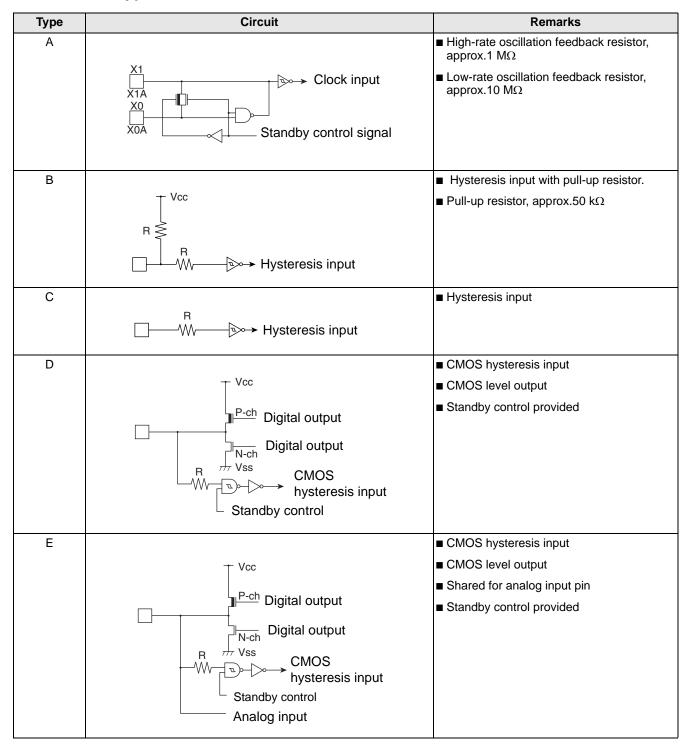
Details	
Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90387spmt-g-383sn-ye1

Email: info@E-XFL.COM

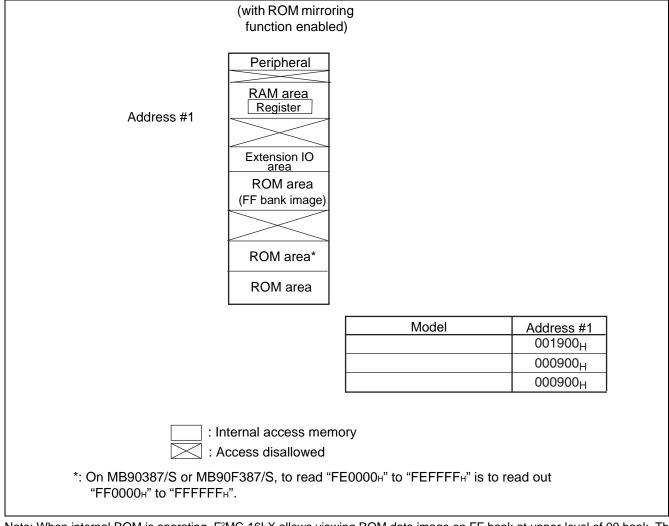
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MB90387/387S/F387/F387S MB90V495G

Contents


Product Lineup	. 4
Packages And Product Models	5
Product Comparison	. 5
Pin Assignment	6
Pin Description	. 7
I/O Circuit Type	. 9
Handling Devices	10
Block Diagram	12
Memory Map Memory Allocation of MB90385 Memory Map	12
I/О Мар	14
Interrupt Sources, Interrupt Vectors, And Interrupt Control	
Registers	21
Peripheral Resources	22
I/O Ports	22
Time-Base Timer	28
Watchdog Timer	30
16-bit Input/Output Timer	
16-bit Reload Timer	
Watch Timer Outline	
8/16-bit PPG Timer Outline	39

Address Matching Detection Function Outline	43 45 47 49 51 52
512 Kbit Flash Memory Outline	
Electrical Characteristics	55 57 58 60 67 68 70
Example Characteristics 7	71
Ordering Information 7	77
Package Dimension	78
Major Changes 7	79
Document History	
Sales, Solutions, and Legal Information 8	81


1. Product Lineup

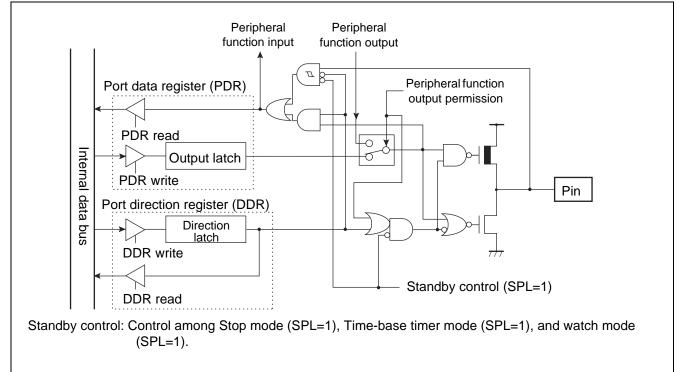
Parameter	Part Number	MB90F387 MB90F387S					
Classification		Flash ROM	Mask ROM	Evaluation product			
ROM capacity		64 Kby	64 Kbytes				
RAM capacity		2 Kbyt	es	6 Kbytes			
Process			CMOS	1			
Package		LQFP-48 (pin pit	ch 0.50 mm)	PGA-256			
Operating power	supply voltage	3.5 V to 5	5.5 V	4.5 V to 5.5 V			
Special power su emulator*1	ipply for	-		None			
CPU functions		Number of basic instructions Instruction bit length Instruction length Data bit length	: 351 instructions : 8 bits and 16 bits : 1 byte to 7 bytes : 1 bit, 8 bits, 16 bits				
		Minimum instruction execution ti					
		Interrupt processing time: 1.5 µs					
Low power const (standby) mode	umption	Sleep mode / Watch mode / Time	e-base timer mode / Stop mo	ode / CPU intermittent			
I/O port		General-purpose input/output ports (CMOS output): 34 ports (36 ports*2) including 4 high-current output ports (P14 to P17)					
Time-base timer		18-bit free-run counter Interrupt cycle: 1.024 ms, 4.096 ms, 16.834 ms, 131.072 ms (with oscillation clock frequency at 4 MHz)					
Watchdog timer		Reset generation cycle: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (with oscillation clock frequency at 4 MHz)					
16-bit input/ output timer	16-bit free-run timer	Number of channels: 1 Interrupt upon occurrence of overflow					
	Input capture	Number of channels: 4 Retaining free-run timer value set by pin input (rising edge, falling edge, and both edges)					
16-bit reload time	P.	Number of channels: 2 16-bit reload timer operation Count clock cycle: 0.25 μs, 0.5 μs, 2.0 μs (at 16-MHz machine clock frequency) External event count is allowed.					
Watch timer		15-bit free-run counter Interrupt cycle: 31.25 ms, 62.5 ms, 12 ms, 250 ms, 500 ms, 1.0 s, 2.0 s (with 8.192 kHz sub clock)					
8/16-bit PPG timer		Number of channels: 2 (four 8-bi PPG operation is allowed with fo Outputting pulse wave of arbitrar Count clock: 62.5 ns to 1 μ s (with 16 MHz machine clock)	ur 8-bit channels or two 16-b	ut channels.			
Delay interrupt g	enerator module	Interrupt generator module for task switching. Used for realtime OS.					
DTP/External inte	errupt	Number of inputs: 4 Activated by rising edge, falling edge, "H" level or "L" level input. External interrupt or expanded intelligent I/O service (EI ² OS) is available.					

6. I/O Circuit Type

9.2 Memory Map

Note: When internal ROM is operating, F²MC-16LX allows viewing ROM data image on FF bank at upper-level of 00 bank. This function is called "mirroring ROM," which allows effective use of C compiler small model.

F²MC-16LX assigns the same low order 16-bit address to FF bank and 00 bank, which allows referencing table in ROM without specifying "far" using pointer.


For example, when accessing to "00C000H", ROM data at "FFC000H" is accessed actually. However, because ROM area of FF bank exceeds 48 Kbytes, viewing all areas is not possible on 00 bank image. Because ROM data of "FF4000H" to "FFFFFH" is viewed on "004000H" to "00FFFFH" image, store a ROM data table in area "FF4000H" to "FFFFFH."

10. I/O Map

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
00000н		(Reserve	ed area) *		
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXXXB
000002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXXB
00003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXXB
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXXB
000005н	PDR5	Port 5 data register	R/W	Port 5	XXXXXXXXB
000006н to 000010н		(Reserve	ed area) *		
000011н	DDR1	Port 1 direction data register	R/W	Port 1	0000000в
000012н	DDR2	Port 2 direction data register	R/W	Port 2	0000000в
000013н	DDR3	Port 3 direction data register	R/W	Port 3	000Х0000в
000014н	DDR4	Port 4 direction data register	R/W	Port 4	ХХХ00000в
000015н	DDR5	Port 5 direction data register	R/W	Port 5	0000000в
000016н to 00001Ан		(Reserve	ed area) *		
00001Bн	ADER	Analog input permission register	R/W	8/10-bit A/D converter	11111111в
00001Cнto 000025н		(Reserve	ed area) *		
000026н	SMR1	Serial mode register 1	R/W	UART1	0000000в
000027н	SCR1	Serial control register 1	R/W, W		00000100в
000028н	SIDR1/ SODR1	Serial input data register 1/ Serial output data register 1	R, W		XXXXXXXXB
000029н	SSR1	Serial status data register 1	R, R/W		00001000в
00002Ан		(Reserve	ed area) *		
00002Вн	CDCR1	Communication prescaler control register 1	R/W	UART1	0ХХХ0000в
00002Cнto 00002Fн		(Reserve	ed area) *		·
000030н	ENIR	DTP/External interrupt permission register	R/W	DTP/External interrupt	0000000в
000031н	EIRR	DTP/External interrupt permission register	R/W		XXXXXXXXB
000032н	ELVR	Detection level setting register	R/W	1	0000000в
000033н			R/W	1	0000000в
000034н	ADCS	A/D control status register	R/W	8/10-bit A/D	0000000в
000035н			R/W, W	converter	0000000в
000036н	ADCR	A/D data register	W, R	1	XXXXXXXXB
000037н			R	1	00101XXXв

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
0000В0н	ICR00	Interrupt control register 00	R/W	Interrupt controller	00000111в
0000B1н	ICR01	Interrupt control register 01			00000111в
0000В2н	ICR02	Interrupt control register 02			00000111в
0000ВЗн	ICR03	Interrupt control register 03			00000111в
0000В4н	ICR04	Interrupt control register 04			00000111в
0000B5н	ICR05	Interrupt control register 05			00000111в
0000В6н	ICR06	Interrupt control register 06			00000111в
0000B7 н	ICR07	Interrupt control register 07			00000111в
0000B8н	ICR08	Interrupt control register 08			00000111в
0000B9н	ICR09	Interrupt control register 09			00000111в
0000ВАн	ICR10	Interrupt control register 10			00000111в
0000ВВн	ICR11	Interrupt control register 11			00000111в
0000ВСн	ICR12	Interrupt control register 12			00000111в
0000BDн	ICR13	Interrupt control register 13			00000111в
0000ВЕн	ICR14	Interrupt control register 14			00000111в
0000BFн	ICR15	Interrupt control register 15			00000111в
0000C0н to 0000FFн		(Reser	ved area) *		
001FF0⊦	PADR0	Detection address setting register 0 (low-order)	R/W	Address matching detection function	XXXXXXXXB
001FF1⊦		Detection address setting register 0 (middle-order)			XXXXXXXXB
001FF2⊦		Detection address setting register 0 (high-order)			XXXXXXXXB
001FF3⊦	PADR1	Detection address setting register 1 (low-order)	R/W] [XXXXXXXXB
001FF4⊦		Detection address setting register 1 (middle-order)			XXXXXXXXB
001FF5н	1	Detection address setting register 1 (high-order)	1		XXXXXXXXB
003900н	TMR0/	16-bit timer register 0/16-bit reload	R,W	16-bit reload timer 0	XXXXXXXXB
003901н	TMRLR0	register		F F	XXXXXXXXB
003902н	TMR1/	16-bit timer register 1/16-bit reload	R,W	16-bit reload timer 1	XXXXXXXXB
003903н	TMRLR1	register			XXXXXXXXB
003904н to 00390Fн		(Reser	ved area) *		

Port 3 Registers

- Port 3 registers include port 3 data register (PDR3) and port 3 direction register (DDR3).
- The bits configuring the register correspond to port 3 pins on a one-to-one basis.

Relation between Port 3 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 3	PDR3, DDR3	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	P37	P36*	P35*	_	P33	P32	P31	P30

*: P35 and P36 do not exist on MB90387and MB90F387.

12.4 16-bit Input/Output Timer

The 16-bit input/output timer is a compound module composed of 16-bit free-run timer, (1 unit) and input capture (2 units, 4 input pins). The timer, using the 16-bit free-run timer as a basis, enables measurement of clock cycle of an input signal and its pulse width.

Configuration of 16-bit Input/Output Timer

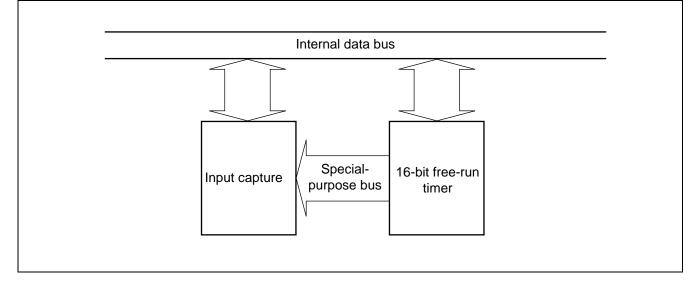
The 16-bit input/output timer is composed of the following modules:

- 16-bit free-run timer (1 unit)
- Input capture (2 units, 2 input pins per unit)

Functions of 16-bit Input/Output Timer

Functions of 16-bit Free-run Timer

The 16-bit free-run timer is composed of 16-bit up counter, timer counter control status register, and prescaler. The 16-bit up counter increments in synchronization with dividing ratio of machine clock.


- Count clock is set among four types of machine clock dividing rates.
- Generation of interrupt is allowed by counter value overflow.
- Activation of expanded intelligent I/O service (EI²OS) is allowed by interrupt generation.
- Counter value of 16-bit free-run timer is cleared to "0000^H" by either resetting or software-clearing with timer count clear bit (TCCS: CLR).
- Counter value of 16-bit free-run timer is output to input capture, which is available as base time for capture operation.

Functions of Input Capture

The input capture, upon detecting an edge of a signal input to the input pin from external device, stores a counter value of 16-bit freerun timer at the time of detection into the input capture data register. The function includes the input capture data registers corresponding to four input pins, input capture control status register, and edge detection circuit.

- Rising edge, falling edge, and both edges are selectable for detection.
- Generating interrupt on CPU is allowed by detecting an edge of input signal.
- Expanded intelligent I/O service (EI²OS) is activated by interrupt generation.
- The four input capture input pins and input capture data registers allows monitoring of a maximum of four events.

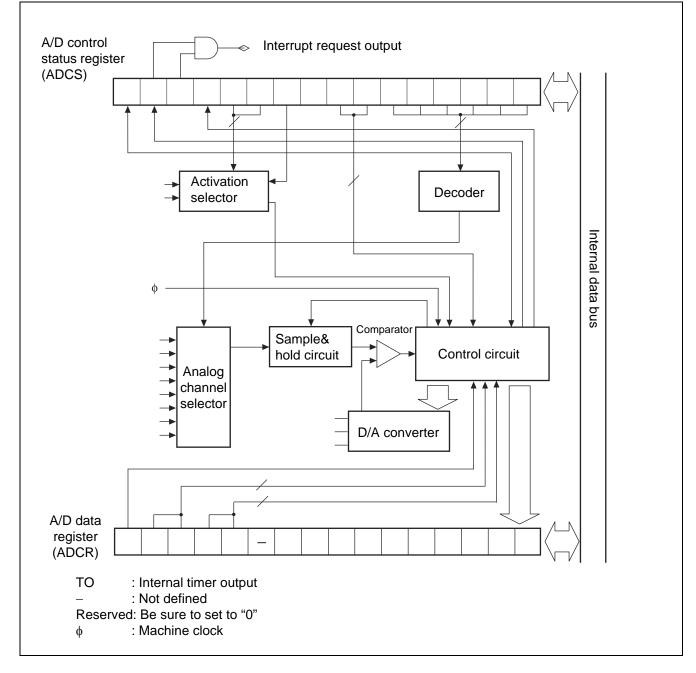
16-bit Input/Output Timer Block Diagram

12.7 8/16-bit PPG Timer Outline

The 8/16-bit PPG timer is a 2-channel reload timer module (PPG0 and PPG1) that allows outputting pulses of arbitrary cycle and duty cycle. Combination of the two channels allows selection among the following operations:

- 8-bit PPG output 2-channel independent operation mode
- 16-bit PPG output operation mode
- 8-bit and 8-bit PPG output operation mode

MB90385 series device has two 8/16-bit built-in PPG timers. This section describes functions of PPG0/1. PPG2/3 have the same functions as those of PPG0/1.


Functions of 8/16-bit PPG Timer

The 8/16-bit PPG timer is composed of four 8-bit reload register (PRLH0/PRLL0, PRLH1/PRLL1) and two PPG down counters (PCNT0, PCNT1).

- Widths of "H" and "L" in output pulse are specifiable independently. Cycle and duty factor of output pulse is specifiable arbitrarily.
- Count clock is selectable among 6 internal clocks.
- The timer is usable as an interval timer, by generating interrupt requests for each interval.
- The time is usable as a D/A converter, with an external circuit.

MB90387/387S/F387/F387S MB90V495G

8/10-bit A/D Converter Block Diagram

12.11 UART Outline

UART is a general-purpose serial data communication interface for synchronous and asynchronous communication using external devices.

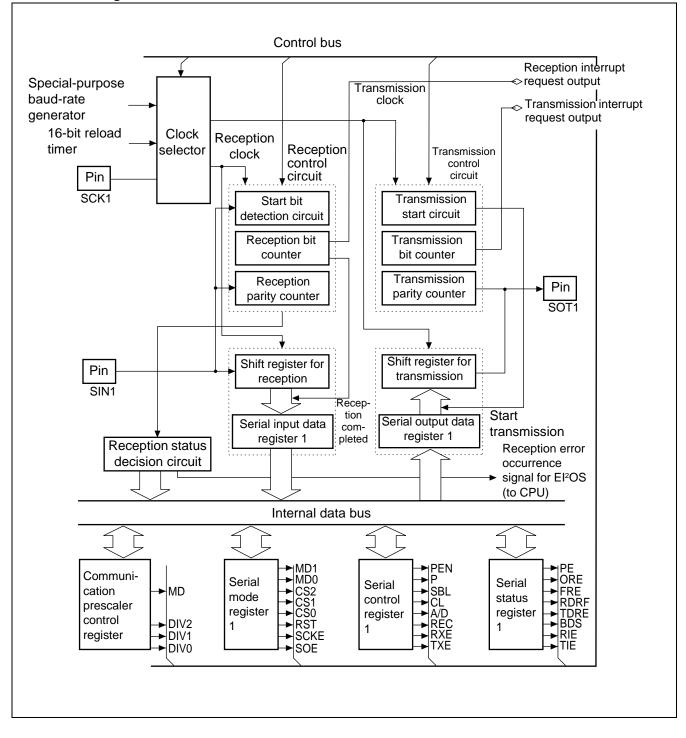
- Provided with bi-directional communication function for both clock-synchronous and clock-asynchronous modes.
- Provided with master/slave communication function (multi-processor mode). (Only master side is available.)
- Interrupt request is generated upon completion of reception, completion of transmission and detection of reception error.
- Ready for expanded intelligent service, El²OS.

Table 12-3. UART Functions

	Description				
Data buffer	Full-duplex double buffer				
Transmission mode	Clock synchronous (No start/stop bit, no parity bit) Clock asynchronous (start-stop synchronous)				
Baud rate	Built-in special-purpose baud-rate generator. Setting is selectable among 8 values. Input of external values is allowed. Use of clock from external timer (16-bit reload timer 0) is allowed.				
Data length	7 bits (only asynchronous normal mode) 8 bits				
Signaling system	Non Return to Zero (NRZ) system				
Reception error detection	Framing error Overrun error Parity error (not detectable in operation mode 1 (multi-processor mode))				
Interrupt request	Receive interrupt (reception completed, reception error detected) Transmission interrupt (transmission completed) Ready for expanded intelligent I/O service (EI ² OS) in both transmission and reception				
Master/slave communication function (asynchronous, multi-processor mode)	Communication between 1 (master) and n (slaves) are available (usable as master only).				

Note: Start/stop bit is not added upon clock-synchronous transmission. Data only is transmitted.

Table 12-4. UART Operation Modes


	Operation Mode	Data L	ength	Synchronization	Stop Bit Length		
	Operation mode	With Parity	Without Parity	Synchronization			
0	Asynchronous mode (normal mode)	7-bit or 8-bit		7-bit or 8-bit		Asynchronous	1- bit or 2-bit *2
1	Multi processor mode	8+1*1	-	Asynchronous			
2	Synchronous mode	8	8 –		No		

-: Disallowed

1: "+1" is an address/data selection bit used for communication control (bit 11 of SCR1 register: A/D).

2: Only 1 bit is detected as a stop bit on data reception.

UART Block Diagram

12.12 CAN Controller

The Controller Area Network (CAN) is a serial communication protocol compliant with CANVer2.0A and Ver2.0B. The protocol allows data transmission and reception in both standard frame format and expanded frame format.

Features of CAN Controller

- CAN controller format is compliant with CANVer2.0A and Ver2.0B.
- The protocol allows data transmission and reception in standard frame format and expanded frame format.
- Automatic transmission of data frame by remote frame reception is allowed.
- Baud rate ranges from 10 kbps to 1 Mbps (with 16-MHz machine clock).

Table 12-5. Data Transmission Baud Rate

Machine Clock	Baud Rate (Max)
16 MHz	1 Mbps
12 MHz	1 Mbps
8 MHz	1 Mbps
4 MHz	500 kbps
2 MHz	250 kbps

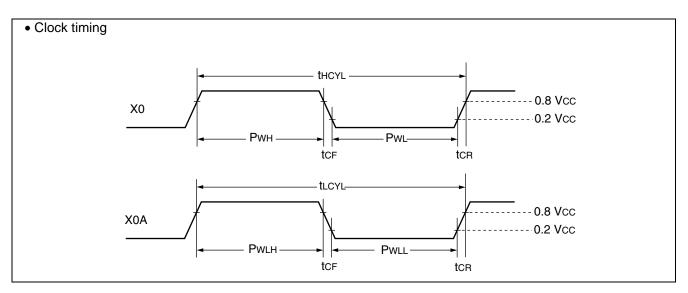
- Provided with 8 transmission/reception message buffers.
- Transmission/reception is allowed at ID 11 bit in standard format, and at ID 29 bit in expanded frame format.
- Specifying 0 byte to 8 bytes is allowed in message data.
- Multi-level message buffer configuration is allowed.
- CAN controller has two built-in acceptance masks. Mask settings are independently allowed for the two acceptance masks on reception IDs.
- The two acceptance masks allow reception in standard frame format and expanded frame format.
- For types of masking, all-bit comparison, all-bit masking, and partial masking with acceptance mask register 0/1, are specifiable.

Sector Configuration of 512 Kbit Flash Memory

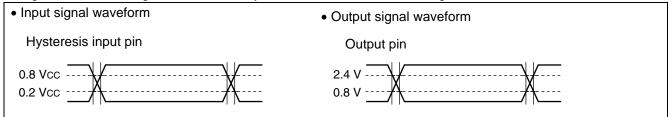
Flash memory	CPU address	Writer address*
	FF0000H	70000н
SA0 (32 Kbytes)		
	FF7FFFH	77FFFH
	FF8000H	78000н
SA1 (8 Kbytes)		
	FF9FFFH	79FFFH
	FFA000H	7А000н
SA2 (8 Kbytes)		
	FFBFFFH	7BFFFH
	FFC000H	7С000н
SA3 (16 Kbytes)		
	FFFFFH	7FFFFH

*: "Writer address" is an address equivalent to CPU address, which is used when data is written on Flash memory, using parallel writer. When writing/ deleting data with general-purpose writer, the writer address is used for writing and deleting.

13.4 AC Characteristics


13.4.1 Clock Timing

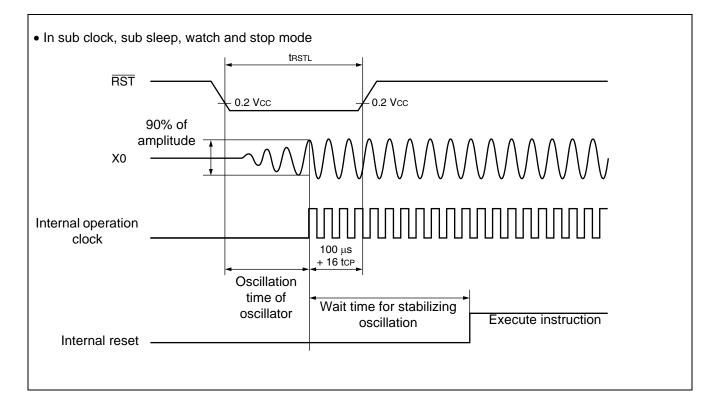
Parameter	Symbol	Pin Name		Value		Unit	Remarks
Parameter	Symbol	Pin Name	Min	Тур	Max	Unit	Remarks
Clock frequency	fc	X0, X1	3	—	8	MHz	When crystal or ceramic resonator is used*2
			3	—	16	MHz	External clock input*1, *2
			4	—	16	MHz	PLL Multiply by 1 *2
			4	—	8	MHz	PLL Multiply by 2 *2
			4	—	5.33	MHz	PLL Multiply by 3 *2
			4	—	4	MHz	PLL Multiply by 4 *2
	fc∟	X0A, X1A	_	32.768	_	kHz	
Clock cycle time	t HCYL	X0, X1	125	—	333	ns	
	t LCYL	X0A, X1A	_	30.5	_	μS	
Input clock pulse width	Pwh, Pwl	X0	10	—		ns	Set duty factor at 30% to 70% as a guideline.
	Pwlh,Pwll	X0A		15.2		μS	
Input clock rise time and fall time	tcr, tcr	X0		—	5	ns	When external clock is used
Internal operation clock frequency	fср	_	1.5	—	16	MHz	When main clock is used
	f LCP	_		8.192		kHz	When sub clock is used
Internal operation clock cycle time	tcp	_	62.5	—	666	ns	When main clock is used
	t LCP	_	_	122.1		μS	When sub clock is used

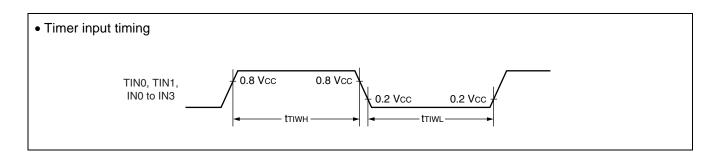

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 \circ C to +105 \circ C)$

*1: Internal operation clock frequency should not exceed 16 MHz.

*2: When selecting the PLL clock, the range of clock frequency is limited. Use this product within range as mentioned in "Relation among external clock frequency and internal clock frequency".

Rating values of alternating current is defined by the measurement reference voltage values shown below:

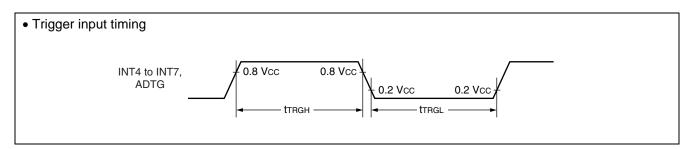

13.4.2 Reset Input Timing


Parameter	Symbol	Pin Name	Value		Unit	Remarks	
			Min	Мах	Onit	indiks	
Reset input time	t RSTL	RST	16 tce*3	-	ns	Normal operation	
			Oscillation time of oscillator ^{*1} + $100 \ \mu s$ + $16 \ tcP^{*3}$	-		In sub clock ^{*2} , sub sleep ^{*2} , watch ^{*2} and stop mode	
			100	_	μS	In timebase timer	

*1: Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.

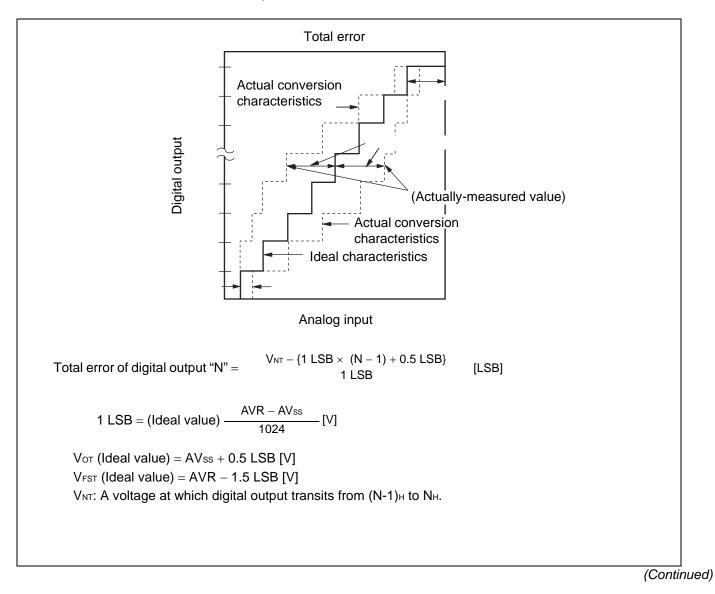
*2: Except for MB90F387S and MB90387S.

*3: Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).

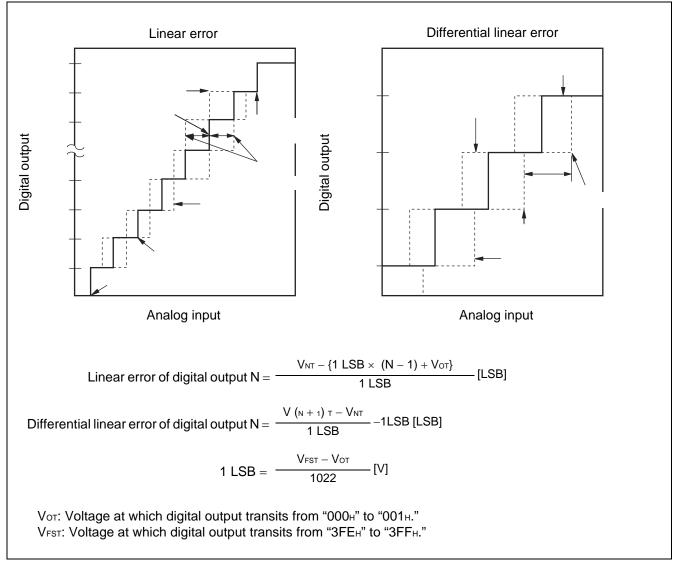


13.4.6 Trigger Input Timing

(Vcc = 4.5 V to 5.5 V, Vss = 0.0 V, $T_A = -40 \text{ °C to } +105 \text{ °C}$)

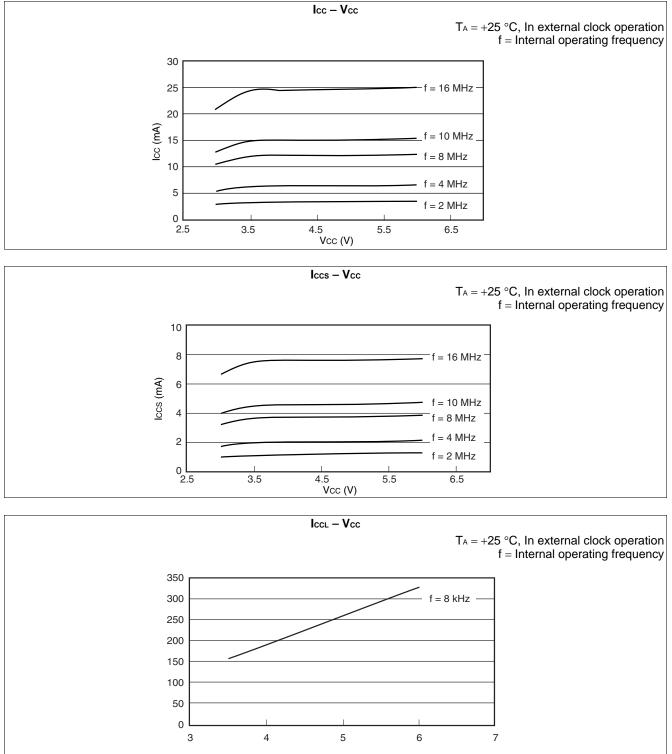

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
Farameter				Min	Max	Unit	itemaiks
Input pulse width	ttrgh ttrgl	INT4 to INT7, ADTG	_	5 tcթ *	_	ns	

*: Refer to Clock Timing ratings for tcp (internal operation clock cycle time).



13.6 Definition of A/D Converter Terms

Resolution:	Analog variation that is recognized by an A/D converter.
Linear error:	Deviation between a line across zero-transition line ("00 0000 00 0" $\leftarrow \rightarrow$ "00 0000 0001") and full-scale transition line ("11 1111 11 1 0" $\leftarrow \rightarrow$ "11 1111 1111") and actual conversion characteristics.
Differential linear error:	Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.
Total error:	Difference between an actual value and an ideal value. A total error includes zero transition error, full- scale transition error, and linear error.


MB90387/387S/F387/F387S MB90V495G

(Continued)

14. Example Characteristics

MB90F387

(Continued)