

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90387spmt-gs-141

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DTP/External Interrupt: 4 channels, CAN wakeup: 1channel

Module for activation of expanded intelligent I/O service (EI²OS), and generation of external interrupt.

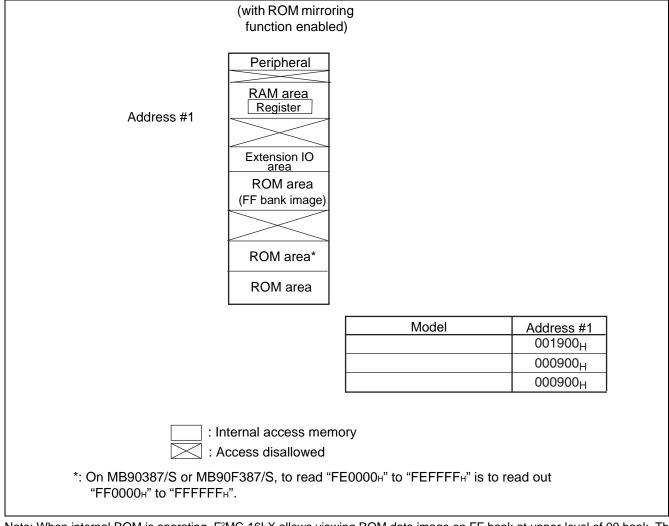
Delay Interrupt Generator Module

Generates interrupt request for task switching.

8/10-bit A/D Converter: 8 channels

- Resolution is selectable between 8-bit and 10-bit.
- Activation by external trigger input is allowed.
- Conversion time: 6.125 μs (at 16 MHz machine clock, including sampling time)

Program Patch Function


■ Address matching detection for 2 address pointers.

MB90387/387S/F387/F387S MB90V495G

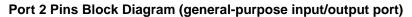
Pin No.	Pin Name	Circuit Type	Function	
39	P42	D	General-purpose input/output port.	
	SOT1		Serial data input pin for UART. Valid only when serial data input/output setting on UART is "enabled."	
40	P43	D	General-purpose input/output port.	
	ТХ		Transmission output pin for CAN. Valid only when output setting is "enabled."	
41	P44	D	General-purpose input/output port.	
	RX		Transmission output pin for CAN. Valid only when output setting is "enabled."	
42 to 45	P30 to P33	D	General-purpose input/output ports.	
46	X0A*	А	Pin for low-rate oscillation.	
	P35*		General-purpose input/output port.	
47	X1A*	A	Pin for low-rate oscillation.	
	P36*	1	General-purpose input/output port.	
48	AVss	-	Vss power source input pin for A/D converter.	

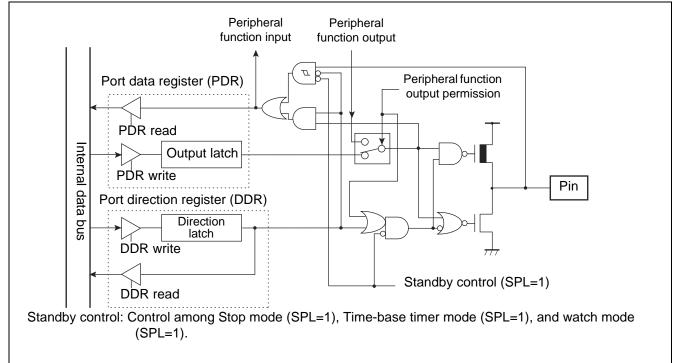
*: MB90387, MB90F387: X1A, X0A MB90387S, MB90F387S: P36, P35

9.2 Memory Map

Note: When internal ROM is operating, F²MC-16LX allows viewing ROM data image on FF bank at upper-level of 00 bank. This function is called "mirroring ROM," which allows effective use of C compiler small model.

F²MC-16LX assigns the same low order 16-bit address to FF bank and 00 bank, which allows referencing table in ROM without specifying "far" using pointer.


For example, when accessing to "00C000H", ROM data at "FFC000H" is accessed actually. However, because ROM area of FF bank exceeds 48 Kbytes, viewing all areas is not possible on 00 bank image. Because ROM data of "FF4000H" to "FFFFFH" is viewed on "004000H" to "00FFFFH" image, store a ROM data table in area "FF4000H" to "FFFFFH."


10. I/O Map

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
00000н		(Reserve	ed area) *		
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXXXB
000002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXXB
00003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXXB
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXXB
000005н	PDR5	Port 5 data register	R/W	Port 5	XXXXXXXXB
000006н to 000010н		(Reserve	ed area) *		
000011н	DDR1	Port 1 direction data register	R/W	Port 1	0000000в
000012н	DDR2	Port 2 direction data register	R/W	Port 2	0000000в
000013н	DDR3	Port 3 direction data register	R/W	Port 3	000Х0000в
000014н	DDR4	Port 4 direction data register	R/W	Port 4	ХХХ00000в
000015н	DDR5	Port 5 direction data register	R/W	Port 5	0000000в
000016н to 00001Ан		(Reserve	ed area) *		
00001Bн	ADER	Analog input permission register	R/W	8/10-bit A/D converter	11111111в
00001Cнto 000025н		(Reserve	ed area) *		
000026н	SMR1	Serial mode register 1	R/W	UART1	0000000в
000027н	SCR1	Serial control register 1	R/W, W		00000100в
000028н	SIDR1/ SODR1	Serial input data register 1/ Serial output data register 1	R, W		XXXXXXXXB
000029н	SSR1	Serial status data register 1	R, R/W		00001000в
00002Ан		(Reserve	ed area) *		
00002Вн	CDCR1	Communication prescaler control register 1	R/W	UART1	0ХХХ0000в
00002Cнto 00002Fн		(Reserve	ed area) *		·
000030н	ENIR	DTP/External interrupt permission register	R/W	DTP/External interrupt	0000000в
000031н	EIRR	DTP/External interrupt permission register	R/W		XXXXXXXXB
000032н	ELVR	Detection level setting register	R/W	1	0000000в
000033н			R/W	1	0000000в
000034н	ADCS	A/D control status register	R/W	8/10-bit A/D	0000000в
000035н			R/W, W	converter	0000000в
000036н	ADCR	A/D data register	W, R	1	XXXXXXXXB
000037н			R	1	00101XXXв

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
000038н		(Reserve	ed area) *		
to 00003Fн					
000040н	PPGC0	PPG0 operation mode control register	R/W, W	8/16-bit PPG timer 0/	0Х000ХХ1в
000041н	PPGC1	PPG1 operation mode control register	R/W, W		0Х00001в
000042н	PPG01	PPG0/1 count clock selection register	R/W		000000XXB
000043н		(Reserve	ed area) *		
000044н	PPGC2	PPG2 operation mode control register	R/W, W	8/16-bit PPG timer 2/	0X000XX1в
000045н	PPGC3	PPG3 operation mode control register	R/W, W	3	0Х00001в
000046н	PPG23	PPG2/3 count clock selection register	R/W	1 [00000XXв
000047н to 00004Fн		(Reserve	ed area) *	· ·	
000050н	IPCP0	Input capture data register 0	R	16-bit input/output	XXXXXXXXB
000051н				timer	XXXXXXXXB
000052н	IPCP1	Input capture data register 1	R	1 [XXXXXXXXB
000053н					XXXXXXXXB
000054н	ICS01	Input capture control status register	R/W	1 [0000000в
000055н	ICS23	3			0000000в
000056н	TCDT	Timer counter data register	R/W	1 [0000000в
000057н					0000000в
000058н	TCCS	Timer counter control status register	R/W	1 [0000000в
000059н		(Reserve	ed area) *		
00005Ан	IPCP2	Input capture data register 2	R	16-bit input/output	XXXXXXXXB
00005Вн				timer	XXXXXXXXB
00005Сн	IPCP3	Input capture data register 3	R	1 [XXXXXXXXB
00005Dн					XXXXXXXXB
00005Eнto 000065н		(Reserve	ed area) *		
000066н	TMCSR0	Timer control status register	R/W	16-bit reload timer 0	0000000в
000067н			R/W		XXXX0000 _B
000068н	TMCSR1		R/W	16-bit reload timer 1	0000000в
000069н			R/W] Γ	XXXX0000b
00006Анto 00006Ен		(Reserve	ed area) *		
00006Fн	ROMM	ROM mirroring function selection register	W	ROM mirroring function selection module	XXXXXXX1B
000070н to 00007Fн		(Reserve	ed area) *		
000080н	BVALR	Message buffer enabling register	R/W	CAN controller	0000000в
000081н			ed area) *		
000082н	TREQR	Send request register	R/W	CAN controller	0000000в

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
000083н		(Reserve	ed area) *		
000084н	TCANR	Send cancel register	W	CAN controller	0000000в
000085н		(Reserve	ed area) *		
000086н	TCR	Send completion register	R/W	CAN controller	0000000в
000087н		(Reserve	ed area) *		
000088н	RCR	Receive completion register	R/W	CAN controller	0000000в
000089н		(Reserve	ed area) *		
00008Ан	RRTRR	Receive RTR register	R/W	CAN controller	0000000в
00008Вн		(Reserve	ed area) *		
00008Сн	ROVRR	Receive overrun register	R/W	CAN controller	0000000в
00008Dн		(Reserve	ed area) *		
00008Eн	RIER Receive completion interrupt permission register		R/W	CAN controller	0000000в
00008Fн to 00009Dн		(Reserv	ed area) *		
00009Eн	PACSR	Address detection control register	R/W	Address matching detection function	0000000в
00009Fн	DIRR	Delay interrupt request generation/ release register	R/W	Delay interrupt generation module	XXXXXXX0B
0000А0н	LPMCR	Lower power consumption mode control register	W,R/W	Lower power consumption mode	00011000в
0000A1н	CKSCR	Clock selection register	R,R/W	Clock	11111100в
0000A2н to 0000A7н		(Reserv	ed area) *		
0000A8н	WDTC	Watchdog timer control register	R,W	Watchdog timer	XXXXX111 _B
0000A9н	TBTC	Time-base timer control register	R/W,W	Time-base timer	1XX00100в
0000ААн	WTC	Watch timer control register	R,R/W	Watch timer	1Х001000в
0000ABн to 0000ADн		(Reserv	ed area) *	·	
0000AEн	FMCS	Flash memory control status register	R,W,R/W	512k-bit Flash memory	000X0000 _B
0000AFн		(Reserv	ed area) *	. 1	

Port 2 Registers

- Port 2 registers include port 2 data register (PDR2) and port 2 direction register (DDR2).
- The bits configuring the register correspond to port 2 pins on a one-to-one basis.

Relation between Port 2 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 2	PDR2,DDR2	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	P27	P26	P25	P24	P23	P22	P21	P20

MB90387/387S/F387/F387S MB90V495G

Watchdog timer control register(WDTC) Watch timer control register (WTC) WRST ERST SRST WTE WT1 WT0 PONR ____ WDCS Watchdog timer 2, Activate Reset occurs _ Counter Watchdog Shift to sleep mode -----2-bit Internal reset Count clock reset clear control Shift to time-base counter - 6 generation generation selector circuit timer mode circuit circuit Shift to watch mode Clear Shift to stop mode 4 4 Time-base timer counter Main clock $\times 2^2$ × 28 × 29 × 210 × 211 × 2¹² × 2¹³ × 2¹⁴ $\times 2^1$ × 215 × 216 × 2¹⁷ $\times 2^{18}$ (dividing HCLK by 2) Watch counter Sub clock $\times 2^2$ × 2⁵ $\times 2^{6}$ × 2⁸ × 2⁹ × 2¹⁰ × 2¹¹ × 2¹² × 2¹³ × 2¹⁴ × 2¹⁵ $\times 2^{1}$ $\times 2^7$. SCLK HCLK: Oscillation clock SCLK: Sub clock

Watchdog Timer Block Diagram

12.4 16-bit Input/Output Timer

The 16-bit input/output timer is a compound module composed of 16-bit free-run timer, (1 unit) and input capture (2 units, 4 input pins). The timer, using the 16-bit free-run timer as a basis, enables measurement of clock cycle of an input signal and its pulse width.

Configuration of 16-bit Input/Output Timer

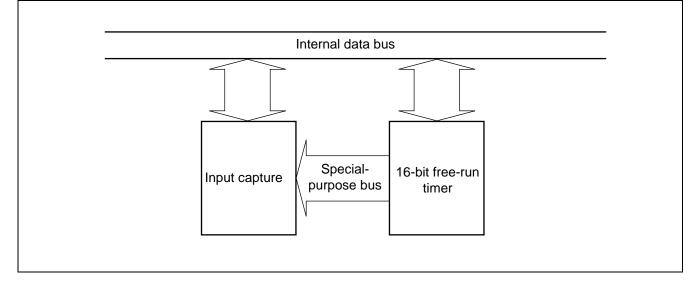
The 16-bit input/output timer is composed of the following modules:

- 16-bit free-run timer (1 unit)
- Input capture (2 units, 2 input pins per unit)

Functions of 16-bit Input/Output Timer

Functions of 16-bit Free-run Timer

The 16-bit free-run timer is composed of 16-bit up counter, timer counter control status register, and prescaler. The 16-bit up counter increments in synchronization with dividing ratio of machine clock.


- Count clock is set among four types of machine clock dividing rates.
- Generation of interrupt is allowed by counter value overflow.
- Activation of expanded intelligent I/O service (EI²OS) is allowed by interrupt generation.
- Counter value of 16-bit free-run timer is cleared to "0000^H" by either resetting or software-clearing with timer count clear bit (TCCS: CLR).
- Counter value of 16-bit free-run timer is output to input capture, which is available as base time for capture operation.

Functions of Input Capture

The input capture, upon detecting an edge of a signal input to the input pin from external device, stores a counter value of 16-bit freerun timer at the time of detection into the input capture data register. The function includes the input capture data registers corresponding to four input pins, input capture control status register, and edge detection circuit.

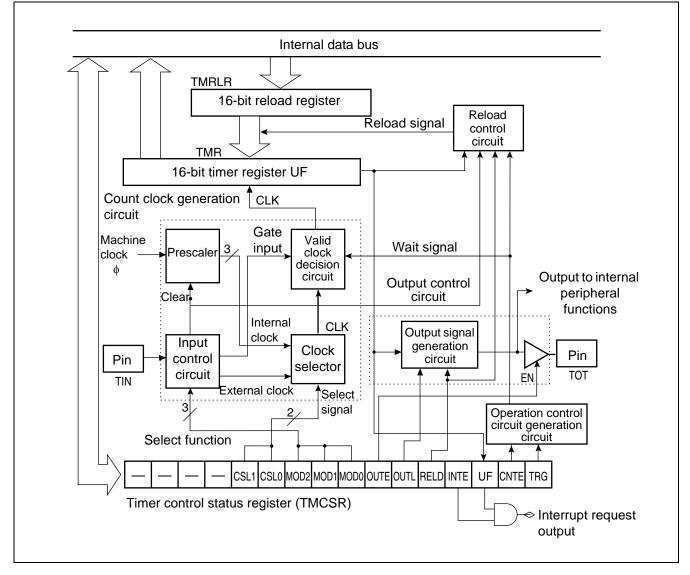
- Rising edge, falling edge, and both edges are selectable for detection.
- Generating interrupt on CPU is allowed by detecting an edge of input signal.
- Expanded intelligent I/O service (EI²OS) is activated by interrupt generation.
- The four input capture input pins and input capture data registers allows monitoring of a maximum of four events.

16-bit Input/Output Timer Block Diagram

12.5 16-bit Reload Timer

The 16-bit reload timer has the following functions:

- Count clock is selectable among 3 internal clocks and external event clock.
- Activation trigger is selectable between software trigger and external trigger.
- Generation of CPU interrupt is allowed upon occurrence of underflow on 16-bit timer register. Available as an interval timer using the interrupt function.
- When underflow of 16-bit timer register (TMR) occurs, one of two reload modes is selectable between one-shot mode that halts counting operation of TMR, and reload mode that reloads 16-bit reload register value to TMR, continuing TMR counting operation.
- The 16-bit reload timer is ready for expanded intelligent I/O service (El²OS).
- MB90385 series device has 2 channels of built-in 16-bit reload timer.


Operation Mode of 16-bit Reload Timer

Count Clock	Activation Trigger	Operation upon Underflow
Internal clock mode	Software trigger, external trigger	One-shot mode, reload mode
Event count mode	Software trigger	One-shot mode, reload mode

Internal Clock Mode

- The 16-bit reload timer is set to internal clock mode, by setting count clock selection bit (TMCSR: CSL1, CSL0) to "00_B", "01_B", "10_B".
- In the internal clock mode, the counter decrements in synchronization with the internal clock.
- Three types of count clock cycles are selectable by count clock selection bit (TMCSR: CSL1, CSL0) in timer control status register.
- Edge detection of software trigger or external trigger is specified as an activation trigger.

16-bit Reload Timer Block Diagram

12.7 8/16-bit PPG Timer Outline

The 8/16-bit PPG timer is a 2-channel reload timer module (PPG0 and PPG1) that allows outputting pulses of arbitrary cycle and duty cycle. Combination of the two channels allows selection among the following operations:

- 8-bit PPG output 2-channel independent operation mode
- 16-bit PPG output operation mode
- 8-bit and 8-bit PPG output operation mode

MB90385 series device has two 8/16-bit built-in PPG timers. This section describes functions of PPG0/1. PPG2/3 have the same functions as those of PPG0/1.

Functions of 8/16-bit PPG Timer

The 8/16-bit PPG timer is composed of four 8-bit reload register (PRLH0/PRLL0, PRLH1/PRLL1) and two PPG down counters (PCNT0, PCNT1).

- Widths of "H" and "L" in output pulse are specifiable independently. Cycle and duty factor of output pulse is specifiable arbitrarily.
- Count clock is selectable among 6 internal clocks.
- The timer is usable as an interval timer, by generating interrupt requests for each interval.
- The time is usable as a D/A converter, with an external circuit.

12.10 8/10-bit A/D Converter

The 8/10-bit A/D converter converts an analog input voltage into 8-bit or 10/bit digital value, using the RC-type successive approximation conversion method.

- Input signal is selected among 8 channels of analog input pins.
- Activation trigger is selected among software trigger, internal timer output, and external trigger.

Functions of 8/10-bit A/D Converter

The 8/10-bit A/D converter converts an analog voltage (input voltage) input to analog input pin into an 8-bit or 10-bit digital value (A/D conversion).

The 8/10-bit A/D converter has the following functions:

- A/D conversion takes a minimum of 6.12 µs* for 1 channel, including sampling time. (A/D conversion)
- Sampling of one channel takes a minimum of 2.0 µs*.
- RC-type successive approximation conversion method, with sample & hold circuit is used for conversion.
- Resolution of either 8 bits or 10 bits is specifiable.
- A maximum of 8 channels of analog input pins are allowed for use.
- Generation of interrupt request is allowed, by storing A/D conversion result in A/D data register.
- Activation of EI²OS is allowed upon occurrence of an interrupt request. With use of EI²OS, data loss is avoided even if A/D conversion is performed successively.
- An activation trigger is selectable among software trigger, internal timer output, and external trigger (fall edge).
- : When operating with 16 MHz machine clock

8/10-bit A/D Converter Conversion Mode

Conversion Mode	Description
Singular conversion mode	The A/D conversion is performed form a start channel to an end channel sequentially. Upon completion of A/D conversion on an end channel, A/D conversion function stops.
Sequential conversion mode	The A/D conversion is performed form a start channel to an end channel sequentially. Upon completion of A/D conversion on an end channel, A/D conversion function resumes from the start channel.
Pausing conversion mode	The A/D conversion is performed by pausing at each channel. Upon completion of A/D conversion on an end channel, A/D conversion and pause functions resume from the start channel.

12.11 UART Outline

UART is a general-purpose serial data communication interface for synchronous and asynchronous communication using external devices.

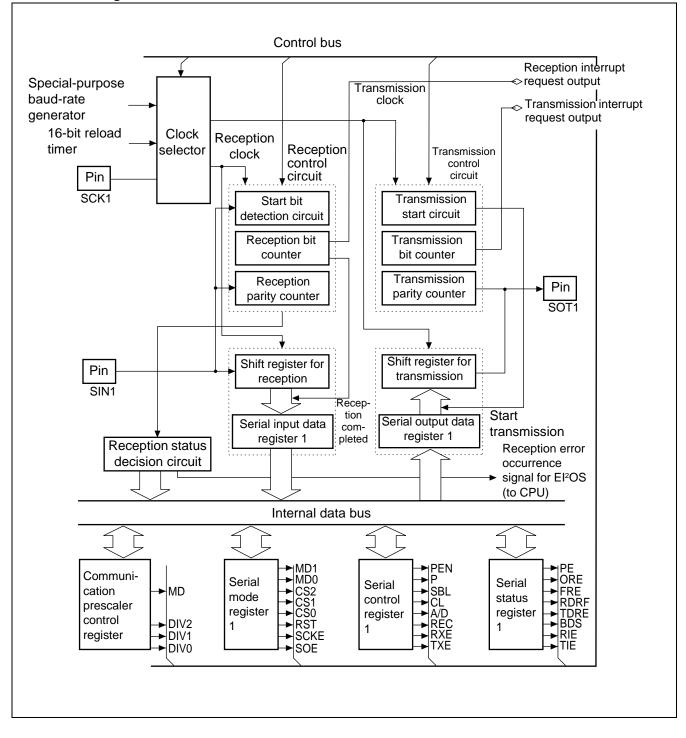
- Provided with bi-directional communication function for both clock-synchronous and clock-asynchronous modes.
- Provided with master/slave communication function (multi-processor mode). (Only master side is available.)
- Interrupt request is generated upon completion of reception, completion of transmission and detection of reception error.
- Ready for expanded intelligent service, El²OS.

Table 12-3. UART Functions

	Description
Data buffer	Full-duplex double buffer
Transmission mode	Clock synchronous (No start/stop bit, no parity bit) Clock asynchronous (start-stop synchronous)
Baud rate	Built-in special-purpose baud-rate generator. Setting is selectable among 8 values. Input of external values is allowed. Use of clock from external timer (16-bit reload timer 0) is allowed.
Data length	7 bits (only asynchronous normal mode) 8 bits
Signaling system	Non Return to Zero (NRZ) system
Reception error detection	Framing error Overrun error Parity error (not detectable in operation mode 1 (multi-processor mode))
Interrupt request	Receive interrupt (reception completed, reception error detected) Transmission interrupt (transmission completed) Ready for expanded intelligent I/O service (El ² OS) in both transmission and reception
Master/slave communication function (asynchronous, multi-processor mode)	Communication between 1 (master) and n (slaves) are available (usable as master only).

Note: Start/stop bit is not added upon clock-synchronous transmission. Data only is transmitted.

Table 12-4. UART Operation Modes

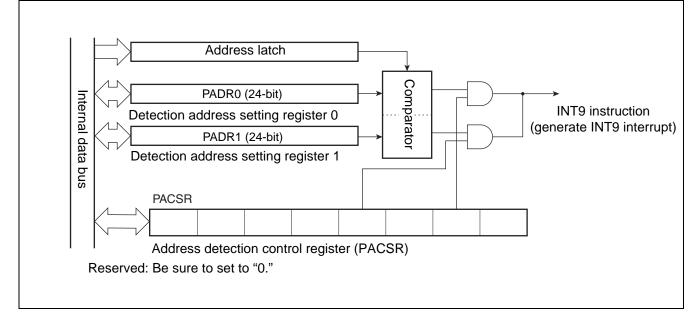

	Operation Mode	Data L	ength	Synchronization	Stop Bit Length	
	Operation mode	With Parity	Without Parity	Synchronization		
0	Asynchronous mode (normal mode)	7-bit or 8-bit		Asynchronous	1- bit or 2-bit *2	
1	Multi processor mode	8+1*1 –		Asynchronous		
2	Synchronous mode	8 –		Synchronous	No	

-: Disallowed

1: "+1" is an address/data selection bit used for communication control (bit 11 of SCR1 register: A/D).

2: Only 1 bit is detected as a stop bit on data reception.

UART Block Diagram

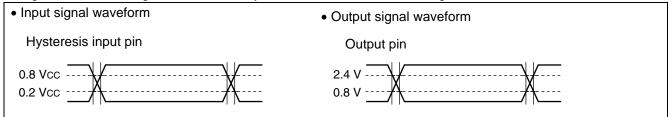

12.13 Address Matching Detection Function Outline

The address matching detection function checks if an address of an instruction to be processed next to a currently-processed instruction is identical with an address specified in the detection address register. If the addresses match with each other, an instruction to be processed next in program is forcibly replaced with INT9 instruction, and process branches to the interrupt process program. Using INT9 interrupt, this function is available for correcting program by batch processing.

Address Matching Detection Function Outline

- An address of an instruction to be processed next to a currently-processed instruction of the program is always retained in an address latch via internal data bus. By the address matching detection function, the address value retained in the address latch is always compared with an address specified in detection address setting register. If the compared address values match with each other, an instruction to be processed next by CPU is forcibly replaced with INT9 instruction, and an interrupt process program is executed.
- Two detection address setting registers are provided (PADR0 and PADR1), and each register is provided with interrupt permission bit. Generation of interrupt, which is caused by address matching between the address retained in address latch and the address specified in address setting register, is permitted and prohibited on a register-by-register basis.

Address Matching Detection Function Block Diagram

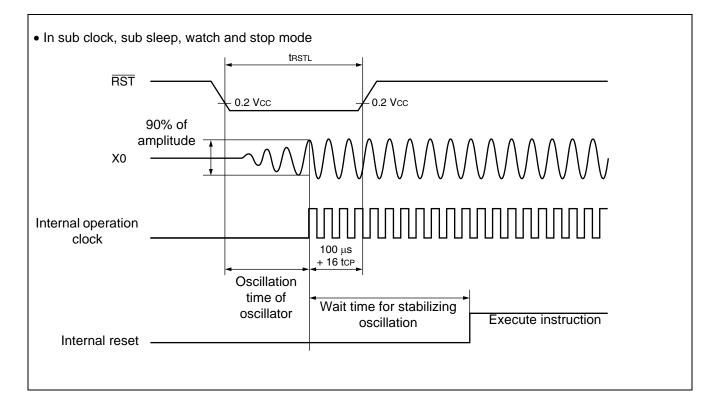


Address latch

Retains address value output to internal data bus.

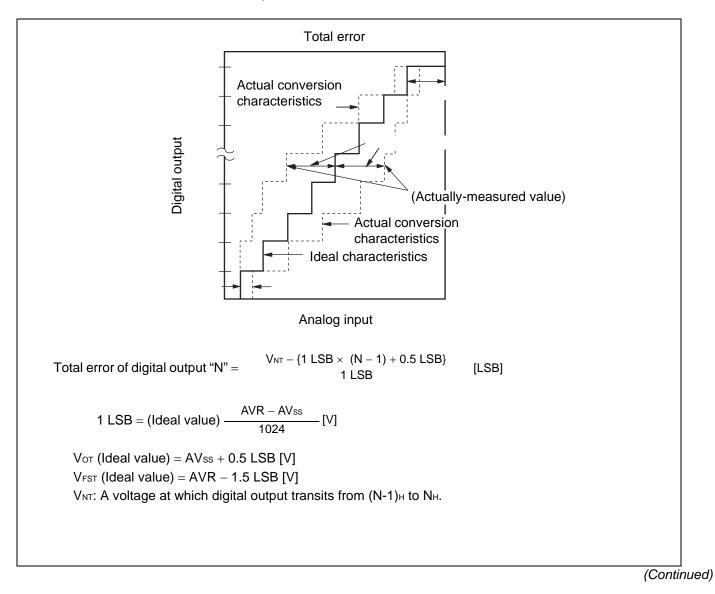
- Address detection control register (PACSR) Specifies if interrupt is permitted or prohibited when addresses match with each other.
- Detection address setting (PADR0, PADR1) Specifies addresses to be compared with values in address latch.

Rating values of alternating current is defined by the measurement reference voltage values shown below:

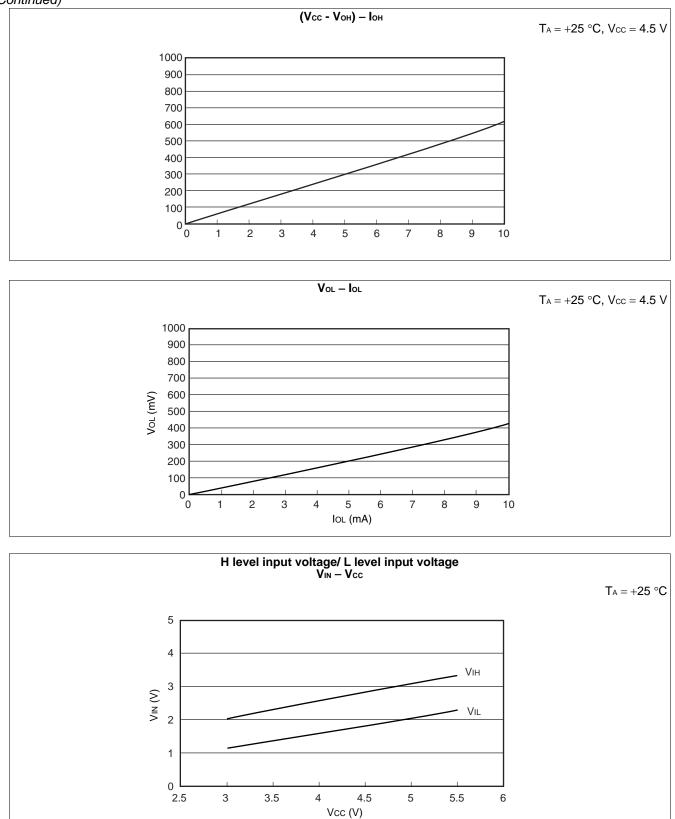

13.4.2 Reset Input Timing

Parameter Symbol		Din Namo	Value	Unit	Remarks	
			Min	Max	Onit	Nemarks
Reset input time	t RSTL	RST	16 tce*3	-	ns	Normal operation
			Oscillation time of oscillator ^{*1} + $100 \ \mu s$ + $16 \ tcP^{*3}$	-		In sub clock ^{*2} , sub sleep ^{*2} , watch ^{*2} and stop mode
			100	_	μS	In timebase timer

*1: Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.


*2: Except for MB90F387S and MB90387S.

*3: Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).



13.6 Definition of A/D Converter Terms

Resolution:	Analog variation that is recognized by an A/D converter.
Linear error:	Deviation between a line across zero-transition line ("00 0000 00 0 0" \leftrightarrow "00 0000 0001") and full-scale transition line ("11 1111 11 1 0" \leftrightarrow "11 1111 1111") and actual conversion characteristics.
Differential linear error:	Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.
Total error:	Difference between an actual value and an ideal value. A total error includes zero transition error, full- scale transition error, and linear error.

MB90387/387S/F387/F387S MB90V495G

(Continued)

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2004-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify a