

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90387spmt-g-388sn-ye1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DTP/External Interrupt: 4 channels, CAN wakeup: 1channel

Module for activation of expanded intelligent I/O service (EI²OS), and generation of external interrupt.

Delay Interrupt Generator Module

Generates interrupt request for task switching.

8/10-bit A/D Converter: 8 channels

- Resolution is selectable between 8-bit and 10-bit.
- Activation by external trigger input is allowed.
- Conversion time: 6.125 μs (at 16 MHz machine clock, including sampling time)

Program Patch Function

■ Address matching detection for 2 address pointers.

Part Number Parameter	MB90F387 MB90F387S	MB90387 MB90387S	MB90V495G			
8/10-bit A/D converter	Number of channels: 8 Resolution: Selectable 10-bit or 8-bit. Conversion time: 6.125 µs (at 16 MHz machine clock, including sampling time) Sequential conversion of two or more successive channels is allowed. (Setting a maximum of 8 channels is allowed.) Single conversion mode: Selected channel is converted only once. Sequential conversion mode: Selected channel is converted repetitively. Halt conversion mode: Conversion of selected channel is stopped and activated alter- nately.					
UART(SCI)	Number of channels: 1 Clock-synchronous transfer: 62.5 kbps to 2 Mbps Clock-asynchronous transfer: 9,615 bps to 500 kbps Communication is allowed by bi-directional serial communication function and master, slave type connection.					
CAN	2.0B CAN specifications. 1 Mbps (by 16 MHz machine	clock)				

*1: Settings of DIP switch S2 for using emulation pod MB2145-507. For details, see MB2145-507 Hardware Manual (2.7 Power Pin solely for Emulator).

*2: MB90387S, MB90F387S

2. Packages And Product Models

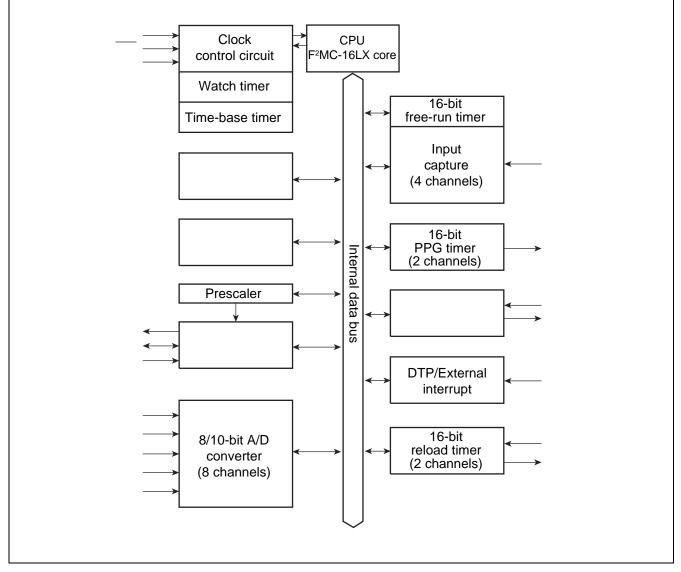
Package	MB90F387, MB90F387S	MB90387, MB90387S
LQA048	\bigcirc	\bigcirc

 \bigcirc : Yes \times : No

Note: Refer to Package Dimension for details of the package.

3. Product Comparison

Memory Space


When testing with test product for evaluation, check the differences between the product and a product to be used actually. Pay attention to the following points:

- The MB90V495G has no built-in ROM. However, a special-purpose development tool allows the operations as those of one with built-in ROM. ROM capacity depends on settings on a development tool.
- On MB90V495G, an image from FF4000^H to FFFFFF^H is viewed on 00 bank and an image of FE0000^H to FF3FFF^H is viewed only on FE bank and FF bank. (Modified on settings of a development tool.)
- On MB90F387/F387S/387/387S, an image from FF4000H to FFFFFFH is viewed on 00 bank and an image of FE0000H to FF3FFFH is viewed only on FF bank.

5. Pin Description

Pin No.	Pin Name	Circuit Type	Function			
1	AVcc	-	Vcc power input pin for A/D converter.			
2	AVR	-	Power (Vref+) input pin for A/D converter. Use as input for Vcc or lower.			
3 to 10	P50 to P57	Е	General-purpose input/output ports.			
	AN0 to AN7		Functions as analog input pins for A/D converter. Valid when analog input setting is "enabled."			
11	P37	D	General-purpose input/output port.			
	ADTG		Function as an external trigger input pin for A/D converter. Use the pin by setting as input port.			
12	P20	D	General-purpose input/output port.			
	TIN0		Function as an event input pin for reload timer 0. Use the pin by setting as input po			
13	P21	D	General-purpose input/output port.			
	TOT0		Function as an event output pin for reload timer 0. Valid only when output setting is "enabled."			
14	P22	D	General-purpose input/output port.			
	TIN1		Function as an event input pin for reload timer 1. Use the pin by setting as input po			
15	P23	D	General-purpose input/output port.			
	TOT1		Function as an event output pin for reload timer 1. Valid only when output setting "enabled."			
16 to 19	P24 to P27	D	General-purpose input/output ports.			
	INT4 to INT7		Functions as external interrupt input pins. Use the pins by setting as input port.			
20	MD2	F	Input pin for specifying operation mode. Connect directly to Vss.			
21	MD1	С	Input pin for specifying operation mode. Connect directly to Vcc.			
22	MD0	С	Input pin for specifying operation mode. Connect directly to Vcc.			
23	RST	В	External reset input pin.			
24	Vcc	-	Power source (5 V) input pin.			
25	Vss	-	Power source (0 V) input pin.			
26	С	-	Capacitor pin for stabilizing power source. Connect a ceramic capacitor of approximately 0.1 $\mu\text{F}.$			
27	X0	А	Pin for high-rate oscillation.			
28	X1	А	Pin for high-rate oscillation.			
29 to 32	P10 to P13	D	General-purpose input/output ports.			
	IN0 to IN3		Functions as trigger input pins of input capture ch.0 to ch.3. Use the pins by setting as input ports.			
33 to 36	P14 to P17	G	General-purpose input/output ports. High-current output ports.			
	PPG0 to PPG3		Functions as output pins of PPG timers 01 and 23. Valid when output setting is "enabled."			
37	P40	D	General-purpose input/output port.			
	SIN1		Serial data input pin for UART. Use the pin by setting as input port.			
38	P41	D	General-purpose input/output port.			
	SCK1		Serial clock input pin for UART. Valid only when serial clock input/output setting on UART is "enabled."			

8. Block Diagram

9. Memory Map

MB90385 series allows specifying a memory access mode "single chip mode."

9.1 Memory Allocation of MB90385

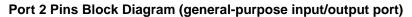
MB90385 series model has 24-bit wide internal address bus and up to 24-bit bus of external address bus. A maximum of 16-Mbyte memory space of external access memory is accessible.

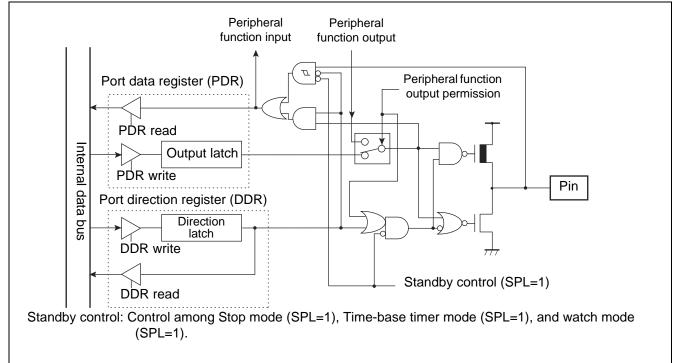
10. I/O Map

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
00000н		(Reserve	ed area) *		
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXXXB
000002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXXB
00003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXXB
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXXB
000005н	PDR5	Port 5 data register	R/W	Port 5	XXXXXXXXB
000006н to 000010н		(Reserve	ed area) *		
000011н	DDR1	Port 1 direction data register	R/W	Port 1	0000000в
000012н	DDR2	Port 2 direction data register	R/W	Port 2	0000000в
000013н	DDR3	Port 3 direction data register	R/W	Port 3	000Х0000в
000014н	DDR4	Port 4 direction data register	R/W	Port 4	ХХХ00000в
000015н	DDR5	Port 5 direction data register	R/W	Port 5	0000000в
000016н to 00001Ан		(Reserve	ed area) *		
00001Bн	ADER	Analog input permission register	R/W	8/10-bit A/D converter	11111111в
00001Cнto 000025н		(Reserve	ed area) *		
000026н	SMR1	Serial mode register 1	R/W	UART1	0000000в
000027н	SCR1	Serial control register 1	R/W, W		00000100в
000028н	SIDR1/ SODR1	Serial input data register 1/ Serial output data register 1	R, W		XXXXXXXXB
000029н	SSR1	Serial status data register 1	R, R/W		00001000в
00002Ан		(Reserve	ed area) *		
00002Вн	CDCR1	Communication prescaler control register 1	R/W	UART1	0ХХХ0000в
00002Cнto 00002Fн		(Reserve	ed area) *		·
000030н	ENIR	DTP/External interrupt permission register	R/W	DTP/External interrupt	0000000в
000031н	EIRR	DTP/External interrupt permission register	R/W		XXXXXXXXB
000032н	ELVR	Detection level setting register	R/W	1	0000000в
000033н			R/W	1	0000000в
000034н	ADCS	A/D control status register	R/W	8/10-bit A/D	0000000в
000035н			R/W, W	converter	0000000в
000036н	ADCR	A/D data register	W, R	1	XXXXXXXXB
000037н			R	1	00101XXXв

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
0000В0н	ICR00	Interrupt control register 00	R/W	Interrupt controller	00000111в
0000B1н	ICR01	Interrupt control register 01			00000111в
0000В2н	ICR02	Interrupt control register 02			00000111в
0000ВЗн	ICR03	Interrupt control register 03			00000111в
0000В4н	ICR04	Interrupt control register 04			00000111в
0000B5н	ICR05	Interrupt control register 05			00000111в
0000В6н	ICR06	Interrupt control register 06			00000111в
0000B7 н	ICR07	Interrupt control register 07			00000111в
0000B8н	ICR08	Interrupt control register 08			00000111в
0000B9н	ICR09	Interrupt control register 09			00000111в
0000ВАн	ICR10	Interrupt control register 10			00000111в
0000ВВн	ICR11	Interrupt control register 11			00000111в
0000ВСн	ICR12	Interrupt control register 12			00000111в
0000BDн	ICR13	Interrupt control register 13			00000111в
0000ВЕн	ICR14	Interrupt control register 14			00000111в
0000BFн	ICR15	Interrupt control register 15			00000111в
0000C0н to 0000FFн		(Reser	ved area) *		
001FF0⊦	PADR0	Detection address setting register 0 (low-order)	R/W	Address matching detection function	XXXXXXXXB
001FF1⊦		Detection address setting register 0 (middle-order)			XXXXXXXXB
001FF2⊦		Detection address setting register 0 (high-order)			XXXXXXXXB
001FF3⊦	PADR1	Detection address setting register 1 (low-order)	R/W] [XXXXXXXXB
001FF4⊦		Detection address setting register 1 (middle-order)			XXXXXXXXB
001FF5н	1	Detection address setting register 1 (high-order)	1		XXXXXXXXB
003900н	TMR0/	16-bit timer register 0/16-bit reload	R,W	16-bit reload timer 0	XXXXXXXXB
003901н	TMRLR0	register		F F	XXXXXXXXB
003902н	TMR1/	16-bit timer register 1/16-bit reload	R,W	16-bit reload timer 1	XXXXXXXXB
003903н	TMRLR1	register			XXXXXXXXB
003904н to 00390Fн		(Reser	ved area) *		

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value					
003D0Dн		(Reserv	ed area) *							
003D0Eн	TIER	Send completion interrupt permission R/W CAN controller register				CAN controller	0000000в			
003D0Fн		(Reserved area) *								
003D10н, 003D11н	AMSR	Acceptance mask selection register R/W CAN controller		CAN controller	XXXXXXXXB, XXXXXXXB					
003D12н, 003D13н	(Reserved area) *									
003D14н to 003D17н	AMR0	Acceptance mask register 0	R/W	CAN controller	XXXXXXXXB to XXXXXXXXB					
003D18н to 003D1Bн	AMR1	Acceptance mask register 1	R/W		XXXXXXXXB to XXXXXXXXB					
003D1Cн to 003DFFн		(Reserv	ed area) *							
003E00н to 003EFFн		(Reserved area) *								
003FF0н to 003FFFн		(Reserv	ed area) *							


Initial values:

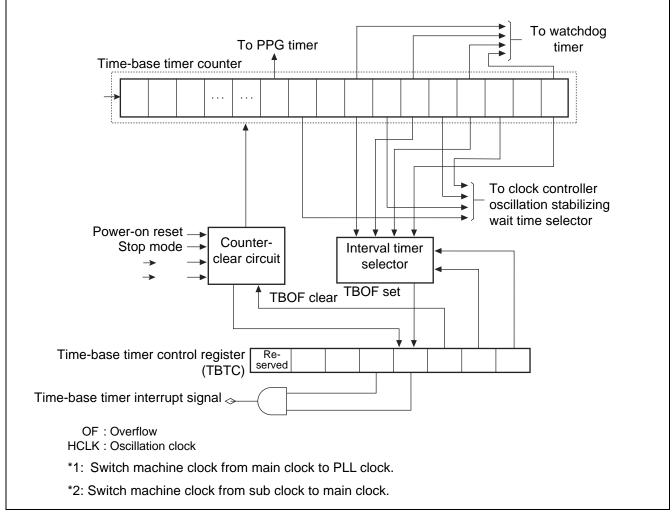

0: Initial value of this bit is "0."

1: Initial value of this bit is "1."

X: Initial value of this bit is undefined.

*: "Reserved area" should not be written anything. Result of reading from "Reserved area" is undefined.

Port 2 Registers


- Port 2 registers include port 2 data register (PDR2) and port 2 direction register (DDR2).
- The bits configuring the register correspond to port 2 pins on a one-to-one basis.

Relation between Port 2 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 2	PDR2,DDR2	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	P27	P26	P25	P24	P23	P22	P21	P20

MB90387/387S/F387/F387S MB90V495G

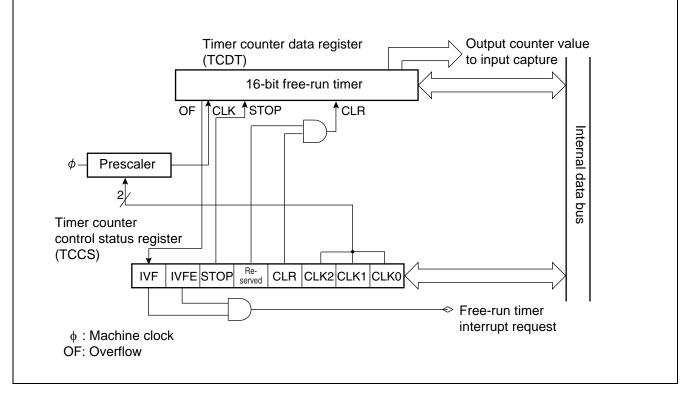
Time-base Timer Block Diagram

Actual interrupt request number of time-base timer is as follows: Interrupt request number: #16 (10_H)

MB90387/387S/F387/F387S MB90V495G

Watchdog timer control register(WDTC) Watch timer control register (WTC) WRST ERST SRST WTE WT1 WT0 PONR ____ WDCS Watchdog timer 2, Activate Reset occurs _ Counter Watchdog Shift to sleep mode -----2-bit Internal reset Count clock reset clear control Shift to time-base counter - 6 generation generation selector circuit timer mode circuit circuit Shift to watch mode Clear Shift to stop mode 4 4 Time-base timer counter Main clock $\times 2^2$ × 28 × 29 × 210 × 211 × 2¹² × 2¹³ × 2¹⁴ $\times 2^1$ × 215 × 216 × 2¹⁷ $\times 2^{18}$ (dividing HCLK by 2) Watch counter Sub clock $\times 2^2$ × 2⁵ $\times 2^{6}$ × 2⁸ × 2⁹ × 2¹⁰ × 2¹¹ × 2¹² × 2¹³ × 2¹⁴ × 2¹⁵ $\times 2^{1}$ $\times 2^7$. SCLK HCLK: Oscillation clock SCLK: Sub clock

Watchdog Timer Block Diagram


16-bit Free-run Timer

Counter value of 16-bit free-run timer is used as reference time (base time) of input capture.

Input Capture

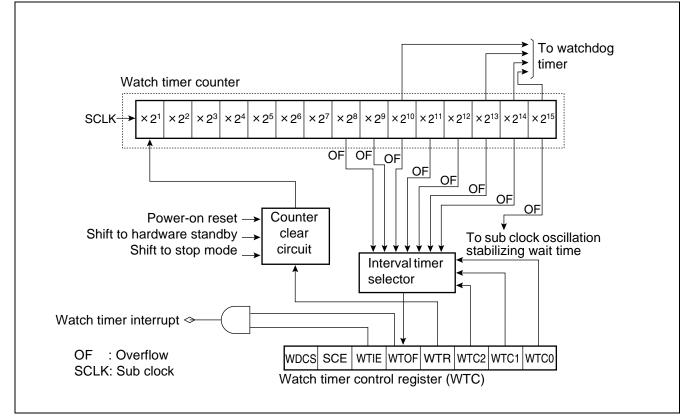
Input capture detects rising edge, falling edge or both edges and retains a counter value of 16-bit free-run timer. Detection of edge on input signal is allowed to generate interrupt.

16-bit Free-run Timer Block Diagram

Detailed Pin Assignment on Block Diagram

The 16-bit input/output timer includes a 16-bit free-run timer. Interrupt request number of the 16-bit free-run timer is as follows: Interrupt request number: 19 (13_H)

Prescaler


The prescaler divides a machine clock and provides a counter clock to the 16-bit up counter. Dividing ratio of the machine clock is specified by timer counter control status register (TCCS) among four values.

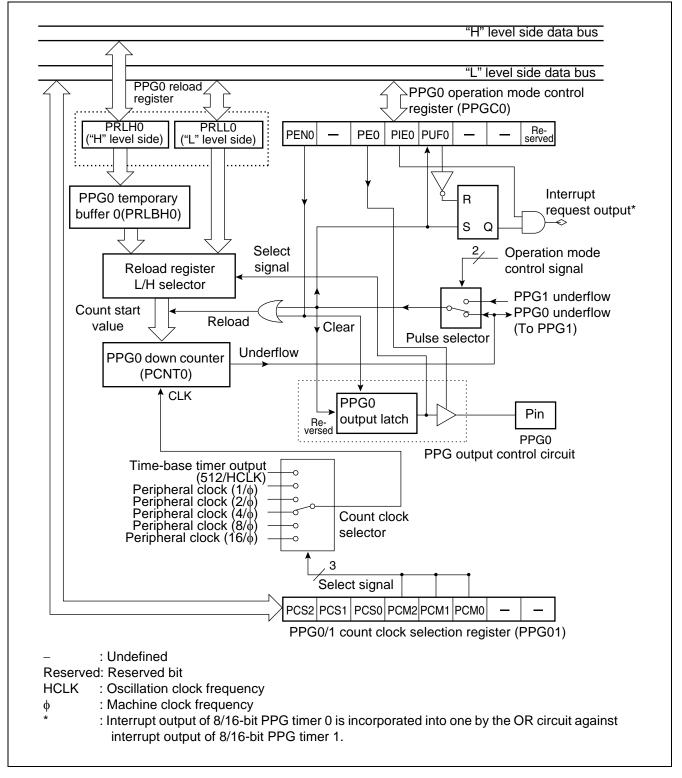
Timer Counter Data Register (TCDT)

The timer counter data register is a 16-bit up counter. A current counter value of the 16-bit free-run timer is read. Writing a value during halt of the counter allows setting an arbitrary counter value.

MB90387/387S/F387/F387S MB90V495G

Watch Timer Block Diagram

Actual interrupt request number of watch timer is as follows: Interrupt request number: #28 (1C_H)


Watch Timer Counter

A 15-bit up counter that uses sub clock (SCLK) as a count clock.

Counter Clear Circuit

A circuit that clears the watch timer counter.

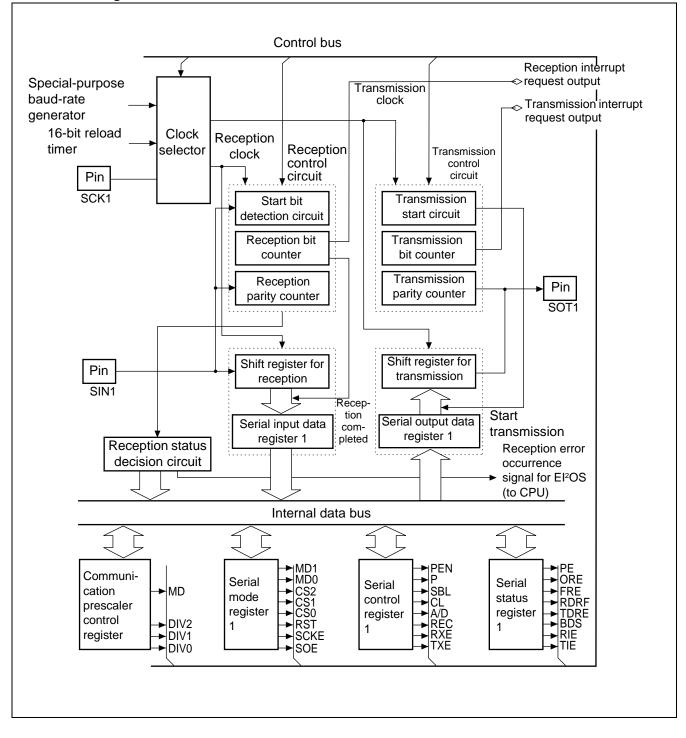
8/16-bit PPG Timer 0 Block Diagram

12.9 DTP/External Interrupt and CAN Wakeup Outline

DTP/external interrupt transfers an interrupt request generated by an external peripheral device or a data transmission request to CPU, generating external interrupt request and activating expanded intelligent I/O service. Input RX of CAN controller is used as external interrupt input.

DTP/External Interrupt and CAN Wakeup Function

An interrupt request input from external peripheral device to external input pins (INT7 to INT4) and RX pin, just as interrupt request of peripheral device, generates an interrupt request. The interrupt request generates an external interrupt and activates expanded intelligent I/O service (EI²OS).


If the expanded intelligent I/O service (EI²OS) has been disabled by interrupt control register (ICR: ISE=0), external interrupt function is enabled and branches to interrupt processing.

If the EI²OS has been enabled, (ICR: ISE=1), DTP function is enabled and automatic data transmission is performed by EI²OS. After performing specified number of data transmission processes, the process branches to interrupt processing.

	External Interrupt	DTP Function				
Input pin	5 pins (RX, and INT4 to INT7)					
Interrupt cause	Specify for each pin with detection level setting r	egister (ELVR).				
	Input of "H" level/"L" level/rising edge/falling edge.	Input of "H" level/ "L" level				
Interrupt number	#15 (0Fн), #24 (18н), #27 (1Вн)					
Interrupt control	Enabling or disabling output of interrupt request, (ENIR).	using DTP/external interrupt permission register				
Interrupt flag	Retaining interrupt cause with DTP/external inter	rrupt cause register (EIRR).				
Process selection	Disable El ² OS (ICR: ISE=0)	Enable El ² OS (ICR: ISE=1)				
Process	Branch to external interrupt process	After automatic data transmission by El ² OS for specified number of times, branch to interrupt process.				

Table 12-2.	DTP/External In	terrupt and CAN	Wakeup Outline
-------------	-----------------	-----------------	----------------

UART Block Diagram

12.15 512 Kbit Flash Memory Outline

The following three methods are provided for data writing and deleting on Flash memory:

- 1. Parallel writer
- 2. Serial special-purpose writer
- 3. Writing/deleting by program execution

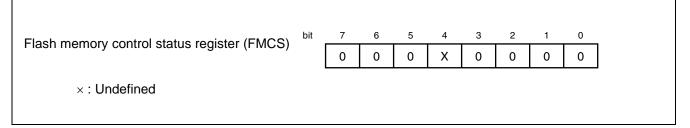
This section describes "3. Writing/deleting by program execution."

512 Kbit Flash Memory Outline

The 512 Kbit Flash memory is allocated on FF_H bank of CPU memory map. Using the function of Flash memory interface circuit, the memory allows read access and program access from CPU.

Writing/deleting on Flash memory is performed by instruction from CPU via Flash memory interface. Because rewriting is allowed on mounted memory, modifying program and data is performed efficiently.

Features of 512 Kbit Flash Memory


- 128 K words x 8 bits/64 K words x 16 bits (16 K + 8 K + 8 K + 32 K) sector configuration
- Automatic program algorithm (Embedded Algorithm: Similar to MBM29LV200.)
- Built-in deletion pause/deletion resume function
- Detection of completed writing/deleting by data polling and toggle bits.
- Detection of completed writing/deleting by CPU interrupt.
- Deletion is allowed on a sector-by-sector basis (sectors are combined freely).
- Number of writing/deleting operations (minimum): 10,000 times
- Sector protection
- Expanded sector protection
- Temporaly sector unprotection

Note: A function of reading manufacture code and device code is not provided. These codes are not accessible by command either.

Flash Memory Writing/Deleting

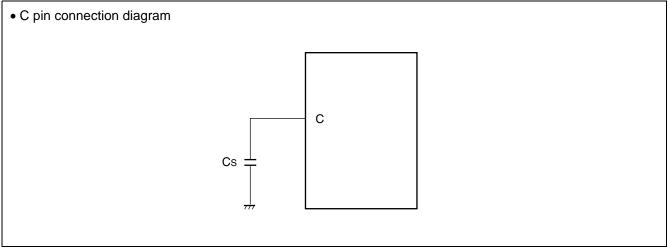
- Writing and reading data is not allowed simultaneously on the Flash memory.
- Data writing and deleting on the Flash memory is performed by the processes as follows: Make a copy of program on Flash memory onto RAM. Then, execute the program copied on the RAM.

List of Registers and Reset Values in Flash Memory

Sector Configuration

For access from CPU, SA0 to SA3 are allocated in FF bank register.

13.2 Recommended Operating Conditions


(Vss = AVss = 0.0V)

Parameter	Symbol	Value				Remarks	
Falameter	Symbol	Min	Тур	Max	Unit	Reindi K5	
Power supply voltage	Vcc	3.5	5.0	5.5	V	Under normal operation	
		3.0	_	5.5		Retain status of stop operation	
	AVcc	4.0	-	5.5	V	*2	
Smoothing capacitor	Cs	0.1	-	1.0	μF	*1	
Operating temperature	TA	-40	-	+105	°C		

*1: Use a ceramic capacitor, or a capacitor of similar frequency characteristics. On the Vcc pin, use a bypass capacitor that has a larger capacity than that of Cs.

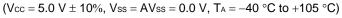
Refer to the following figure for connection of smoothing capacitor Cs.

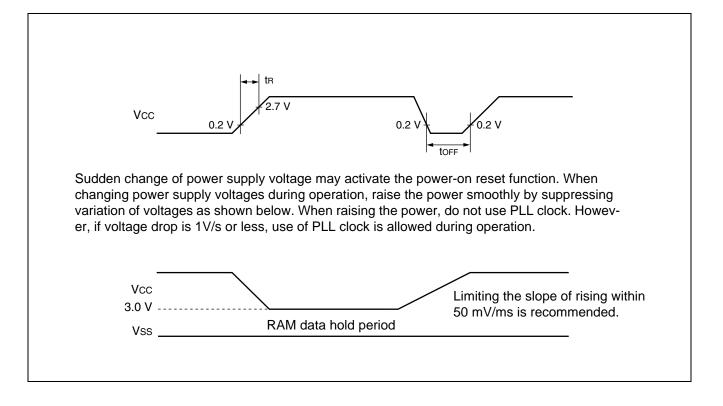
*2: AVcc is a voltage at which accuracy is guaranteed. AVcc should not exceed Vcc.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

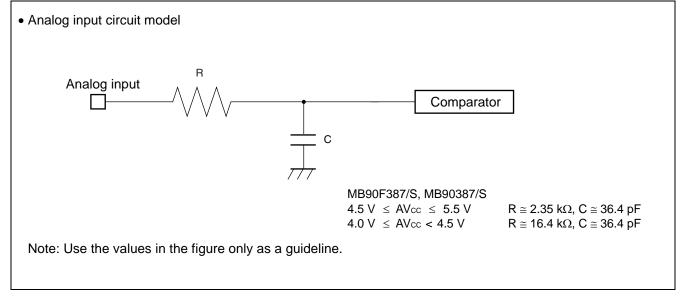

Deremeter	Symbol	/mbol Pin Name	Conditions		Value	Unit	Remarks	
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
Power supply current*	lcc∟	Vcc	Vcc = 5.0 V, Internally operating at 8 kHz, subclock operation,		0.3	1.2	mA	MB90F387/S
000			$T_A = +25^{\circ}C$		40	100	μΑ	MB90387/S
	ICCLS		$V_{CC} = 5.0 V$, Internally operating at 8 kHz, subclock, sleep mode, $T_{A} = + 25^{\circ}C$	_	10	30	μA	
	Ісст		Vcc = 5.0 V, Internally operating at 8 kHz, watch mode, $T_A = + 25^{\circ}C$		8	25	μΑ	
	Іссн		Stopping, T _A = + 25°C	_	5	20	μΑ	
Input capacity	CIN	Other than AVcc, AVss, AVR, C, Vcc, Vss	-	_	5	15	pF	
Pull-up resistor	Rup	RST	-	25	50	100	kΩ	
Pull-down resistor	Rdown	MD2	-	25	50	100	kΩ	Flash product is not provided with pull-down resistor.


 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 \circ C to +105 \circ C)$

*: Test conditions of power supply current are based on a device using external clock.

13.4.3 Power-on Reset

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
Farameter				Min	Max	Unit	Relliarks
Power supply rise time	t ℝ	Vcc	-	0.05	30	ms	
Power supply shutdown time	toff	Vcc		1	-	ms	Waiting time until power-on


13.7 Notes on A/D Converter Section

Use the device with external circuits of the following output impedance for analog inputs:

Recommended output impedance of external circuits are: Approx. 3.9 k Ω or lower (4.5 V \leq AVcc \leq 5.5 V) (sampling period=2.00 μ s at 16 MHz machine clock), Approx. 11 k Ω or lower (4.0 V \leq AVcc < 4.5 V) (sampling period=8.0 μ s at 16 MHz machine clock).

If an external capacitor is used, in consideration of the effect by tap capacitance caused by external capacitors and on-chip capacitors, capacitance of the external one is recommended to be several thousand times as high as internal capacitor.

If output impedance of an external circuit is too high, a sampling period for an analog voltage may be insufficient.

About errors

As [AVR-AVss] become smaller, values of relative errors grow larger.

13.8 Flash Memory Program/Erase Characteristics

Parameter	Conditions		Value		Unit	Remarks	
Falameter	Conditions	Min Typ		Max	Onit	Remarks	
Sector erase time	$\begin{array}{l} T_{\text{A}}=+~25~^{\circ}C\\ V_{\text{CC}}=5.0~V \end{array}$	-	1	15	S	Excludes 00H programming prior to erasure	
Chip erase time		-	4	-	S	Excludes 00H programming prior to erasure	
Word (16-bit width) programming time		-	16	3,600	μS	Except for the over head time of the system	
Program/Erase cycle	_	10,000	-	-	cycle		
Flash Data Retention Time	Average T _A = + 85 °C	20	-	-	Year	*	

*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C).