

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90387spmt-gs-126

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16-bit Microcontrollers F²MC-16LX MB90385 Series

MB90385 series devices are general-purpose high-performance 16-bit micro controllers designed for process control of consumer products, which require high-speed real-time processing. The devices of this series have the built-in full-CAN interface.

The system, inheriting the architecture of F²MC family, employs additional instruction ready for high-level languages, expanded addressing mode, enhanced multiply-divide instructions, and enriched bit-processing instructions. Furthermore, employment of 32-bit accumulator achieves processing of long-word data (32 bits).

The peripheral resources of MB90385 series include the following:

8/10-bit A/D converter, UART (SCI), 8/16-bit PPG timer, 16-bit input-output timer (16-bit free-run timer, input capture 0, 1, 2, 3 (ICU)), and CAN controller.

Features

Clock

- Built-in PLL clock frequency multiplication circuit
- Selection of machine clocks (PLL clocks) is allowed among frequency division by two on oscillation clock, and multiplication of 1 to 4 times of oscillation clock (for 4-MHz oscillation clock, 4 MHz to 16 MHz).
- Operation by sub-clock (8.192 kHz) is allowed. (MB90387, MB90F387)
- Minimum execution time of instruction: 62.5 ns (when operating with 4-MHz oscillation clock, and 4-time multiplied PLL clock).

16 Mbyte CPU memory Space

24-bit internal addressing

Instruction System Best Suited to Controller

- Wide choice of data types (bit, byte, word, and long word)
- Wide choice of addressing modes (23 types)
- Enhanced multiply-divide instructions and RETI instructions
- Enhanced high-precision computing with 32-bit accumulator

Instruction System Compatible with High-level Language (C language) and Multitask

- Employing system stack pointer
- Enhanced various pointer indirect instructions
- Barrel shift instructions

Increased Processing Speed

4-byte instruction queue

Powerful Interrupt Function with 8 Levels and 34 Factors

Automatic Data Transfer Function Independent of CPU

Expanded intelligent I/O service function (EI² OS): Maximum of 16 channels

Low Power Consumption (standby) Mode

■ Sleep mode (a mode that halts CPU operating clock)

- Time-base timer mode (a mode that operates oscillation clock, sub clock, time-base timer and watch timer only)
- Watch mode (a mode that operates sub clock and watch timer only)
- Stop mode (a mode that stops oscillation clock and sub clock)
- CPU blocking operation mode

Process

CMOS technology

I/O Port

General-purpose input/output port (CMOS output):

MB90387, MB90F387: 34 ports (including 4 high-current output ports) MB90387S, MB90F387S: 36 ports (including 4 high-current output ports)

Timer

- Time-base timer, watch timer, watchdog timer: 1 channel
- 8/16-bit PPG timer: 8-bit x 4 channels, or 16-bit x 2 channels
- 16-bit reload timer: 2 channels
- 16-bit input/output timer
- 16-bit free run timer: 1 channel
- □ 16-bit input capture: (ICU): 4 channels

Interrupt request is issued upon latching a count value of 16bit free run timer by detection of an edge on pin input.

CAN Controller: 1 channel

- Compliant with Ver2.0A and Ver2.0B CAN specifications
- 8 built-in message buffers
- Transmission rate of 10 kbps to 1 Mbps (by 16 MHz machine clock)
- CAN wake-up

198 Champion Court

UART (SCI): 1 channel

- Equipped with full-duplex double buffer
- Clock-asynchronous or clock-synchronous serial transmission is available.

Cypress Semiconductor Corporation

Document Number: 002-07765 Rev. *A

San Jose, CA 95134-1709
408-943-2600
Revised February 5, 2018

1. Product Lineup

Parameter	Part Number	MB90F387 MB90F387S	MB90387 MB90387S	MB90V495G		
Classification		Flash ROM	Mask ROM	Evaluation product		
ROM capacity		64 Kby	rtes	_		
RAM capacity		2 Kbyt	es	6 Kbytes		
Process			CMOS			
Package		LQFP-48 (pin pit	ch 0.50 mm)	PGA-256		
Operating power	supply voltage	3.5 V to 9	5.5 V	4.5 V to 5.5 V		
Special power su emulator*1	pply for	-		None		
CPU functions		Number of basic instructions Instruction bit length Instruction length Data bit length	: 351 instructions : 8 bits and 16 bits : 1 byte to 7 bytes : 1 bit, 8 bits, 16 bits			
		Minimum instruction execution ti	me: 62.5 ns (at 16 MHz mach	nine clock)		
		Interrupt processing time: 1.5 µs	at minimum (at 16 MHz mac	hine clock)		
Low power consu (standby) mode	Imption	Sleep mode / Watch mode / Time	e-base timer mode / Stop mo	de / CPU intermittent		
I/O port		General-purpose input/output ports (CMOS output): 34 ports (36 ports*2) including 4 high-current output ports (P14 to P17)				
Time-base timer		18-bit free-run counter Interrupt cycle: 1.024 ms, 4.096 ms, 16.834 ms, 131.072 ms (with oscillation clock frequency at 4 MHz)				
Watchdog timer		Reset generation cycle: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (with oscillation clock frequency at 4 MHz)				
16-bit input/ output timer	16-bit free-run timer	Number of channels: 1 Interrupt upon occurrence of overflow				
	Input capture	Number of channels: 4 Retaining free-run timer value set by pin input (rising edge, falling edge, and both edges)				
16-bit reload timer		Number of channels: 2 16-bit reload timer operation Count clock cycle: 0.25 μs, 0.5 μs, 2.0 μs (at 16-MHz machine clock frequency) External event count is allowed.				
Watch timer		15-bit free-run counter Interrupt cycle: 31.25 ms, 62.5 ms, 12 ms, 250 ms, 500 ms, 1.0 s, 2.0 s (with 8.192 kHz sub clock)				
8/16-bit PPG time	Pr	Number of channels: 2 (four 8-bit channels are available also.) PPG operation is allowed with four 8-bit channels or two 16-bit channels. Outputting pulse wave of arbitrary cycle or arbitrary duty is allowed. Count clock: 62.5 ns to 1 μ s (with 16 MHz machine clock)				
Delay interrupt ge	enerator module	Interrupt generator module for ta	isk switching. Used for realtin	ne OS.		
DTP/External inte	errupt	Number of inputs: 4 Activated by rising edge, falling edge, "H" level or "L" level input. External interrupt or expanded intelligent I/O service (El ² OS) is available.				

Notes When Using No Sub Clock

■ If an oscillator is not connected to X0A and X1A pin, apply pull-down resistor to X0A pin and leave X1A pin open.

About Power Supply Pins

- If two or more Vcc and Vss pins exist, the pins that should be at the same potential are connected to each other inside the device. For reducing unwanted emissions and preventing malfunction of strobe signals caused by increase of ground level, however, be sure to connect the Vcc and Vss pins to the power source and the ground externally.
- Pay attention to connect a power supply to Vcc and Vss of MB90385 series device in a lowest-possible impedance.
- Near pins of MB90385 series device, connecting a bypass capacitor is recommended at 0.1 µF across Vcc pin and Vss pin.

Crystal Oscillator Circuit

- Noises around X0 and X1 pins cause malfunctions on a MB90385 series device. Design a print circuit so that X0 and X1 pins, an crystal oscillator (or a ceramic oscillator), and bypass capacitor to the ground become as close as possible to each other. Furthermore, avoid wires to X0 and X1 pins crossing each other as much as possible.
- Print circuit designing that surrounds X0 and X1 pins with grounding wires, which ensures stable operation, is strongly recommended.

Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

Sequence of Turning on Power of A/D Converter and Applying Analog Input

- Be sure to turn on digital power (Vcc) before applying signals to the A/D converter and applying analog input signals (AN0 to AN7 pins).
- Be sure to turn off the power of A/D converter and analog input before turning off the digital power source.
- Be sure not to apply AVR exceeding AVcc when turning on and off. (No problems occur if analog and digital power is turned on and off simultaneously.)

Handling Pins When A/D Converter is Not Used

■ If the A/D converter is not used, connect the pins under the following conditions: "AVcc=AVR=Vcc," and "AVss=Vss"

Note on Turning on Power

For preventing malfunctions on built-in step-down circuit, maintain a minimum of 50 μs of voltage rising time (between 0.2 V and 2.7V) when turning on the power.

Stabilization of Supply Voltage

■ A sudden change in the supply voltage may cause the device to malfunction even within the specified Vcc supply voltage operating range. Therefore, the Vcc supply voltage should be stabilized.

For reference, the supply voltage should be controlled so that Vcc ripple variations (peak-to-peak values) at commercial frequencies (50 Hz / 60 Hz) fall below 10% of the standard Vcc supply voltage and the coefficient of fluctuation does not exceed 0.1 V/ms at instantaneous power switching.

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
0000В0н	ICR00	Interrupt control register 00	R/W	Interrupt controller	00000111в
0000B1н	ICR01	Interrupt control register 01			00000111в
0000В2н	ICR02	Interrupt control register 02			00000111в
0000ВЗн	ICR03	Interrupt control register 03			00000111в
0000B4н	ICR04	Interrupt control register 04			00000111в
0000В5н	ICR05	Interrupt control register 05			00000111в
0000В6н	ICR06	Interrupt control register 06			00000111в
0000В7н	ICR07	Interrupt control register 07			00000111в
0000В8н	ICR08	Interrupt control register 08			00000111в
0000В9н	ICR09	Interrupt control register 09			00000111в
0000ВАн	ICR10	Interrupt control register 10			00000111в
0000ВВн	ICR11	Interrupt control register 11			00000111в
0000ВСн	ICR12	Interrupt control register 12			00000111в
0000BDн	ICR13	Interrupt control register 13			00000111в
0000ВЕн	ICR14	Interrupt control register 14			00000111в
0000BFн	ICR15	Interrupt control register 15			00000111в
0000C0н to 0000FFн		(Reserv	ed area) *		
001FF0н	PADR0	Detection address setting register 0 (low-order)	R/W	Address matching detection function	XXXXXXXXB
001FF1н		Detection address setting register 0 (middle-order)			XXXXXXXXB
001FF2н		Detection address setting register 0 (high-order)			XXXXXXXXB
001FF3н	PADR1	Detection address setting register 1 (low-order)	R/W		XXXXXXXXB
001FF4н		Detection address setting register 1 (middle-order)			XXXXXXXXB
001FF5н		Detection address setting register 1 (high-order)			XXXXXXXXB
003900н	TMR0/	16-bit timer register 0/16-bit reload	R,W	16-bit reload timer 0	XXXXXXXXB
003901н	TMRLR0	register			XXXXXXXXB
003902н	TMR1/	16-bit timer register 1/16-bit reload	R,W	16-bit reload timer 1	XXXXXXXXB
003903н	TMRLR1	register			XXXXXXXXB
003904н to 00390Fн		(Reserv	ed area) *		

Port 3 Registers

- Port 3 registers include port 3 data register (PDR3) and port 3 direction register (DDR3).
- The bits configuring the register correspond to port 3 pins on a one-to-one basis.

Relation between Port 3 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 3	PDR3, DDR3	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	P37	P36*	P35*		P33	P32	P31	P30

*: P35 and P36 do not exist on MB90387and MB90F387.

Time-base Timer Block Diagram

Actual interrupt request number of time-base timer is as follows: Interrupt request number: #16 (10_H)

12.6 Watch Timer Outline

The watch timer is a 15-bit free-run counter that increments in synchronization with sub clock.

- Interval time is selectable among 7 choices, and generation of interrupt request is allowed for each interval.
- Provides operation clock to the subclock oscillation stabilizing wait timer and watchdog timer.
- Always uses subclock as a count clock regardless of settings of clock selection register (CKSCR).

Interval Timer Function

- In the watch timer, a bit corresponding to the interval time overflows (carry-over) when an interval time, which is specified by interval time selection bit, is reached. Then overflow flag bit is set (WTC: WTOF=1).
- If an interrupt by overflow is permitted (WTC: WTIE=1), an interrupt request is generated upon setting an overflow flag bit.
- Interval time of watch timer is selectable among the following seven choices:

Interval Time of Watch Timer

Sub Clock Cycle	Interval Time
1/SCLK (122 μs)	2 ⁸ /SCLK (31.25 ms)
	2º/SCLK (62.5 ms)
	2 ¹⁰ /SCLK (125 ms)
	2 ¹¹ /SCLK (250 ms)
	2 ¹² /SCLK (500 ms)
	2 ¹³ /SCLK (1.0 s)
	2 ¹⁴ /SCLK (2.0 s)

SCLK: Sub clock frequency

Values in parentheses "()" are calculation when operating with 8.192 kHz clock.

Watch Timer Block Diagram

Actual interrupt request number of watch timer is as follows: Interrupt request number: #28 (1C_H)

Watch Timer Counter

A 15-bit up counter that uses sub clock (SCLK) as a count clock.

Counter Clear Circuit

A circuit that clears the watch timer counter.

12.7 8/16-bit PPG Timer Outline

The 8/16-bit PPG timer is a 2-channel reload timer module (PPG0 and PPG1) that allows outputting pulses of arbitrary cycle and duty cycle. Combination of the two channels allows selection among the following operations:

- 8-bit PPG output 2-channel independent operation mode
- 16-bit PPG output operation mode
- 8-bit and 8-bit PPG output operation mode

MB90385 series device has two 8/16-bit built-in PPG timers. This section describes functions of PPG0/1. PPG2/3 have the same functions as those of PPG0/1.

Functions of 8/16-bit PPG Timer

The 8/16-bit PPG timer is composed of four 8-bit reload register (PRLH0/PRLL0, PRLH1/PRLL1) and two PPG down counters (PCNT0, PCNT1).

- Widths of "H" and "L" in output pulse are specifiable independently. Cycle and duty factor of output pulse is specifiable arbitrarily.
- Count clock is selectable among 6 internal clocks.
- The timer is usable as an interval timer, by generating interrupt requests for each interval.
- The time is usable as a D/A converter, with an external circuit.

12.9 DTP/External Interrupt and CAN Wakeup Outline

DTP/external interrupt transfers an interrupt request generated by an external peripheral device or a data transmission request to CPU, generating external interrupt request and activating expanded intelligent I/O service. Input RX of CAN controller is used as external interrupt input.

DTP/External Interrupt and CAN Wakeup Function

An interrupt request input from external peripheral device to external input pins (INT7 to INT4) and RX pin, just as interrupt request of peripheral device, generates an interrupt request. The interrupt request generates an external interrupt and activates expanded intelligent I/O service (EI²OS).

If the expanded intelligent I/O service (EI²OS) has been disabled by interrupt control register (ICR: ISE=0), external interrupt function is enabled and branches to interrupt processing.

If the EI²OS has been enabled, (ICR: ISE=1), DTP function is enabled and automatic data transmission is performed by EI²OS. After performing specified number of data transmission processes, the process branches to interrupt processing.

	External Interrupt	DTP Function			
Input pin	5 pins (RX, and INT4 to INT7)				
Interrupt cause	Specify for each pin with detection level setting re	egister (ELVR).			
	Input of "H" level/"L" level/rising edge/falling Input of "H" level/ "L" level edge.				
Interrupt number	#15 (0Fн), #24 (18н), #27 (1Вн)				
Interrupt control	Enabling or disabling output of interrupt request, using DTP/external interrupt permission register (ENIR).				
Interrupt flag	Retaining interrupt cause with DTP/external inter	rupt cause register (EIRR).			
Process selection	Disable El ² OS (ICR: ISE=0)	Enable El ² OS (ICR: ISE=1)			
Process	Branch to external interrupt process	After automatic data transmission by EI ² OS for specified number of times, branch to interrupt process.			

Table 12-2. DTP/External Interrupt	and CAN Wake	up Outline
------------------------------------	--------------	------------

UART Block Diagram

CAN Controller Block Diagram

12.14 ROM Mirror Function Selection Module Outline

The ROM mirror function selection module sets the data in ROM assigned to FF bank so that the data is read by access to 00 bank.

FF Bank Access by ROM Mirror Function

Sector Configuration of 512 Kbit Flash Memory

Flash memory	CPU address	Writer address*
	FF0000H	70000н
SA0 (32 Kbytes)		
	FF7FFFH	77FFFн
	FF8000H	78000н
SA1 (8 Kbytes)		
	FF9FFFH	79FFFн
	FFA000H	7А000н
SA2 (8 Kbytes)		
	FFBFFFH	7BFFFн
	FFC000H	7С000н
SA3 (16 Kbytes)		
	FFFFFH	7FFFFh

*: "Writer address" is an address equivalent to CPU address, which is used when data is written on Flash memory, using parallel writer. When writing/ deleting data with general-purpose writer, the writer address is used for writing and deleting.

13. Electrical Characteristics

13.1 Absolute Maximum Rating

Baramatar	Symbol	Rat	ing	Unit	Bomarka	
Falameter	Symbol	Min	Max	Unit	Remarks	
Power supply voltage*1	Vcc	Vss - 0.3	Vss + 6.0	V		
	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc*2	
	AVR	Vss - 0.3	Vss + 6.0	V	$AVcc \ge AVR^{*2}$	
Input voltage*1	Vı	Vss - 0.3	Vss + 6.0	V	*3	
Output voltage*1	Vo	Vss - 0.3	Vss + 6.0	V	*3	
Maximum clamp current		- 2.0	+ 2.0	mA	*7	
Total maximum clamp current	Σ Iclamp	-	20	mA	*7	
"L" level maximum output current	lol1	-	15	mA	Normal output*4	
	lol2	-	40	mA	High-current output*4	
"L" level average output current	OLAV1	-	4	mA	Normal output*5	
	OLAV2	-	30	mA	High-current output*5	
"L" level maximum total output current	ΣΙοι	-	125	mA	Normal output	
	ΣΙοι2	-	160	mA	High-current output	
"L" level average total output current	Σ lolav1	-	40	mA	Normal output*6	
	Σ Iolav2	-	40	mA	High-current output*6	
"H" level maximum output current	Іон1	-	-15	mA	Normal output*4	
	Іон2	-	-40	mA	High-current output*4	
"H" level average output current	IOHAV1	-	-4	mA	Normal output*5	
	IOHAV2	-	-30	mA	High-current output*5	
"H" level maximum total output current	Σ Ι ΟΗ1	-	-125	mA	Normal output	
	ΣІон2	-	-160	mA	High-current output	
"H" level average total output current	ΣΙομαν1	-	-40	mA	Normal output*6	
	ΣΙοήαν2	-	-40	mA	High-current output*6	
Power consumption	PD	-	245	mW		
Operating temperature	TA	-40	+105	°C		
Storage temperature	Tstg	-55	+150	°C		

*1: The parameter is based on $V_{SS} = AV_{SS} = 0.0 V.$

*2: AVcc and AVR should not exceed Vcc.

*3: VI and Vo should not exceed Vcc + 0.3 V. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating.

*4: A peak value of an applicable one pin is specified as a maximum output current.

- *5: An average current value of an applicable one pin within 100 ms is specified as an average output current. (Average value is found by multiplying operating current by operating rate.)
- *6: An average current value of all pins within 100 ms is specified as an average total output current. (Average value is found by multiplying operating current by operating rate.)

*7:

Applicable to pins: P10 to P17, P20 to P27, P30 to P33, P35*, P36*, P37, P40 to P44, P50 to P57
*: P35 and P36 are MB90387S and MB90F387S only.

Parameter	Symbol	ymbol Bin Namo Conditions			Value		Unit	Pomorko
Farameter	Symbol	Fill Nallie	Conditions	Min	Тур	Max	Unit	Remarks
Power supply current*	Icc∟	Vcc	Vcc = 5.0 V, Internally operating at 8 kHz, subclock operation	_	0.3	1.2	mA	MB90F387/S
ourront			$T_A = +25^{\circ}C$	_	40	100	μΑ	MB90387/S
	ICCLS		$V_{CC} = 5.0 V$, Internally operating at 8 kHz, subclock, sleep mode, $T_{A} = + 25^{\circ}C$	_	10	30	μA	
	Ісст		Vcc = 5.0 V, Internally operating at 8 kHz, watch mode, $T_A = + 25^{\circ}C$	—	8	25	μA	
	Іссн		Stopping, T _A =+ 25°C	—	5	20	μΑ	
Input capacity	CIN	Other than AVcc, AVss, AVR, C, Vcc, Vss	-	_	5	15	pF	
Pull-up resistor	Rup	RST	_	25	50	100	kΩ	
Pull-down resistor	RDOWN	MD2	-	25	50	100	kΩ	Flash product is not provided with pull-down resistor.

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 \circ C to +105 \circ C)$

*: Test conditions of power supply current are based on a device using external clock.

13.6 Definition of A/D Converter Terms

Resolution:	Analog variation that is recognized by an A/D converter.
Linear error:	Deviation between a line across zero-transition line ("00 0000 00 0" $\leftarrow \rightarrow$ "00 0000 0001") and full-scale transition line ("11 1111 11 0" $\leftarrow \rightarrow$ "11 1111 1111") and actual conversion characteristics.
Differential linear error:	Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.
Total error:	Difference between an actual value and an ideal value. A total error includes zero transition error, full- scale transition error, and linear error.

(Continued)

Document History

Document Title: MB90387/387S/F387/F387S, MB90V495G, 16-bit Microcontrollers F ² MC-16LX MB90385 Series Document Number:002-07765						
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
**	—	AKIH	12/19/2008	Migrated to Cypress and assigned document number 002-07765. No change to document contents or format.		
*A	6059071	SSAS	02/05/2018	Updated to Cypress template Package: FPT-48P-M26> LQA048		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2004-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify a