

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90387spmt-gs-138

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16-bit Microcontrollers F²MC-16LX MB90385 Series

MB90385 series devices are general-purpose high-performance 16-bit micro controllers designed for process control of consumer products, which require high-speed real-time processing. The devices of this series have the built-in full-CAN interface.

The system, inheriting the architecture of F²MC family, employs additional instruction ready for high-level languages, expanded addressing mode, enhanced multiply-divide instructions, and enriched bit-processing instructions. Furthermore, employment of 32-bit accumulator achieves processing of long-word data (32 bits).

The peripheral resources of MB90385 series include the following:

8/10-bit A/D converter, UART (SCI), 8/16-bit PPG timer, 16-bit input-output timer (16-bit free-run timer, input capture 0, 1, 2, 3 (ICU)), and CAN controller.

Features

Clock

- Built-in PLL clock frequency multiplication circuit
- Selection of machine clocks (PLL clocks) is allowed among frequency division by two on oscillation clock, and multiplication of 1 to 4 times of oscillation clock (for 4-MHz oscillation clock, 4 MHz to 16 MHz).
- Operation by sub-clock (8.192 kHz) is allowed. (MB90387, MB90F387)
- Minimum execution time of instruction: 62.5 ns (when operating with 4-MHz oscillation clock, and 4-time multiplied PLL clock).

16 Mbyte CPU memory Space

24-bit internal addressing

Instruction System Best Suited to Controller

- Wide choice of data types (bit, byte, word, and long word)
- Wide choice of addressing modes (23 types)
- Enhanced multiply-divide instructions and RETI instructions
- Enhanced high-precision computing with 32-bit accumulator

Instruction System Compatible with High-level Language (C language) and Multitask

- Employing system stack pointer
- Enhanced various pointer indirect instructions
- Barrel shift instructions

Increased Processing Speed

4-byte instruction queue

Powerful Interrupt Function with 8 Levels and 34 Factors

Automatic Data Transfer Function Independent of CPU

Expanded intelligent I/O service function (EI² OS): Maximum of 16 channels

Low Power Consumption (standby) Mode

■ Sleep mode (a mode that halts CPU operating clock)

- Time-base timer mode (a mode that operates oscillation clock, sub clock, time-base timer and watch timer only)
- Watch mode (a mode that operates sub clock and watch timer only)
- Stop mode (a mode that stops oscillation clock and sub clock)
- CPU blocking operation mode

Process

CMOS technology

I/O Port

General-purpose input/output port (CMOS output):

MB90387, MB90F387: 34 ports (including 4 high-current output ports) MB90387S, MB90F387S: 36 ports (including 4 high-current output ports)

Timer

- Time-base timer, watch timer, watchdog timer: 1 channel
- 8/16-bit PPG timer: 8-bit x 4 channels, or 16-bit x 2 channels
- 16-bit reload timer: 2 channels
- 16-bit input/output timer
- 16-bit free run timer: 1 channel
- □ 16-bit input capture: (ICU): 4 channels

Interrupt request is issued upon latching a count value of 16bit free run timer by detection of an edge on pin input.

CAN Controller: 1 channel

- Compliant with Ver2.0A and Ver2.0B CAN specifications
- 8 built-in message buffers
- Transmission rate of 10 kbps to 1 Mbps (by 16 MHz machine clock)
- CAN wake-up

198 Champion Court

UART (SCI): 1 channel

- Equipped with full-duplex double buffer
- Clock-asynchronous or clock-synchronous serial transmission is available.

Cypress Semiconductor Corporation

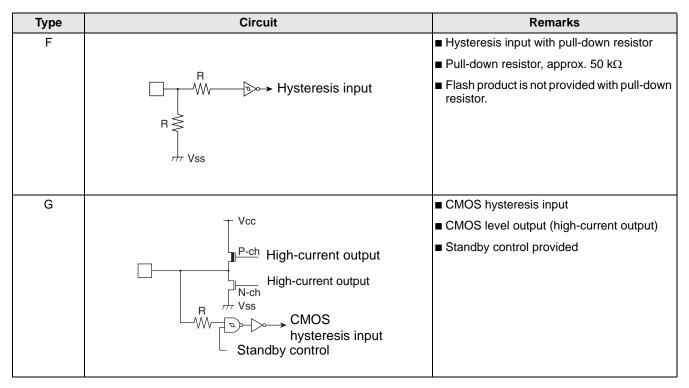
Document Number: 002-07765 Rev. *A

San Jose, CA 95134-1709
408-943-2600
Revised February 5, 2018

DTP/External Interrupt: 4 channels, CAN wakeup: 1channel

Module for activation of expanded intelligent I/O service (EI²OS), and generation of external interrupt.

Delay Interrupt Generator Module


Generates interrupt request for task switching.

8/10-bit A/D Converter: 8 channels

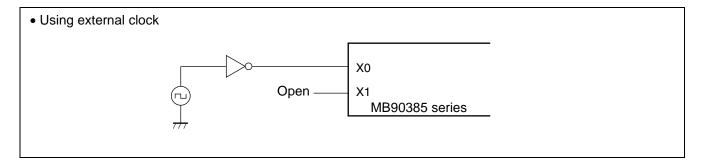
- Resolution is selectable between 8-bit and 10-bit.
- Activation by external trigger input is allowed.
- Conversion time: 6.125 μs (at 16 MHz machine clock, including sampling time)

Program Patch Function

■ Address matching detection for 2 address pointers.

7. Handling Devices

Do Not Exceed Maximum Rating (preventing "latch up")


- On a CMOS IC, latch-up may occur when applying a voltage higher than Vcc or a voltage lower than Vss to input or output pin, which has no middle or high withstand voltage. Latch-up may also occur when a voltage exceeding maximum rating is applied across Vcc pin and Vss pin.
- Latch-up causes drastic increase of power current, which may lead to destruction of elements by heat. Extreme caution must be taken not to exceed maximum rating.
- When turning on and off analog power source, take extra care not to apply an analog power voltages (AVcc and AVR) and analog input voltage that are higher than digital power voltage (Vcc).

Handling Unused Pins

Leaving unused input pins open may cause permanent destruction by malfunction or latch-up. Apply pull-up or pull-down process to the unused pins using resistors of 2 kΩ or higher. Leave unused input/output pins open under output status, or process as input pins if they are under input status.

Using External Clock

■ When using an external clock, drive only X0 pin and leave X1 pin open. An example of using an external clock is shown below.

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
000038н		(Reserve	ed area) *		
to 00003Fн					
000040н	PPGC0	PPG0 operation mode control register	R/W, W	8/16-bit PPG timer 0/	0Х000ХХ1в
000041н	PPGC1	PPG1 operation mode control register	0Х00001в		
000042н	PPG01	PPG0/1 count clock selection register	R/W		000000XXB
000043н		(Reserve	ed area) *		
000044н	PPGC2	PPG2 operation mode control register	R/W, W	8/16-bit PPG timer 2/	0X000XX1в
000045н	PPGC3	PPG3 operation mode control register	R/W, W	3	0Х00001в
000046н	PPG23	PPG2/3 count clock selection register	R/W	1 [00000XXв
000047н to 00004Fн		(Reserve	ed area) *	· ·	
000050н	IPCP0	Input capture data register 0	R	16-bit input/output	XXXXXXXXB
000051н				timer	XXXXXXXXB
000052н	IPCP1	Input capture data register 1	R	1 [XXXXXXXXB
000053н					XXXXXXXXB
000054н	ICS01	Input capture control status register	R/W	1 [0000000в
000055н	ICS23				0000000в
000056н	TCDT	Timer counter data register	R/W	1 [0000000в
000057н					0000000в
000058н	TCCS	Timer counter control status register	R/W	1 [0000000в
000059н		(Reserve	ed area) *		
00005Ан	IPCP2	Input capture data register 2	R	16-bit input/output	XXXXXXXXB
00005Вн				timer	XXXXXXXXB
00005Сн	IPCP3	Input capture data register 3	R	1 [XXXXXXXXB
00005Dн					XXXXXXXXB
00005Eнto 000065н		(Reserve	ed area) *		
000066н	TMCSR0	Timer control status register	R/W	16-bit reload timer 0	0000000в
000067н			R/W		XXXX0000 _B
000068н	TMCSR1		R/W	16-bit reload timer 1	0000000в
000069н			R/W] Γ	XXXX0000b
00006Анto 00006Ен		(Reserve	ed area) *		
00006Fн	ROMM	ROM mirroring function selection register	W	ROM mirroring function selection module	XXXXXXX1B
000070н to 00007Fн		(Reserve	ed area) *		
000080н	BVALR	Message buffer enabling register	R/W	CAN controller	0000000в
000081н			ed area) *		
000082н	TREQR	Send request register	R/W	CAN controller	0000000в

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
003910н	PRLL0	PPG0 reload register L	R/W	8/16-bit PPG timer	XXXXXXXXB
003911 н	PRLH0	PPG0 reload register H	R/W		XXXXXXXXB
003912н	PRLL1	PPG1 reload register L	R/W		XXXXXXXXB
003913н	PRLH1	PPG1 reload register H		XXXXXXXXB	
003914н	PRLL2	PPG2 reload register L	R/W		XXXXXXXXB
003915 н	PRLH2	PPG2 reload register H	R/W		XXXXXXXXB
003916 н	PRLL3	PPG3 reload register L	R/W		XXXXXXXX _B
003917 н	PRLH3	PPG3 reload register H	R/W		XXXXXXXXB
003918н to 00392Fн			(Reserved area) *		
003930н to 003BFFн			(Reserved area) *		
003C00н to 003C0Fн		RAM (General-purpose R	AM)	
003C10н to 003C13н	IDR0	ID register 0	R/W	CAN controller	XXXXXXXXB to XXXXXXXXB
003C14н to 003C17н	IDR1	ID register 1	-	XXXXXXXXB to XXXXXXXXB	
003C18н to 003C1Bн	IDR2	ID register 2	D register 2 R/W		XXXXXXXXB to XXXXXXXB
003C1Cн to 003C1Fн	IDR3	ID register 3	R/W	_	XXXXXXXXB to XXXXXXXXB
003C20н to 003C23н	IDR4	ID register 4	R/W	_	XXXXXXXXB to XXXXXXXB
003C24н to 003C27н	IDR5	ID register 5	R/W	_	XXXXXXXXAB to XXXXXXXXB
003C28н to 003C2Bн	IDR6	ID register 6	R/W	-	XXXXXXXXB to XXXXXXXB
003C2Cн to 003C2Fн	IDR7	ID register 7	D register 7 R/W		XXXXXXXXB to XXXXXXXB
003C30н, 003C31н	DLCR0	DLC register 0	R/W		XXXXXXXXB, XXXXXXXB
003C32н, 003C33н	DLCR1	DLC register 1	R/W		XXXXXXXXB, XXXXXXXB
003C34н, 003C35н	DLCR2	DLC register 2	R/W		XXXXXXXXB, XXXXXXXXB
003C36н, 003C37н	DLCR3	DLC register 3	R/W		XXXXXXXXB, XXXXXXXXB

Interrupt Source	El ² OS	l	nterrup	ot Vector	Interrupt C	Priority*3	
interrupt Source	Readiness	Number		Address	ICR	Address	FIOTILY
UART1 reception completed	O	#37	25н	FFFF68H	ICR13	0000BDH*1	High
UART1 transmission completed	Δ	#38	26н	FFFF64⊦			\uparrow
Reserved	×	#39	27н	FFFF60H	ICR14	0000BEH*1	
Reserved	×	#40	28н	FFFF5CH			
Flash memory	×	#41	29н	FFFF58H	ICR15	0000BF _H *1	\downarrow
Delay interrupt generation module	×	#42	2Ан	FFFF54⊦	<u> </u>		Low

○ : Available

× : Unavailable

© : Available El²OS function is provided.

 Δ : Available when a cause of interrupt sharing a same ICR is not used.

*1:

□ Peripheral functions sharing an ICR register have the same interrupt level.

□ If peripheral functions share an ICR register, only one function is available when using expanded intelligent I/O service.

If peripheral functions share an ICR register, a function using expanded intelligent I/O service does not allow interrupt by another function.

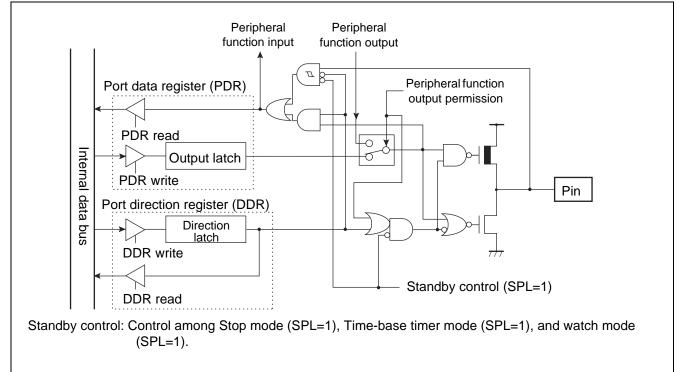
*2: Input capture 1 corresponds to EI2OS, however, PPG does not. When using EI2OS by input capture 1, interrupt should be disabled for PPG.

*3:Priority when two or more interrupts of a same level occur simultaneously.

12. Peripheral Resources

12.1 I/O Ports

The I/O ports are used as general-purpose input/output ports (parallel I/O ports). The MB60385 series model is provided with 5 ports (34 inputs). The ports function as input/output pins for peripheral functions also.

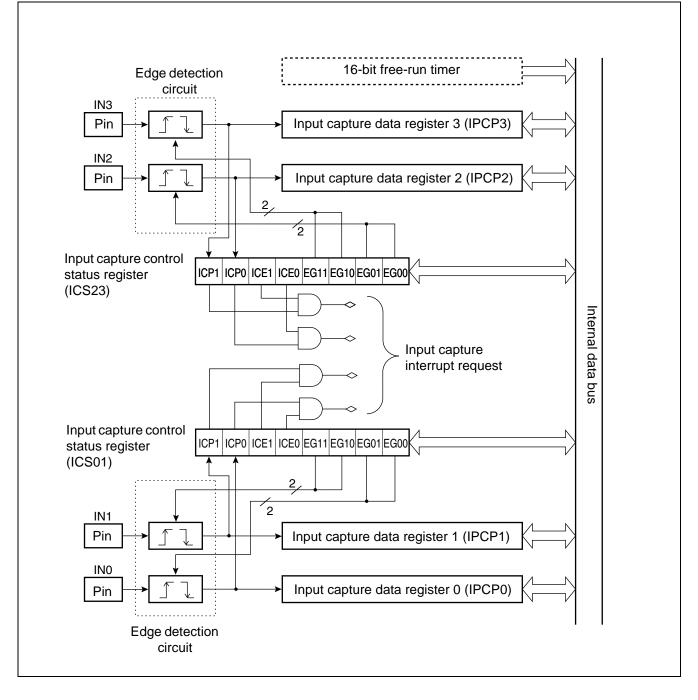

I/O Port Functions

An I/O port, using port data resister (PDR), outputs the output data to I/O pin and input a signal input to I/O port. The port direction register (DDR) specifies direction of input/output of I/O pins on a bit-by-bit basis.

The following summarizes functions of the ports and sharing peripheral functions:

- Port 1: General-purpose input/output port, used also for PPG timer output and input capture inputs.
- Port 2: General-purpose input/output port, used also for reload timer input/output and external interrupt input.
- Port 3: General-purpose input/output port, used also for A/D converter activation trigger pin.
- Port 4: General-purpose input/output port, used also for UART input/output and CAN controller send/receive pin.
- Port 5: General-purpose input/output port, used also analog input pin.

Port 3 Registers


- Port 3 registers include port 3 data register (PDR3) and port 3 direction register (DDR3).
- The bits configuring the register correspond to port 3 pins on a one-to-one basis.

Relation between Port 3 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 3	PDR3, DDR3	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	P37	P36*	P35*	_	P33	P32	P31	P30

*: P35 and P36 do not exist on MB90387and MB90F387.

Input Capture Block Diagram

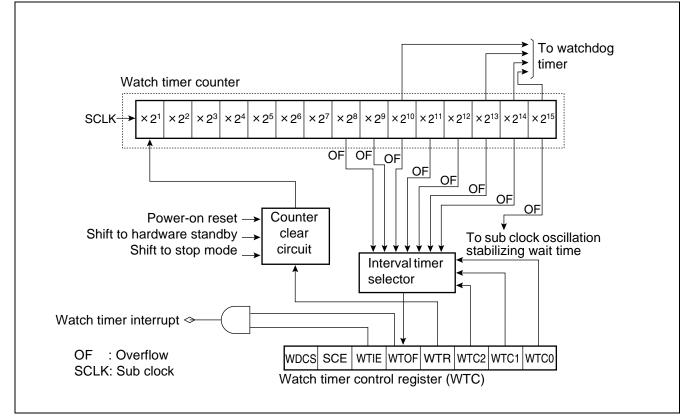
12.6 Watch Timer Outline

The watch timer is a 15-bit free-run counter that increments in synchronization with sub clock.

- Interval time is selectable among 7 choices, and generation of interrupt request is allowed for each interval.
- Provides operation clock to the subclock oscillation stabilizing wait timer and watchdog timer.
- Always uses subclock as a count clock regardless of settings of clock selection register (CKSCR).

Interval Timer Function

- In the watch timer, a bit corresponding to the interval time overflows (carry-over) when an interval time, which is specified by interval time selection bit, is reached. Then overflow flag bit is set (WTC: WTOF=1).
- If an interrupt by overflow is permitted (WTC: WTIE=1), an interrupt request is generated upon setting an overflow flag bit.
- Interval time of watch timer is selectable among the following seven choices:


Interval Time of Watch Timer

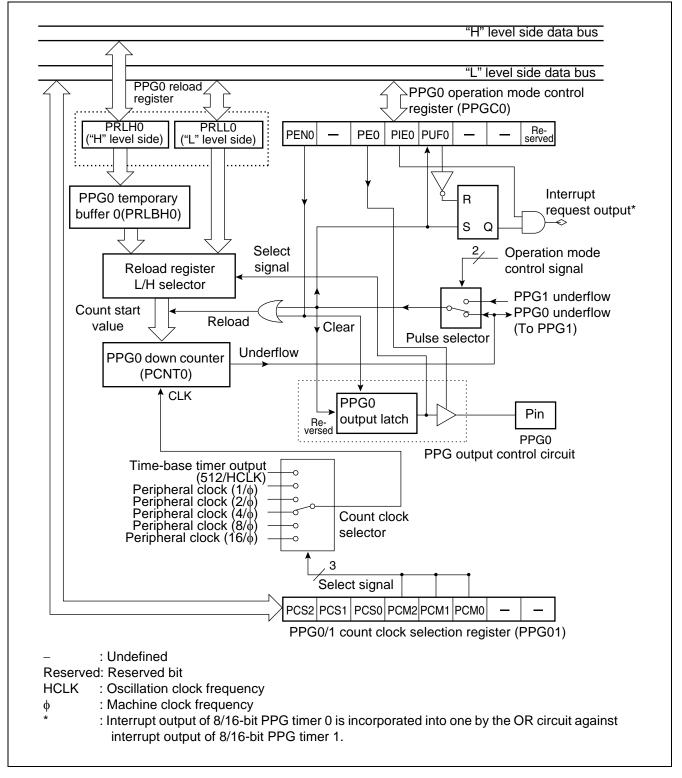
Sub Clock Cycle	Interval Time
1/SCLK (122 μs)	2 ⁸ /SCLK (31.25 ms)
	2º/SCLK (62.5 ms)
	2 ¹⁰ /SCLK (125 ms)
	2 ¹¹ /SCLK (250 ms)
	2 ¹² /SCLK (500 ms)
	2 ¹³ /SCLK (1.0 s)
	2 ¹⁴ /SCLK (2.0 s)

SCLK: Sub clock frequency

Values in parentheses "()" are calculation when operating with 8.192 kHz clock.

Watch Timer Block Diagram

Actual interrupt request number of watch timer is as follows: Interrupt request number: #28 (1C_H)


Watch Timer Counter

A 15-bit up counter that uses sub clock (SCLK) as a count clock.

Counter Clear Circuit

A circuit that clears the watch timer counter.

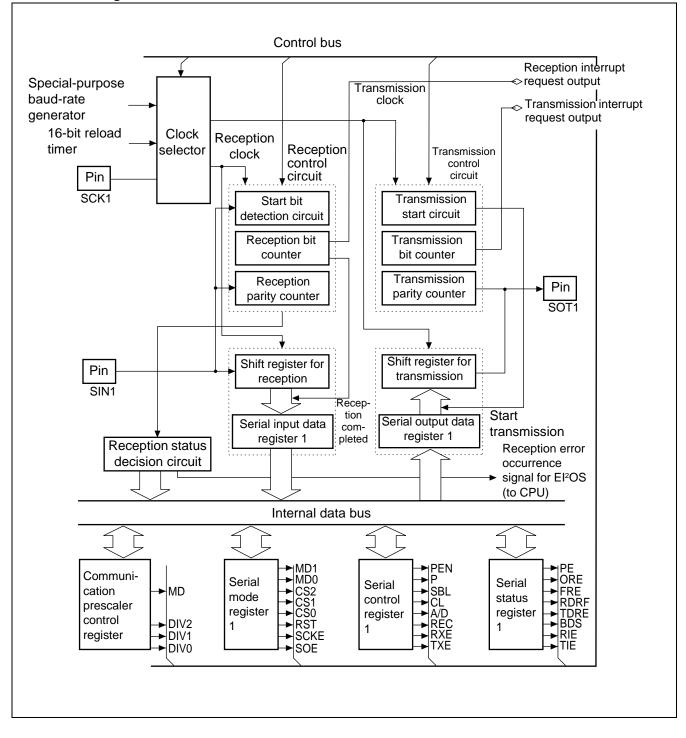
8/16-bit PPG Timer 0 Block Diagram

12.9 DTP/External Interrupt and CAN Wakeup Outline

DTP/external interrupt transfers an interrupt request generated by an external peripheral device or a data transmission request to CPU, generating external interrupt request and activating expanded intelligent I/O service. Input RX of CAN controller is used as external interrupt input.

DTP/External Interrupt and CAN Wakeup Function

An interrupt request input from external peripheral device to external input pins (INT7 to INT4) and RX pin, just as interrupt request of peripheral device, generates an interrupt request. The interrupt request generates an external interrupt and activates expanded intelligent I/O service (EI²OS).


If the expanded intelligent I/O service (EI²OS) has been disabled by interrupt control register (ICR: ISE=0), external interrupt function is enabled and branches to interrupt processing.

If the EI²OS has been enabled, (ICR: ISE=1), DTP function is enabled and automatic data transmission is performed by EI²OS. After performing specified number of data transmission processes, the process branches to interrupt processing.

	External Interrupt	DTP Function						
Input pin	5 pins (RX, and INT4 to INT7)							
Interrupt cause	use Specify for each pin with detection level setting register (ELVR).							
	Input of "H" level/"L" level/rising edge/falling edge.	Input of "H" level/ "L" level						
Interrupt number	#15 (0Fн), #24 (18н), #27 (1Вн)							
Interrupt control	Enabling or disabling output of interrupt request, (ENIR).	using DTP/external interrupt permission register						
Interrupt flag	Retaining interrupt cause with DTP/external inter	rrupt cause register (EIRR).						
Process selection	Disable El ² OS (ICR: ISE=0)	Enable El ² OS (ICR: ISE=1)						
Process	Branch to external interrupt process	After automatic data transmission by El ² OS for specified number of times, branch to interrupt process.						

Table 12-2.	DTP/External In	terrupt and CAN	Wakeup Outline
-------------	-----------------	-----------------	----------------

UART Block Diagram

12.12 CAN Controller

The Controller Area Network (CAN) is a serial communication protocol compliant with CANVer2.0A and Ver2.0B. The protocol allows data transmission and reception in both standard frame format and expanded frame format.

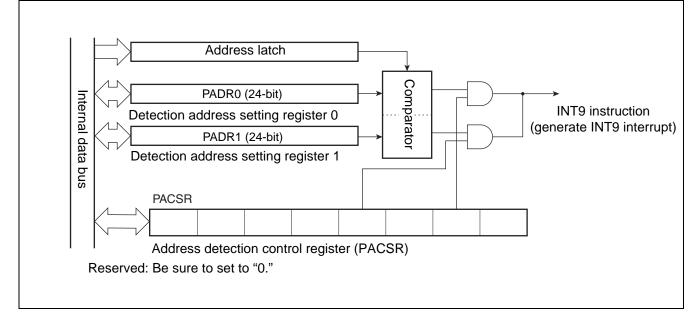
Features of CAN Controller

- CAN controller format is compliant with CANVer2.0A and Ver2.0B.
- The protocol allows data transmission and reception in standard frame format and expanded frame format.
- Automatic transmission of data frame by remote frame reception is allowed.
- Baud rate ranges from 10 kbps to 1 Mbps (with 16-MHz machine clock).

Table 12-5. Data Transmission Baud Rate

Machine Clock	Baud Rate (Max)
16 MHz	1 Mbps
12 MHz	1 Mbps
8 MHz	1 Mbps
4 MHz	500 kbps
2 MHz	250 kbps

- Provided with 8 transmission/reception message buffers.
- Transmission/reception is allowed at ID 11 bit in standard format, and at ID 29 bit in expanded frame format.
- Specifying 0 byte to 8 bytes is allowed in message data.
- Multi-level message buffer configuration is allowed.
- CAN controller has two built-in acceptance masks. Mask settings are independently allowed for the two acceptance masks on reception IDs.
- The two acceptance masks allow reception in standard frame format and expanded frame format.
- For types of masking, all-bit comparison, all-bit masking, and partial masking with acceptance mask register 0/1, are specifiable.

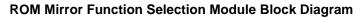

12.13 Address Matching Detection Function Outline

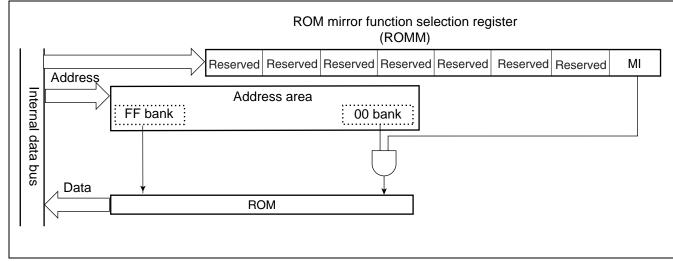
The address matching detection function checks if an address of an instruction to be processed next to a currently-processed instruction is identical with an address specified in the detection address register. If the addresses match with each other, an instruction to be processed next in program is forcibly replaced with INT9 instruction, and process branches to the interrupt process program. Using INT9 interrupt, this function is available for correcting program by batch processing.

Address Matching Detection Function Outline

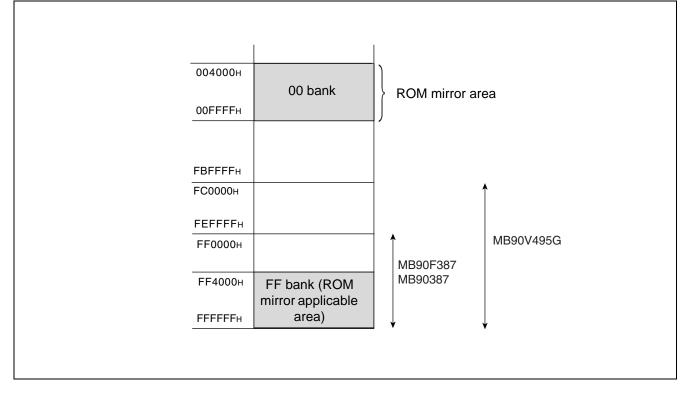
- An address of an instruction to be processed next to a currently-processed instruction of the program is always retained in an address latch via internal data bus. By the address matching detection function, the address value retained in the address latch is always compared with an address specified in detection address setting register. If the compared address values match with each other, an instruction to be processed next by CPU is forcibly replaced with INT9 instruction, and an interrupt process program is executed.
- Two detection address setting registers are provided (PADR0 and PADR1), and each register is provided with interrupt permission bit. Generation of interrupt, which is caused by address matching between the address retained in address latch and the address specified in address setting register, is permitted and prohibited on a register-by-register basis.

Address Matching Detection Function Block Diagram


Address latch


Retains address value output to internal data bus.

- Address detection control register (PACSR) Specifies if interrupt is permitted or prohibited when addresses match with each other.
- Detection address setting (PADR0, PADR1) Specifies addresses to be compared with values in address latch.


12.14 ROM Mirror Function Selection Module Outline

The ROM mirror function selection module sets the data in ROM assigned to FF bank so that the data is read by access to 00 bank.

FF Bank Access by ROM Mirror Function

13. Electrical Characteristics

13.1 Absolute Maximum Rating

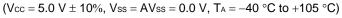
Parameter	Symbol	Rat	ting	Unit	Remarks
Parameter	Symbol	Min	Max	Unit	Remarks
Power supply voltage*1	Vcc	Vss - 0.3	Vss + 6.0	V	
	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc*2
	AVR	Vss - 0.3	Vss + 6.0	V	$AVcc \ge AVR^{*2}$
Input voltage*1	Vi	Vss - 0.3	Vss + 6.0	V	*3
Output voltage*1	Vo	Vss - 0.3	Vss + 6.0	V	*3
Maximum clamp current		- 2.0	+ 2.0	mA	*7
Total maximum clamp current	Σ Iclamp	-	20	mA	*7
"L" level maximum output current	IOL1	-	15	mA	Normal output*4
	IOL2	-	40	mA	High-current output*4
"L" level average output current	IOLAV1	-	4	mA	Normal output*5
	IOLAV2	-	30	mA	High-current output*5
"L" level maximum total output current	Σlol1	-	125	mA	Normal output
	ΣΙοι2	-	160	mA	High-current output
"L" level average total output current	Σ lolav1	-	40	mA	Normal output*6
	Σ Iolav2	-	40	mA	High-current output*6
"H" level maximum output current	Іон1	-	-15	mA	Normal output*4
	Іон2	-	-40	mA	High-current output*4
"H" level average output current	IOHAV1	-	-4	mA	Normal output*5
	IOHAV2	-	-30	mA	High-current output*5
"H" level maximum total output current	ΣІон1	-	-125	mA	Normal output
	ΣІон2	-	-160	mA	High-current output
"H" level average total output current	ΣΙομαν1	-	-40	mA	Normal output*6
	ΣΙομαν2	-	-40	mA	High-current output*6
Power consumption	PD	-	245	mW	
Operating temperature	TA	-40	+105	°C	
Storage temperature	Tstg	-55	+150	°C	

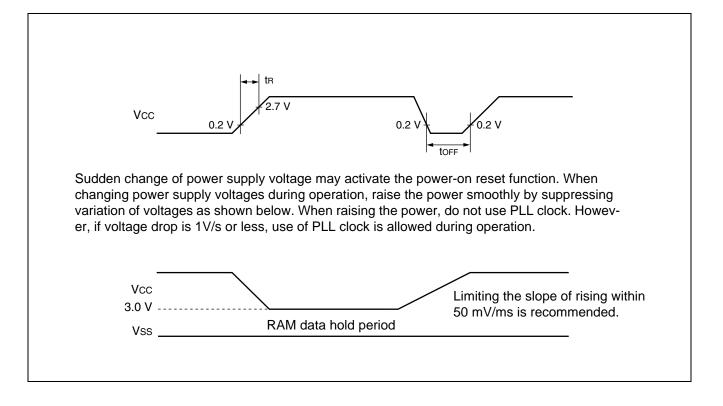
*1: The parameter is based on $V_{SS} = AV_{SS} = 0.0 V$.

*2: AVcc and AVR should not exceed Vcc.

*3: VI and Vo should not exceed Vcc + 0.3 V. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating.

*4: A peak value of an applicable one pin is specified as a maximum output current.

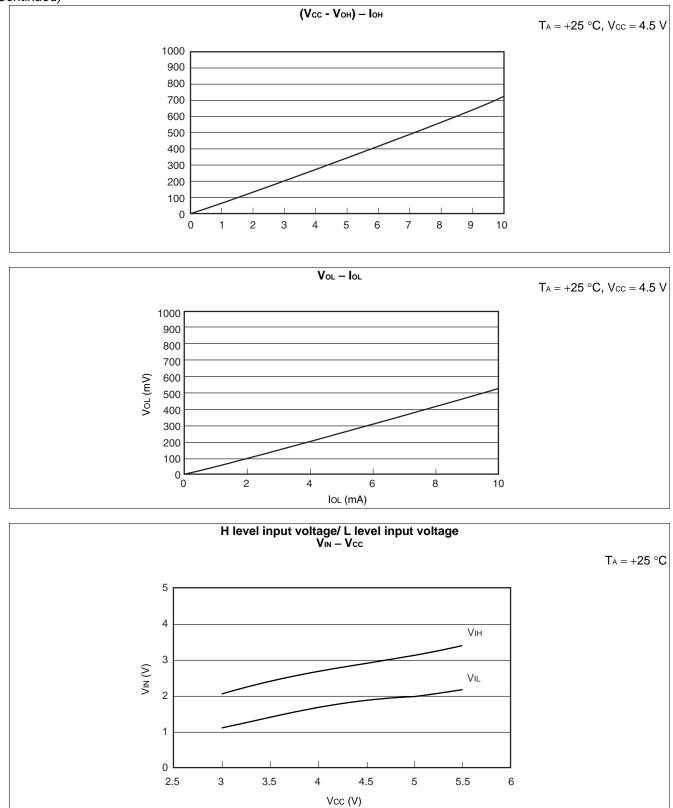

- *5: An average current value of an applicable one pin within 100 ms is specified as an average output current. (Average value is found by multiplying operating current by operating rate.)
- *6: An average current value of all pins within 100 ms is specified as an average total output current. (Average value is found by multiplying operating current by operating rate.)


*7:

Applicable to pins: P10 to P17, P20 to P27, P30 to P33, P35*, P36*, P37, P40 to P44, P50 to P57
*: P35 and P36 are MB90387S and MB90F387S only.

13.4.3 Power-on Reset

Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit	Remarks
Farameter	Symbol		Conditions	Min Max		Onit	reliaiks
Power supply rise time	tR	Vcc	-	0.05	30	ms	
Power supply shutdown time	toff	Vcc		1	-	ms	Waiting time until power-on


13.5 A/D Converter

Deremeter	Cumple of	Din Norra		Value	l les it	D	
Parameter	Symbol	Pin Name	Min	Тур	Max	Unit	Remarks
Resolution	-	-	_	_	10	bit	
Total error	_	_	_	_	± 3.0	LSB	
Nonlinear error	-	_	_	_	± 2.5	LSB	
Differential linear error	-	-	_	_	± 1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	1 LSB = (AVR – AVss) / 1024
Full-scale transition voltage	Vfst	AN0 to AN7	AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	V	
Compare time	-	-	66 tcp *1	_	_	ns	With 16 MHz machine clock $5.5 \text{ V} \ge AV_{CC} \ge 4.5 \text{ V}$
			88 tcp *1	_	_	ns	With 16 MHz machine clock $4.5 \text{ V} > AV_{CC} \ge 4.0 \text{ V}$
Sampling time	-	-	32 tcp *1	_	_	ns	With 16 MHz machine clock $5.5 \text{ V} \ge AV_{CC} \ge 4.5 \text{ V}$
			128 tcp *1	_	_	ns	With 16 MHz machine clock 4.5 V > AVcc ≥ 4.0 V
Analog port input current	Iain	AN0 to AN7	-	-	10	μA	
Analog input voltage	Vain	AN0 to AN7	AVss	-	AVR	V	
Reference voltage	-	AVR	AVss + 2.7	_	AVcc	V	
Power supply current	la	AVcc	_	3.5	7.5	mA	
	Іан	AVcc	_	-	5	μA	*2
Reference voltage	IR	AVR	_	165	250	μA	
supplying current	IRH	AVR	_	_	5	μA	*2
Variation among channels	-	AN0 to AN7	_	-	4	LSB	

 $(Vcc = AVcc = 4.0 \text{ V to } 5.5 \text{ V}, \text{ Vss} = AVss = 0.0 \text{ V}, 3.0 \text{ V} \le AVR - AVss, \text{ T}_{\text{A}} = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$

*1: Refer to Clock Timing on AC Characteristics.

*2: If A/D converter is not operating, a current when CPU is stopped is applicable (Vcc=AVcc=AVR=5.0 V).

(Continued)