

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90387spmt-gs-110e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number Parameter	MB90F387 MB90F387S	MB90387 MB90387S	MB90V495G			
8/10-bit A/D converter	Number of channels: 8 Resolution: Selectable 10-bit or 8-bit. Conversion time: 6.125 μ s (at 16 MHz machine clock, including sampling time) Sequential conversion of two or more successive channels is allowed. (Setting a maximum of 8 channels is allowed.) Single conversion mode: Selected channel is converted only once. Sequential conversion mode: Selected channel is converted repetitively. Halt conversion mode: Conversion of selected channel is stopped and activated alter- nately.					
UART(SCI)	Number of channels: 1 Clock-synchronous transfer: 62.9 Clock-asynchronous transfer: 9,0 Communication is allowed by bi- slave type connection.	615 bps to 500 kbps	tion function and master/			
CAN	Compliant with Ver 2.0A and Ver 8 built-in message buffers. Transmission rate of 10 kbps to CAN wake-up	·	clock)			

*1: Settings of DIP switch S2 for using emulation pod MB2145-507. For details, see MB2145-507 Hardware Manual (2.7 Power Pin solely for Emulator).

*2: MB90387S, MB90F387S

2. Packages And Product Models

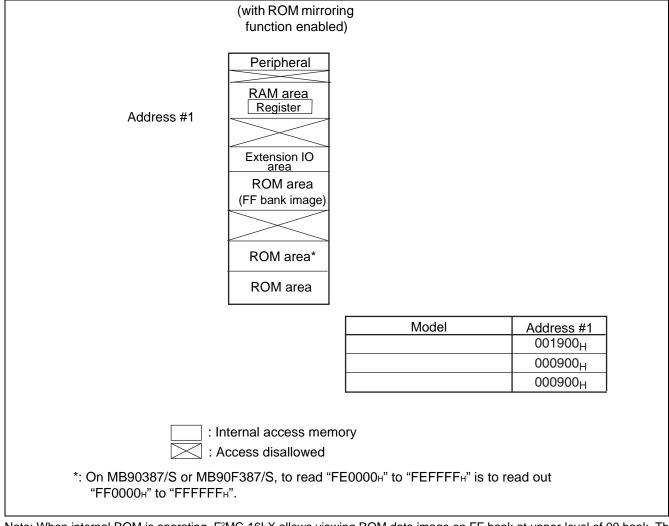
Package	MB90F387, MB90F387S	MB90387, MB90387S
LQA048	\bigcirc	\bigcirc

 \bigcirc : Yes \times : No

Note: Refer to Package Dimension for details of the package.

3. Product Comparison

Memory Space


When testing with test product for evaluation, check the differences between the product and a product to be used actually. Pay attention to the following points:

- The MB90V495G has no built-in ROM. However, a special-purpose development tool allows the operations as those of one with built-in ROM. ROM capacity depends on settings on a development tool.
- On MB90V495G, an image from FF4000^H to FFFFFF^H is viewed on 00 bank and an image of FE0000^H to FF3FFF^H is viewed only on FE bank and FF bank. (Modified on settings of a development tool.)
- On MB90F387/F387S/387/387S, an image from FF4000H to FFFFFFH is viewed on 00 bank and an image of FE0000H to FF3FFFH is viewed only on FF bank.

5. Pin Description

Pin No.	Pin Name	Circuit Type	Function
1	AVcc	-	Vcc power input pin for A/D converter.
2	AVR	-	Power (Vref+) input pin for A/D converter. Use as input for Vcc or lower.
3 to 10	P50 to P57	Е	General-purpose input/output ports.
	AN0 to AN7		Functions as analog input pins for A/D converter. Valid when analog input setting is "enabled."
11	P37	D	General-purpose input/output port.
	ADTG		Function as an external trigger input pin for A/D converter. Use the pin by setting as input port.
12	P20	D	General-purpose input/output port.
	TIN0		Function as an event input pin for reload timer 0. Use the pin by setting as input port.
13	P21	D	General-purpose input/output port.
	TOT0		Function as an event output pin for reload timer 0. Valid only when output setting is "enabled."
14	P22	D	General-purpose input/output port.
	TIN1		Function as an event input pin for reload timer 1. Use the pin by setting as input port.
15	P23	D	General-purpose input/output port.
	TOT1		Function as an event output pin for reload timer 1. Valid only when output setting is "enabled."
16 to 19	P24 to P27	D	General-purpose input/output ports.
	INT4 to INT7		Functions as external interrupt input pins. Use the pins by setting as input port.
20	MD2	F	Input pin for specifying operation mode. Connect directly to Vss.
21	MD1	С	Input pin for specifying operation mode. Connect directly to Vcc.
22	MD0	С	Input pin for specifying operation mode. Connect directly to Vcc.
23	RST	В	External reset input pin.
24	Vcc	-	Power source (5 V) input pin.
25	Vss	-	Power source (0 V) input pin.
26	С	-	Capacitor pin for stabilizing power source. Connect a ceramic capacitor of approximately 0.1 $\mu\text{F}.$
27	X0	А	Pin for high-rate oscillation.
28	X1	А	Pin for high-rate oscillation.
29 to 32	P10 to P13	D	General-purpose input/output ports.
	IN0 to IN3		Functions as trigger input pins of input capture ch.0 to ch.3. Use the pins by setting as input ports.
33 to 36	P14 to P17	G	General-purpose input/output ports. High-current output ports.
	PPG0 to PPG3		Functions as output pins of PPG timers 01 and 23. Valid when output setting is "enabled."
37	P40	D	General-purpose input/output port.
	SIN1		Serial data input pin for UART. Use the pin by setting as input port.
38	P41	D	General-purpose input/output port.
	SCK1		Serial clock input pin for UART. Valid only when serial clock input/output setting on UART is "enabled."

9.2 Memory Map

Note: When internal ROM is operating, F²MC-16LX allows viewing ROM data image on FF bank at upper-level of 00 bank. This function is called "mirroring ROM," which allows effective use of C compiler small model.

F²MC-16LX assigns the same low order 16-bit address to FF bank and 00 bank, which allows referencing table in ROM without specifying "far" using pointer.

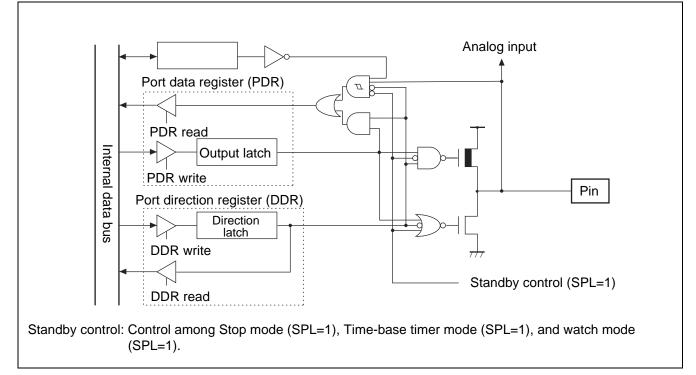
For example, when accessing to "00C000H", ROM data at "FFC000H" is accessed actually. However, because ROM area of FF bank exceeds 48 Kbytes, viewing all areas is not possible on 00 bank image. Because ROM data of "FF4000H" to "FFFFFH" is viewed on "004000H" to "00FFFFH" image, store a ROM data table in area "FF4000H" to "FFFFFH."

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value					
000083н		(Reserve	ed area) *							
000084н	TCANR	Send cancel register	W	CAN controller	0000000в					
000085н		(Reserved area) *								
000086н	TCR	Send completion register	R/W	CAN controller	0000000в					
000087н		(Reserve	ed area) *							
000088н	RCR	Receive completion register	R/W	CAN controller	0000000в					
000089н		(Reserve	ed area) *							
00008Ан	RRTRR	Receive RTR register	R/W	CAN controller	0000000в					
00008Вн		(Reserve	ed area) *							
00008Сн	ROVRR	Receive overrun register	R/W	CAN controller	0000000в					
00008Dн		(Reserve	ed area) *							
00008Eн	RIER	Receive completion interrupt permission register	R/W	CAN controller	0000000в					
00008Fн to 00009Dн		(Reserv	ed area) *							
00009Eн	PACSR	Address detection control register	R/W	Address matching detection function	0000000в					
00009Fн	DIRR	Delay interrupt request generation/ release register	R/W	Delay interrupt generation module	XXXXXXX0B					
0000А0н	LPMCR	Lower power consumption mode control register	W,R/W	Lower power consumption mode	00011000в					
0000A1н	CKSCR	Clock selection register	R,R/W	Clock	11111100в					
0000А2н to 0000А7н		(Reserv	ed area) *							
0000A8н	WDTC	Watchdog timer control register	R,W	Watchdog timer	XXXXX111 _B					
0000A9н	TBTC	Time-base timer control register	R/W,W	Time-base timer	1XX00100в					
0000ААн	WTC	Watch timer control register	R,R/W	Watch timer	1Х001000в					
0000ABн to 0000ADн		(Reserv	ed area) *	· · · · ·						
0000AEн	FMCS	Flash memory control status register	R,W,R/W	512k-bit Flash memory	000X0000 _B					
0000AFн		(Reserv	ed area) *	. 1						

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value		
003910н	PRLL0	PPG0 reload register L	R/W	8/16-bit PPG timer	XXXXXXXXB		
003911 н	PRLH0	PPG0 reload register H	R/W		XXXXXXXXB		
003912н	PRLL1	PPG1 reload register L	R/W		XXXXXXXXB		
003913н	PRLH1	PPG1 reload register H	R/W		XXXXXXXXB		
003914н	PRLL2	PPG2 reload register L	R/W		XXXXXXXXB		
003915 н	PRLH2	PPG2 reload register H	R/W		XXXXXXXXB		
003916 н	PRLL3	PPG3 reload register L	R/W		XXXXXXXX _B		
003917 н	PRLH3	PPG3 reload register H	R/W		XXXXXXXXB		
003918н to 00392Fн			(Reserved area) *				
003930н to 003BFFн			(Reserved area) *				
003C00н to 003C0Fн		RAM (General-purpose R	AM)			
003C10н to 003C13н	IDR0	ID register 0	R/W	CAN controller	XXXXXXXXB to XXXXXXXXB		
003C14н to 003C17н	IDR1	ID register 1	R/W	-	XXXXXXXXB to XXXXXXXXB		
003C18н to 003C1Bн	IDR2	ID register 2	R/W	_	XXXXXXXXB to XXXXXXXB		
003C1Cн to 003C1Fн	IDR3	ID register 3	R/W	-	XXXXXXXXB to XXXXXXXXB		
003C20н to 003C23н	IDR4	ID register 4	R/W	_	XXXXXXXXB to XXXXXXXB		
003C24н to 003C27н	IDR5	ID register 5	R/W	_	XXXXXXXXAB to XXXXXXXXB		
003C28н to 003C2Bн	IDR6	ID register 6	R/W	-	XXXXXXXXB to XXXXXXXB		
003C2Cн to 003C2Fн	IDR7	ID register 7	R/W		XXXXXXXXB to XXXXXXXB		
003C30н, 003C31н	DLCR0	DLC register 0	R/W		XXXXXXXXB, XXXXXXXB		
003C32н, 003C33н	DLCR1	DLC register 1		XXXXXXXXB, XXXXXXXB			
003C34н, 003C35н	DLCR2	DLC register 2	R/W		XXXXXXXXB, XXXXXXXXB		
003C36н, 003C37н	DLCR3	DLC register 3	R/W		XXXXXXXXB, XXXXXXXXB		

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value					
003D0Dн		(Reserv	ed area) *							
003D0Eн	TIER	Send completion interrupt permission register	R/W	CAN controller	0000000в					
003D0Fн		(Reserved area) *								
003D10н, 003D11н	AMSR	Acceptance mask selection register	R/W	CAN controller	XXXXXXXXB, XXXXXXXB					
003D12н, 003D13н	(Reserved area) *									
003D14н to 003D17н	AMR0	Acceptance mask register 0	R/W	CAN controller	XXXXXXXXB to XXXXXXXXB					
003D18н to 003D1Bн	AMR1	Acceptance mask register 1	R/W		XXXXXXXXB to XXXXXXXXB					
003D1Cн to 003DFFн		(Reserv	ed area) *							
003E00н to 003EFFн		(Reserved area) *								
003FF0н to 003FFFн		(Reserv	ed area) *							

Initial values:

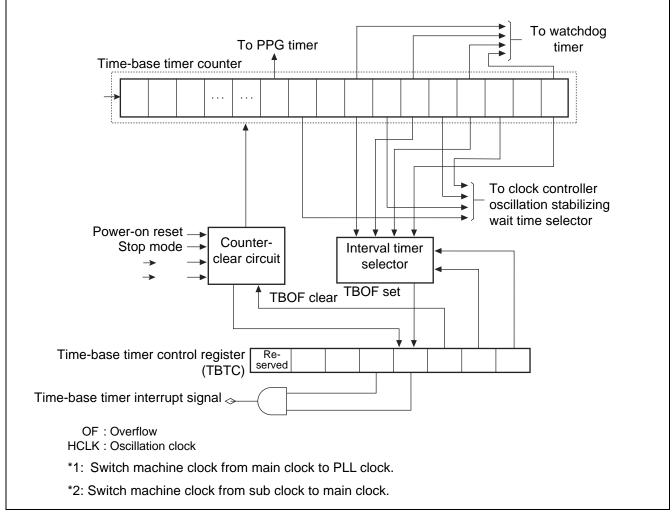

0: Initial value of this bit is "0."

1: Initial value of this bit is "1."

X: Initial value of this bit is undefined.

*: "Reserved area" should not be written anything. Result of reading from "Reserved area" is undefined.

Port 5 Pins Block Diagram


Port 5 Registers

- Port 5 registers include port 5 data register (PDR5), port 5 direction register (DDR5), and analog input permission register (ADER).
- Analog input permission register (ADER) allows or disallows input of analog signal to the analog input pin.
- The bits configuring the register correspond to port 5 pins on a one-to-one basis.

Relation between Port 5 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 5	PDR5, DDR5	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	ADER	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0
	Corresponding pins	P57	P56	P55	P54	P53	P52	P51	P50

Time-base Timer Block Diagram

Actual interrupt request number of time-base timer is as follows: Interrupt request number: #16 (10_H)

12.3 Watchdog Timer

The watchdog timer is a 2-bit counter that uses time-base timer or watch timer as count clock. If the counter is not cleared within an interval time, CPU is reset.

Watchdog Timer Functions

- The watchdog timer is a timer counter that prevents runaway of a program. Once a watchdog timer is activated, the counter of watchdog timer must always be cleared within a specified time of interval. If specified interval time elapses without clearing the counter of a watchdog timer, CPU resetting occurs. This is the function of a watchdog timer.
- The interval time of a watchdog timer is determined by a clock cycle, which is input as a count clock. Watchdog resetting occurs between a minimum time and a maximum time specified.
- The output target of a clock source is specified by the watchdog clock selection bit (WTC: WDCS) in the watch timer control register.
- Interval time of a watchdog timer is specified by the time-base timer output selection bit / watch timer output selection bit (WDTC: WT1, WT0) in the watchdog timer control register.

Min	Мах	Clock Cycle	Min	Max	Clock Cycle
Approx. 3.58 ms	Approx. 4.61 ms	(2 ¹⁴ ±2 ¹¹) /HCLK	Approx. 0.457 s	Approx. 0.576 s	(2 ¹² ±2 ⁹) /SCLK
Approx. 14.33 ms	Approx. 18.3 ms	(2 ¹⁶ ±2 ¹³) /HCLK	Approx. 3.584 s	Approx. 4.608 s	(2 ¹⁵ ±2 ¹²) /SCLK
Approx. 57.23 ms	Approx. 73.73 ms	(2 ¹⁸ ±2 ¹⁵) /HCLK	Approx. 7.168 s	Approx. 9.216 s	(2 ¹⁶ ±2 ¹³) /SCLK
Approx. 458.75 ms	Approx. 589.82 ms	(2 ²¹ ±2 ¹⁸) /HCLK	Approx. 14.336 s	Approx. 18.432 s	(2 ¹⁷ ±2 ¹⁴) /SCLK

Interval Timer of Watchdog Timer

HCLK: Oscillation clock (4 MHz), CSCLK: Sub clock (8.192 kHz)

Notes:

- If the time-base timer is cleared when watchdog timer count clock is used as time base timer output (carry-over signal), watchdog reset time may become longer.
- When using the sub clock as machine clock, be sure to specify watchdog timer clock source selection bit (WDCS) in watch timer control register (WTC) at "0," selecting output of watch timer.

12.4 16-bit Input/Output Timer

The 16-bit input/output timer is a compound module composed of 16-bit free-run timer, (1 unit) and input capture (2 units, 4 input pins). The timer, using the 16-bit free-run timer as a basis, enables measurement of clock cycle of an input signal and its pulse width.

Configuration of 16-bit Input/Output Timer

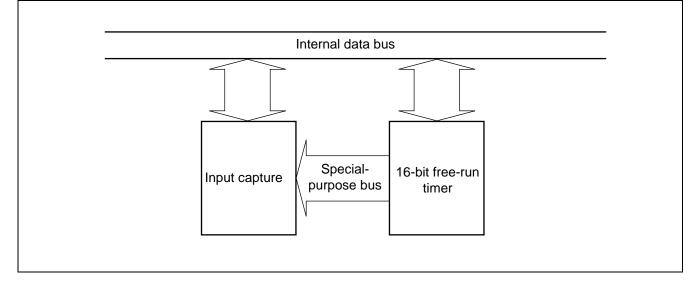
The 16-bit input/output timer is composed of the following modules:

- 16-bit free-run timer (1 unit)
- Input capture (2 units, 2 input pins per unit)

Functions of 16-bit Input/Output Timer

Functions of 16-bit Free-run Timer

The 16-bit free-run timer is composed of 16-bit up counter, timer counter control status register, and prescaler. The 16-bit up counter increments in synchronization with dividing ratio of machine clock.

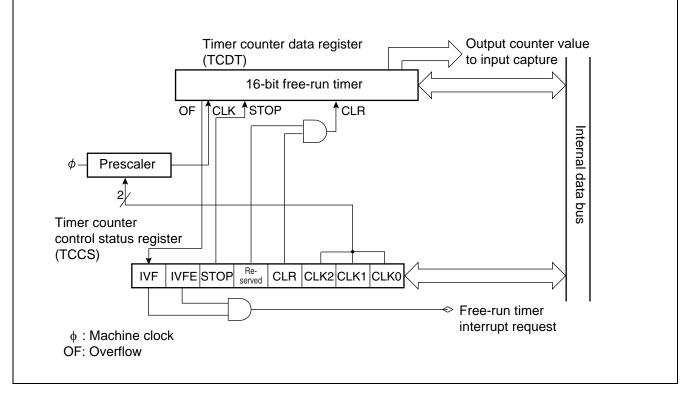

- Count clock is set among four types of machine clock dividing rates.
- Generation of interrupt is allowed by counter value overflow.
- Activation of expanded intelligent I/O service (EI²OS) is allowed by interrupt generation.
- Counter value of 16-bit free-run timer is cleared to "0000^H" by either resetting or software-clearing with timer count clear bit (TCCS: CLR).
- Counter value of 16-bit free-run timer is output to input capture, which is available as base time for capture operation.

Functions of Input Capture

The input capture, upon detecting an edge of a signal input to the input pin from external device, stores a counter value of 16-bit freerun timer at the time of detection into the input capture data register. The function includes the input capture data registers corresponding to four input pins, input capture control status register, and edge detection circuit.

- Rising edge, falling edge, and both edges are selectable for detection.
- Generating interrupt on CPU is allowed by detecting an edge of input signal.
- Expanded intelligent I/O service (EI²OS) is activated by interrupt generation.
- The four input capture input pins and input capture data registers allows monitoring of a maximum of four events.

16-bit Input/Output Timer Block Diagram


16-bit Free-run Timer

Counter value of 16-bit free-run timer is used as reference time (base time) of input capture.

Input Capture

Input capture detects rising edge, falling edge or both edges and retains a counter value of 16-bit free-run timer. Detection of edge on input signal is allowed to generate interrupt.

16-bit Free-run Timer Block Diagram

Detailed Pin Assignment on Block Diagram

The 16-bit input/output timer includes a 16-bit free-run timer. Interrupt request number of the 16-bit free-run timer is as follows: Interrupt request number: 19 (13_H)

Prescaler

The prescaler divides a machine clock and provides a counter clock to the 16-bit up counter. Dividing ratio of the machine clock is specified by timer counter control status register (TCCS) among four values.

Timer Counter Data Register (TCDT)

The timer counter data register is a 16-bit up counter. A current counter value of the 16-bit free-run timer is read. Writing a value during halt of the counter allows setting an arbitrary counter value.

12.12 CAN Controller

The Controller Area Network (CAN) is a serial communication protocol compliant with CANVer2.0A and Ver2.0B. The protocol allows data transmission and reception in both standard frame format and expanded frame format.

Features of CAN Controller

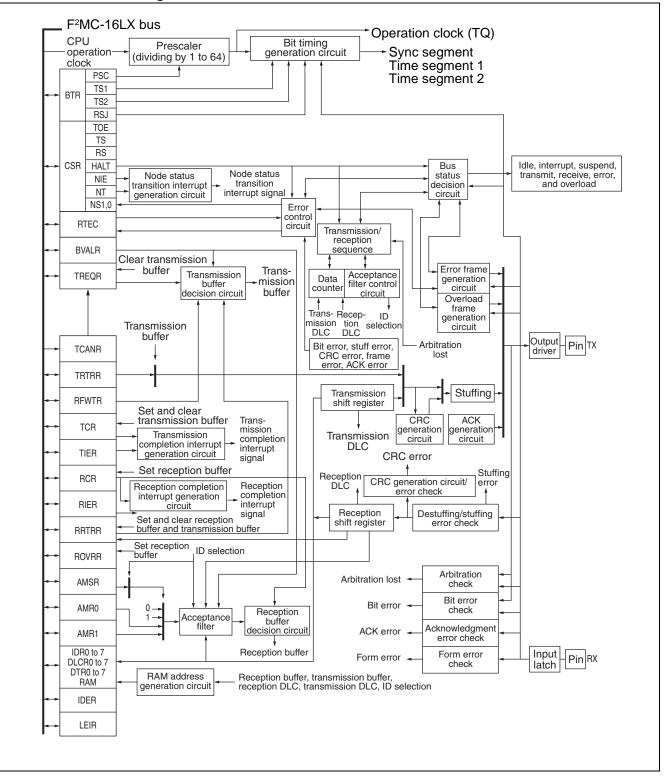
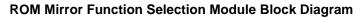
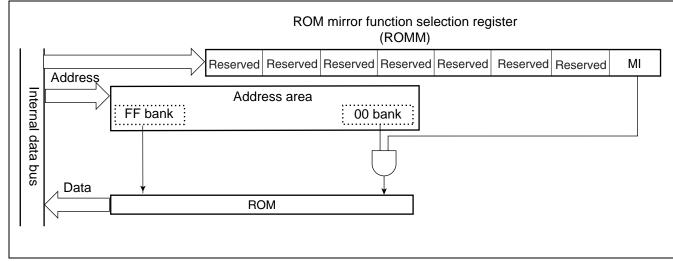
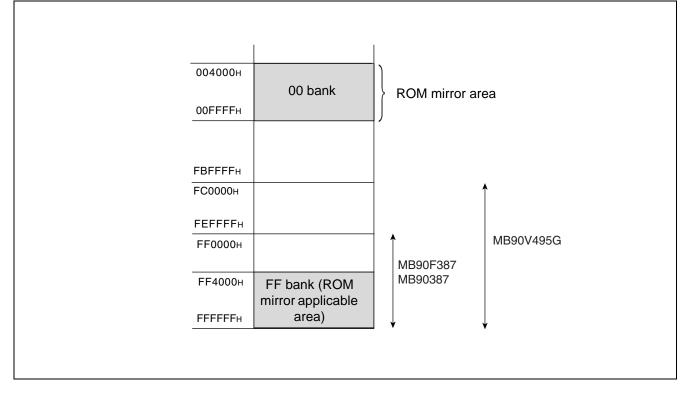

- CAN controller format is compliant with CANVer2.0A and Ver2.0B.
- The protocol allows data transmission and reception in standard frame format and expanded frame format.
- Automatic transmission of data frame by remote frame reception is allowed.
- Baud rate ranges from 10 kbps to 1 Mbps (with 16-MHz machine clock).

Table 12-5. Data Transmission Baud Rate

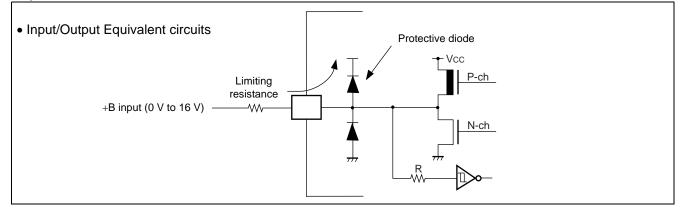
Machine Clock	Baud Rate (Max)
16 MHz	1 Mbps
12 MHz	1 Mbps
8 MHz	1 Mbps
4 MHz	500 kbps
2 MHz	250 kbps


- Provided with 8 transmission/reception message buffers.
- Transmission/reception is allowed at ID 11 bit in standard format, and at ID 29 bit in expanded frame format.
- Specifying 0 byte to 8 bytes is allowed in message data.
- Multi-level message buffer configuration is allowed.
- CAN controller has two built-in acceptance masks. Mask settings are independently allowed for the two acceptance masks on reception IDs.
- The two acceptance masks allow reception in standard frame format and expanded frame format.
- For types of masking, all-bit comparison, all-bit masking, and partial masking with acceptance mask register 0/1, are specifiable.


CAN Controller Block Diagram


12.14 ROM Mirror Function Selection Module Outline

The ROM mirror function selection module sets the data in ROM assigned to FF bank so that the data is read by access to 00 bank.



FF Bank Access by ROM Mirror Function

- Use within recommended operating conditions.
- Use at DC voltage (current).
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits:

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Deremeter	Symbol	Pin Name	Conditions		Value	Unit	Remarks	
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
Power supply current*	lcc∟	Vcc	Vcc = 5.0 V, Internally operating at 8 kHz, subclock operation,		0.3	1.2	mA	MB90F387/S
000			$T_A = +25^{\circ}C$		40	100	μΑ	MB90387/S
	ICCLS		$V_{CC} = 5.0 V$, Internally operating at 8 kHz, subclock, sleep mode, $T_{A} = + 25^{\circ}C$	_	10	30	μA	
	Ісст		Vcc = 5.0 V, Internally operating at 8 kHz, watch mode, $T_A = + 25^{\circ}C$		8	25	μΑ	
	Іссн		Stopping, T _A = + 25°C	_	5	20	μΑ	
Input capacity	CIN	Other than AVcc, AVss, AVR, C, Vcc, Vss	-	_	5	15	pF	
Pull-up resistor	Rup	RST	-	25	50	100	kΩ	
Pull-down resistor	Rdown	MD2	-	25	50	100	kΩ	Flash product is not provided with pull-down resistor.

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 \circ C to +105 \circ C)$

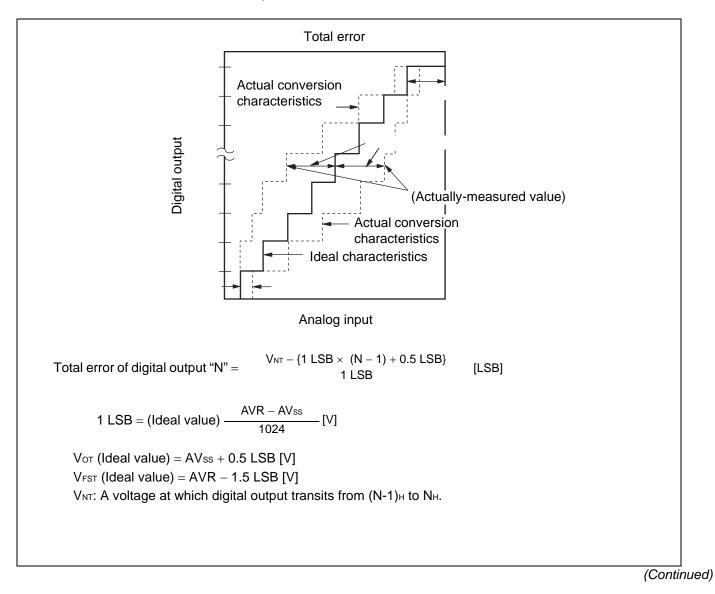
*: Test conditions of power supply current are based on a device using external clock.

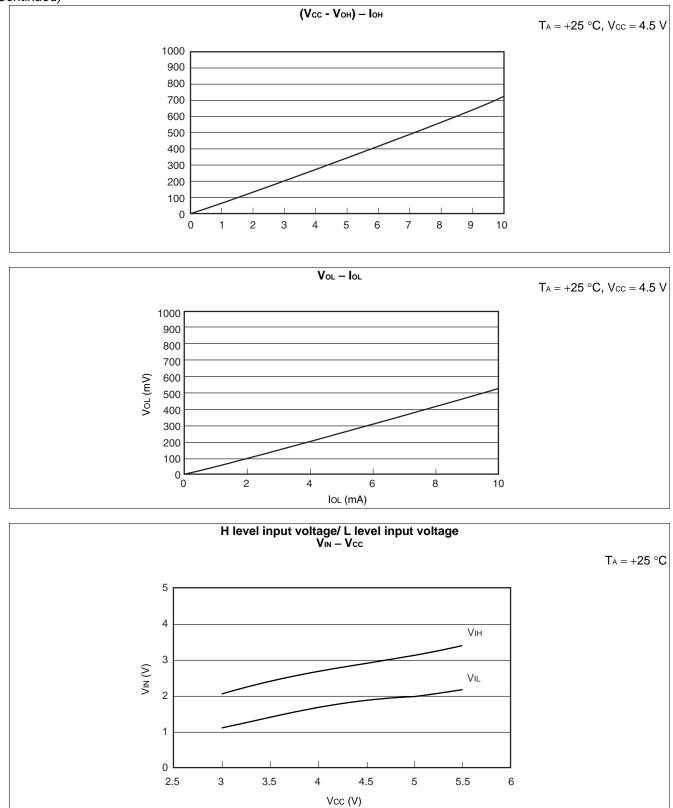
13.4.4 UART Timing

Parameter	Symbol Pin Name		Conditions	Value		Unit	Remarks
Falameter			Conditions	Min	Max	Unit	Remarks
Serial clock cycle time	tscyc	SCK1	Internal shift clock	4 tcp *	-	ns	
$SCK \downarrow \to SOT$ delay time	t slov	SCK1, SOT1	mode output pin is: CL = 80 pF+1TTL.	-80	+80	ns	
Valid SIN \rightarrow SCK \uparrow	t ivsh	SCK1, SIN1		100	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	t shix	SCK1, SIN1		60	-	ns	
Serial clock "H" pulse width	t shsl	SCK1	External shift clock	2 tcp *	-	ns	
Serial clock "L" pulse width	tslsh	SCK1	mode output pin is: CL = 80 pF+1TTL.	2 tcp *	-	ns	
$SCK \downarrow \to SOT$ delay time	tslov	SCK1, SOT1	– 00 pr +111L.	-	150	ns	
Valid SIN \rightarrow SCK \uparrow	t ivsh	SCK1, SIN1		60	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнix	SCK1, SIN1		60	_	ns	

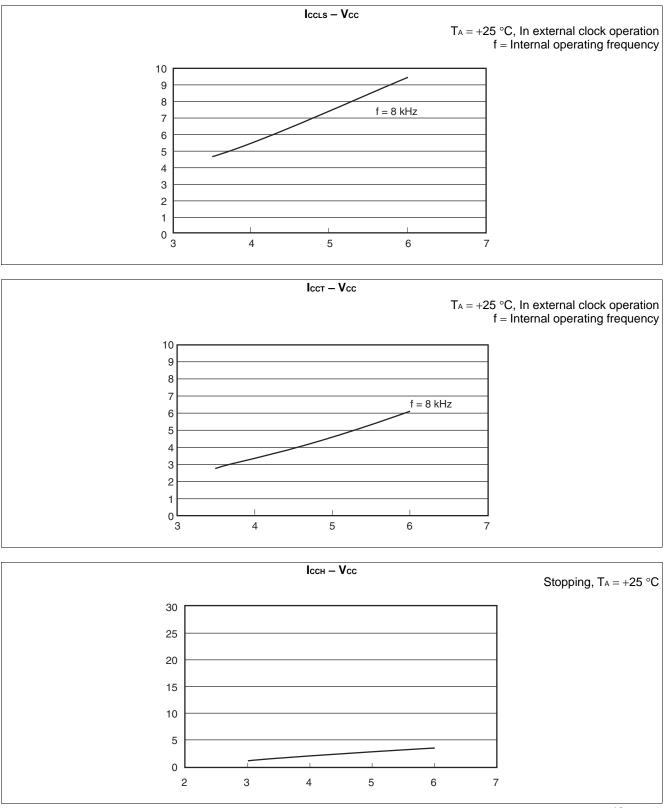
(Vcc = 4.5 V to 5.5 V, Vss = 0.0 V, T_A = -40 °C to +105 °C)

*: Refer to Clock Timing ratings for $t_{\mbox{\tiny CP}}$ (internal operation clock cycle time).


Notes:


■ AC Characteristics in CLK synchronous mode.

 \blacksquare C_L is a load capacitance value on pins for testing.


13.6 Definition of A/D Converter Terms

Resolution:	Analog variation that is recognized by an A/D converter.
Linear error:	Deviation between a line across zero-transition line ("00 0000 00 0" $\leftarrow \rightarrow$ "00 0000 0001") and full-scale transition line ("11 1111 11 1 0" $\leftarrow \rightarrow$ "11 1111 1111") and actual conversion characteristics.
Differential linear error:	Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.
Total error:	Difference between an actual value and an ideal value. A total error includes zero transition error, full- scale transition error, and linear error.

(Continued)

