

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90387spmt-gs-144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DTP/External Interrupt: 4 channels, CAN wakeup: 1channel

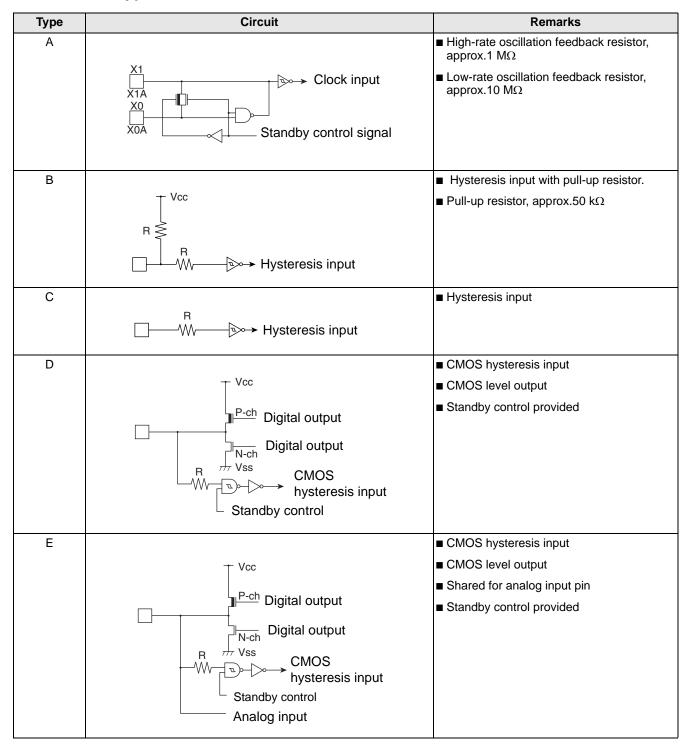
Module for activation of expanded intelligent I/O service (EI²OS), and generation of external interrupt.

Delay Interrupt Generator Module

Generates interrupt request for task switching.

8/10-bit A/D Converter: 8 channels

- Resolution is selectable between 8-bit and 10-bit.
- Activation by external trigger input is allowed.
- Conversion time: 6.125 μs (at 16 MHz machine clock, including sampling time)

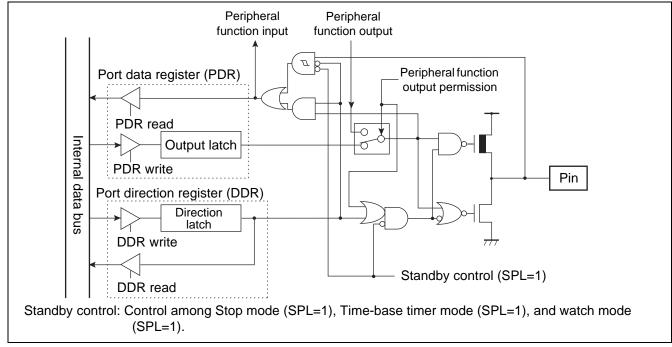

Program Patch Function

■ Address matching detection for 2 address pointers.

1. Product Lineup

Parameter	Part Number	MB90F387 MB90F387S	MB90387 MB90387S	MB90V495G				
Classification		Flash ROM	Mask ROM	Evaluation product				
ROM capacity		64 Kby	tes	-				
RAM capacity		2 Kbyt	es	6 Kbytes				
Process			CMOS	1				
Package		LQFP-48 (pin pit	ch 0.50 mm)	PGA-256				
Operating power	supply voltage	3.5 V to 5	5.5 V	4.5 V to 5.5 V				
Special power su emulator*1	ipply for	-		None				
CPU functions		Number of basic instructions Instruction bit length Instruction length Data bit length	: 351 instructions : 8 bits and 16 bits : 1 byte to 7 bytes : 1 bit, 8 bits, 16 bits					
		Minimum instruction execution ti						
		Interrupt processing time: 1.5 µs						
Low power const (standby) mode	umption	Sleep mode / Watch mode / Time	e-base timer mode / Stop mo	ode / CPU intermittent				
I/O port		General-purpose input/output ports (CMOS output): 34 ports (36 ports*2) including 4 high-current output ports (P14 to P17)						
Time-base timer		18-bit free-run counter Interrupt cycle: 1.024 ms, 4.096 ms, 16.834 ms, 131.072 ms (with oscillation clock frequency at 4 MHz)						
Watchdog timer		Reset generation cycle: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (with oscillation clock frequency at 4 MHz)						
16-bit input/ output timer	16-bit free-run timer	Number of channels: 1 Interrupt upon occurrence of ove	rflow					
	Input capture	Number of channels: 4 Retaining free-run timer value se	t by pin input (rising edge, fall	ing edge, and both edges)				
16-bit reload time	P.	Number of channels: 2 16-bit reload timer operation Count clock cycle: 0.25 μs, 0.5 μs, 2.0 μs (at 16-MHz machine clock frequency) External event count is allowed.						
Watch timer		15-bit free-run counter Interrupt cycle: 31.25 ms, 62.5 ms, 12 ms, 250 ms, 500 ms, 1.0 s, 2.0 s (with 8.192 kHz sub clock)						
8/16-bit PPG timer		Number of channels: 2 (four 8-bi PPG operation is allowed with fo Outputting pulse wave of arbitrar Count clock: 62.5 ns to 1 μ s (with 16 MHz machine clock)	ur 8-bit channels or two 16-b	ut channels.				
Delay interrupt g	enerator module	Interrupt generator module for task switching. Used for realtime OS.						
DTP/External inte	errupt	Number of inputs: 4 Activated by rising edge, falling edge, "H" level or "L" level input. External interrupt or expanded intelligent I/O service (EI ² OS) is available.						

6. I/O Circuit Type

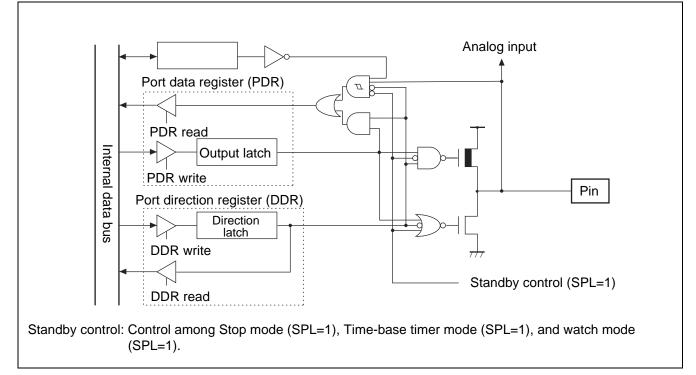

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
003910н	PRLL0	PPG0 reload register L	R/W	8/16-bit PPG timer	XXXXXXXXB
003911 н	PRLH0	PPG0 reload register H	R/W		XXXXXXXXB
003912н	PRLL1	PPG1 reload register L		XXXXXXXXB	
003913н	PRLH1	PPG1 reload register H	R/W		XXXXXXXXB
003914н	PRLL2	PPG2 reload register L	R/W		XXXXXXXXB
003915 н	PRLH2	PPG2 reload register H	R/W		XXXXXXXXB
003916 н	PRLL3	PPG3 reload register L	R/W		XXXXXXXX _B
003917 н	PRLH3	PPG3 reload register H	R/W		XXXXXXXXB
003918н to 00392Fн			(Reserved area) *		
003930н to 003BFFн			(Reserved area) *		
003C00н to 003C0Fн		RAM (General-purpose R	AM)	
003C10н to 003C13н	IDR0	ID register 0	R/W	CAN controller	XXXXXXXXB to XXXXXXXXB
003C14н to 003C17н	IDR1	ID register 1	D register 1 R/W		XXXXXXXXB to XXXXXXXXB
003C18н to 003C1Bн	IDR2	ID register 2	R/W	_	XXXXXXXXB to XXXXXXXB
003C1Cн to 003C1Fн	IDR3	ID register 3	R/W	-	XXXXXXXXB to XXXXXXXXB
003C20н to 003C23н	IDR4	ID register 4	R/W	_	XXXXXXXXB to XXXXXXXB
003C24н to 003C27н	IDR5	ID register 5	R/W	_	XXXXXXXXAB to XXXXXXXXB
003C28н to 003C2Bн	IDR6	ID register 6	R/W	-	XXXXXXXXB to XXXXXXXB
003C2Cн to 003C2Fн	IDR7	ID register 7	R/W		XXXXXXXXB to XXXXXXXB
003C30н, 003C31н	DLCR0	DLC register 0	R/W		XXXXXXXXB, XXXXXXXB
003C32н, 003C33н	DLCR1	DLC register 1	R/W		XXXXXXXXB, XXXXXXXB
003C34н, 003C35н	DLCR2	DLC register 2	R/W		XXXXXXXXB, XXXXXXXXB
003C36н, 003C37н	DLCR3	DLC register 3	R/W		XXXXXXXXB, XXXXXXXXB

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
003С38н, 003С39н	DLCR4	DLC register 4	R/W	CAN controller	XXXXXXXXB, XXXXXXXB
003С3Ан, 003С3Вн	DLCR5	DLC register 5	R/W		XXXXXXXXB, XXXXXXXB
003C3Cн, 003C3Dн	DLCR6	DLC register 6	R/W		XXXXXXXXB, XXXXXXXB
003C3Eн, 003C3Fн	DLCR7	DLC register 7	R/W		XXXXXXXXB, XXXXXXXB
003C40н to 003C47н	DTR0	Data register 0	R/W		XXXXXXXXB to XXXXXXXXB
003C48н to 003C4Fн	DTR1	Data register 1	R/W		XXXXXXXXB to XXXXXXXXB
003C50н to 003C57н	DTR2	Data register 2	R/W	-	XXXXXXXXB to XXXXXXXB
003C58н to 003C5Fн	DTR3	Data register 3	R/W		XXXXXXXXB to XXXXXXXXB
003C60н to 003C67н	DTR4	Data register 4	R/W		XXXXXXXXB to XXXXXXXXB
003C68н to 003C6Fн	DTR5	Data register 5	R/W		XXXXXXXXB to XXXXXXXXB
003C70н to 003C77н	DTR6	Data register 6	R/W		XXXXXXXXB to XXXXXXXXB
003C78н to 003C7Fн	DTR7	Data register 7	R/W		XXXXXXXXB to XXXXXXXXB
003C80н to 003CFFн		(Rese	rved area) *		
003D00н, 003D01н	CSR	Control status register	R/W, R	CAN controller	0XXXX001в, 00XXX000в
003D02н	LEIR	Last event display register	R/W		000XX000 _B
003D03н		(Rese	rved area) *		
003D04н, 003D05н	RTEC	Send/receive error counter	R	CAN controller	0000000в, 0000000в
003D06н, 003D07н	BTR	Bit timing register	R/W		11111111 _в , Х1111111 _в
003D08н	IDER	IDE register	R/W		XXXXXXXXB
003D09н		(Rese	rved area) *		
003D0Aн	TRTRR	Send RTR register	R/W	CAN controller	0000000в
003D0Bн		(Rese	rved area) *		
003D0CH	RFWTR	Remote frame receive wait register	R/W	CAN controller	XXXXXXXXB

11. Interrupt Sources, Interrupt Vectors, And Interrupt Control Registers

Interrupt Source	El ² OS	I	nterrup	t Vector	Interrupt C	Priority*3	
Interrupt Source	Readiness	Nur	nber	Address	ICR	Address	
Reset	×	#08	08н	FFFFDC H	-	-	High
INT 9 instruction	×	#09	09н	FFFFD8H	-	-	↑
Exceptional treatment	×	#10	0Ан	FFFFD4H	-	-	
CAN controller reception completed (RX)	,	#11	0Вн	FFFFD0H	ICR00	0000B0н*1	
CAN controller transmission completed (TX) / Node status transition (NS)	,	#12	0Сн	FFFFCCH			
Reserved	×	#13	0Dн	FFFFC8H	ICR01	0000B1н	
Reserved	×	#14	0Ен	FFFFC4H	1		
CAN wakeup	Δ	#15	0Fн	FFFFC0H	ICR02	0000B2н*1	
Time-base timer	×	#16	10н	FFFFBC H	1		
16-bit reload timer 0	Δ	#17	11н	FFFFB8 _H	ICR03	0000B3н*1	
8/10-bit A/D converter	Δ	#18	12н	FFFFB4н			
16-bit free-run timer overflow	Δ	#19	13н	FFFFB0H	ICR04	0000B4н*1	1
Reserved	×	#20	14н	FFFFAC H			
Reserved	×	#21	15 н	FFFFA8H	ICR05	0000B5н*1	
PPG timer ch0, ch1 underflow	,	#22	16 н	FFFFA4H			
Input capture 0-input	Δ	#23	17 н	FFFFA0н	ICR06	0000В6н*1	
External interrupt (INT4/INT5)	Δ	#24	18 н	FFFF9CH			
Input capture 1-input	Δ	#25	19 н	FFFF98н	ICR07	0000 B7 н*2	
PPG timer ch2, ch3 underflow	,	#26	1Ан	FFFF94⊦	-		
External interrupt (INT6/INT7)	Δ	#27	1Bн	FFFF90H	ICR08	0000B8н*1	
Watch timer	Δ	#28	1Сн	FFFF8CH			
Reserved	×	#29	1Dн	FFFF88H	ICR09	0000B9н*1	
Input capture 2-input Input capture 3-input	,	#30	1Ен	FFFF84 _H	-		
Reserved	×	#31	1Fн	FFFF80H	ICR10	0000BAн*1	
Reserved	×	#32	20н	FFFF7CH			
Reserved	×	#33	21н	FFFF78⊦	ICR11	0000BB _H *1	
Reserved	×	#34	22н	FFFF74 _H			
Reserved	×	#35	23н	FFFF70н	ICR12	0000BCH*1	\downarrow
16-bit reload timer 1	0	#36	24н	FFFF6CH			Low

Port 1 Pins Block Diagram (single-chip mode)

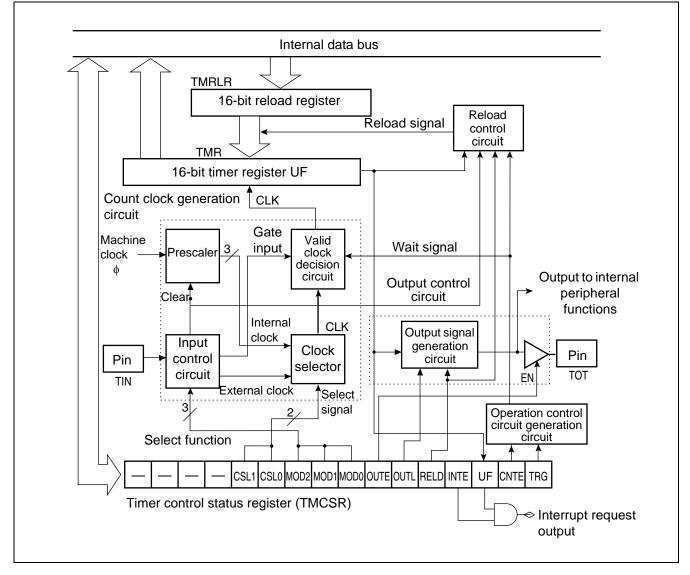

Port 1 Registers (single-chip mode)

- Port 1 registers include port 1 data register (PDR1) and port 1 direction register (DDR1).
- The bits configuring the register correspond to port 1 pins on a one-to-one basis.

Relation between Port 1 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 1	PDR1, DDR1	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	P17	P16	P15	P14	P13	P12	P11	P10

Port 5 Pins Block Diagram


Port 5 Registers

- Port 5 registers include port 5 data register (PDR5), port 5 direction register (DDR5), and analog input permission register (ADER).
- Analog input permission register (ADER) allows or disallows input of analog signal to the analog input pin.
- The bits configuring the register correspond to port 5 pins on a one-to-one basis.

Relation between Port 5 Registers and Pins

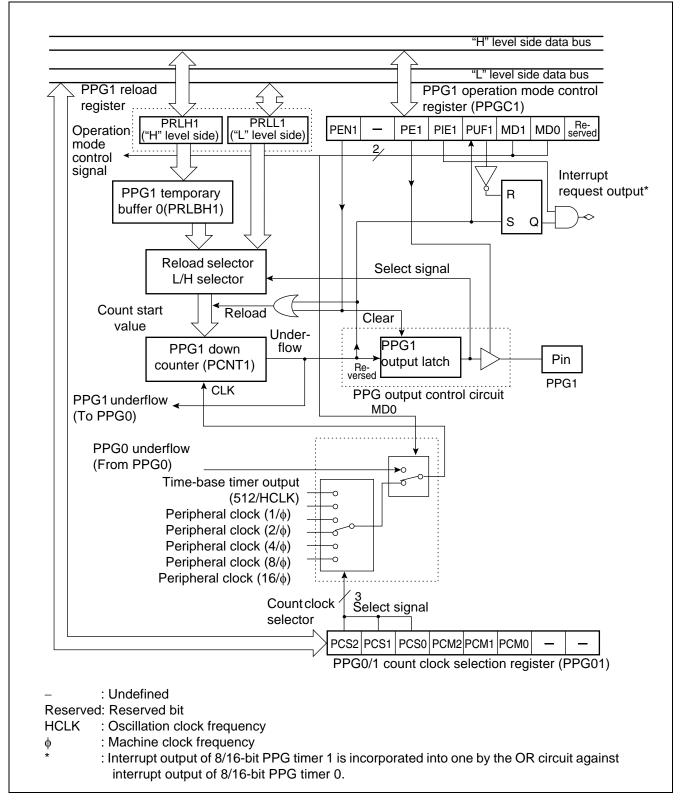
Port Name	Bits of Register and Corresponding Pins								
Port 5	PDR5, DDR5	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	ADER	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0
	Corresponding pins	P57	P56	P55	P54	P53	P52	P51	P50

16-bit Reload Timer Block Diagram

12.7 8/16-bit PPG Timer Outline

The 8/16-bit PPG timer is a 2-channel reload timer module (PPG0 and PPG1) that allows outputting pulses of arbitrary cycle and duty cycle. Combination of the two channels allows selection among the following operations:

- 8-bit PPG output 2-channel independent operation mode
- 16-bit PPG output operation mode
- 8-bit and 8-bit PPG output operation mode


MB90385 series device has two 8/16-bit built-in PPG timers. This section describes functions of PPG0/1. PPG2/3 have the same functions as those of PPG0/1.

Functions of 8/16-bit PPG Timer

The 8/16-bit PPG timer is composed of four 8-bit reload register (PRLH0/PRLL0, PRLH1/PRLL1) and two PPG down counters (PCNT0, PCNT1).

- Widths of "H" and "L" in output pulse are specifiable independently. Cycle and duty factor of output pulse is specifiable arbitrarily.
- Count clock is selectable among 6 internal clocks.
- The timer is usable as an interval timer, by generating interrupt requests for each interval.
- The time is usable as a D/A converter, with an external circuit.

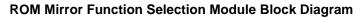
8/16-bit PPG Timer 1 Block Diagram

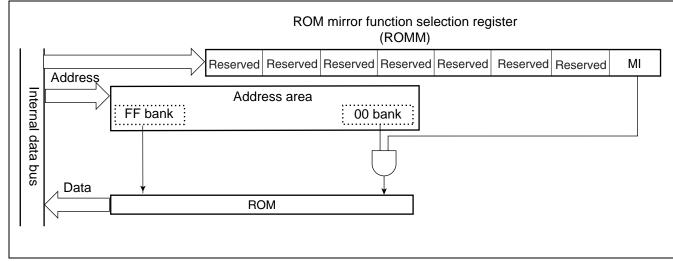
12.12 CAN Controller

The Controller Area Network (CAN) is a serial communication protocol compliant with CANVer2.0A and Ver2.0B. The protocol allows data transmission and reception in both standard frame format and expanded frame format.

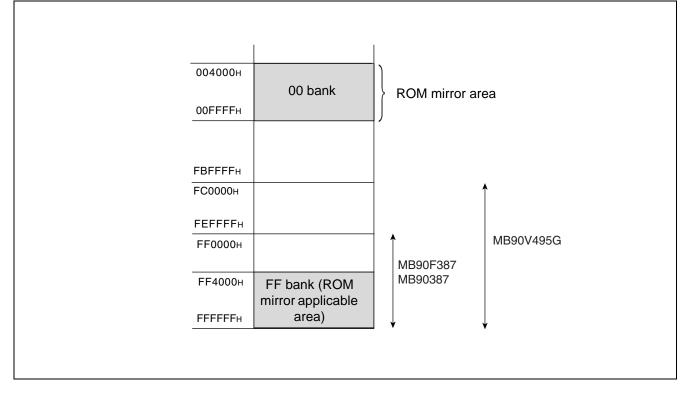
Features of CAN Controller

- CAN controller format is compliant with CANVer2.0A and Ver2.0B.
- The protocol allows data transmission and reception in standard frame format and expanded frame format.
- Automatic transmission of data frame by remote frame reception is allowed.
- Baud rate ranges from 10 kbps to 1 Mbps (with 16-MHz machine clock).


Table 12-5. Data Transmission Baud Rate


Machine Clock	Baud Rate (Max)
16 MHz	1 Mbps
12 MHz	1 Mbps
8 MHz	1 Mbps
4 MHz	500 kbps
2 MHz	250 kbps

- Provided with 8 transmission/reception message buffers.
- Transmission/reception is allowed at ID 11 bit in standard format, and at ID 29 bit in expanded frame format.
- Specifying 0 byte to 8 bytes is allowed in message data.
- Multi-level message buffer configuration is allowed.
- CAN controller has two built-in acceptance masks. Mask settings are independently allowed for the two acceptance masks on reception IDs.
- The two acceptance masks allow reception in standard frame format and expanded frame format.
- For types of masking, all-bit comparison, all-bit masking, and partial masking with acceptance mask register 0/1, are specifiable.


12.14 ROM Mirror Function Selection Module Outline

The ROM mirror function selection module sets the data in ROM assigned to FF bank so that the data is read by access to 00 bank.

FF Bank Access by ROM Mirror Function

12.15 512 Kbit Flash Memory Outline

The following three methods are provided for data writing and deleting on Flash memory:

- 1. Parallel writer
- 2. Serial special-purpose writer
- 3. Writing/deleting by program execution

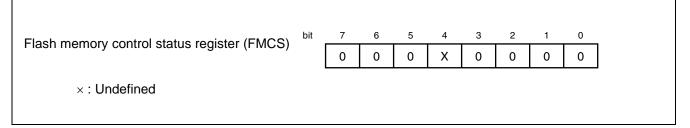
This section describes "3. Writing/deleting by program execution."

512 Kbit Flash Memory Outline

The 512 Kbit Flash memory is allocated on FF_H bank of CPU memory map. Using the function of Flash memory interface circuit, the memory allows read access and program access from CPU.

Writing/deleting on Flash memory is performed by instruction from CPU via Flash memory interface. Because rewriting is allowed on mounted memory, modifying program and data is performed efficiently.

Features of 512 Kbit Flash Memory


- 128 K words x 8 bits/64 K words x 16 bits (16 K + 8 K + 8 K + 32 K) sector configuration
- Automatic program algorithm (Embedded Algorithm: Similar to MBM29LV200.)
- Built-in deletion pause/deletion resume function
- Detection of completed writing/deleting by data polling and toggle bits.
- Detection of completed writing/deleting by CPU interrupt.
- Deletion is allowed on a sector-by-sector basis (sectors are combined freely).
- Number of writing/deleting operations (minimum): 10,000 times
- Sector protection
- Expanded sector protection
- Temporaly sector unprotection

Note: A function of reading manufacture code and device code is not provided. These codes are not accessible by command either.

Flash Memory Writing/Deleting

- Writing and reading data is not allowed simultaneously on the Flash memory.
- Data writing and deleting on the Flash memory is performed by the processes as follows: Make a copy of program on Flash memory onto RAM. Then, execute the program copied on the RAM.

List of Registers and Reset Values in Flash Memory

Sector Configuration

For access from CPU, SA0 to SA3 are allocated in FF bank register.

13. Electrical Characteristics

13.1 Absolute Maximum Rating

Parameter	Symbol	Rat	ting	Unit	Remarks
Parameter	Symbol	Min	Max	Unit	Remarks
Power supply voltage*1	Vcc	Vss - 0.3	Vss + 6.0	V	
	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc*2
	AVR	Vss - 0.3	Vss + 6.0	V	$AVcc \ge AVR^{*2}$
Input voltage*1	Vi	Vss - 0.3	Vss + 6.0	V	*3
Output voltage*1	Vo	Vss - 0.3	Vss + 6.0	V	*3
Maximum clamp current		- 2.0	+ 2.0	mA	*7
Total maximum clamp current	Σ Iclamp	-	20	mA	*7
"L" level maximum output current	IOL1	-	15	mA	Normal output*4
	IOL2	-	40	mA	High-current output*4
"L" level average output current	IOLAV1	-	4	mA	Normal output*5
	IOLAV2	-	30	mA	High-current output*5
"L" level maximum total output current	Σlol1	-	125	mA	Normal output
	ΣΙοι2	-	160	mA	High-current output
"L" level average total output current	Σ lolav1	-	40	mA	Normal output*6
	Σ Iolav2	-	40	mA	High-current output*6
"H" level maximum output current	Іон1	-	-15	mA	Normal output*4
	Іон2	-	-40	mA	High-current output*4
"H" level average output current	IOHAV1	-	-4	mA	Normal output*5
	IOHAV2	-	-30	mA	High-current output*5
"H" level maximum total output current	ΣІон1	-	-125	mA	Normal output
	ΣІон2	-	-160	mA	High-current output
"H" level average total output current	ΣΙομαν1	-	-40	mA	Normal output*6
	ΣΙομαν2	-	-40	mA	High-current output*6
Power consumption	PD	-	245	mW	
Operating temperature	TA	-40	+105	°C	
Storage temperature	Tstg	-55	+150	°C	

*1: The parameter is based on $V_{SS} = AV_{SS} = 0.0 V$.

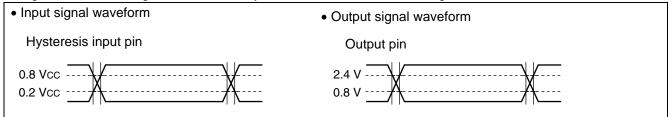
*2: AVcc and AVR should not exceed Vcc.

*3: VI and Vo should not exceed Vcc + 0.3 V. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating.

*4: A peak value of an applicable one pin is specified as a maximum output current.

- *5: An average current value of an applicable one pin within 100 ms is specified as an average output current. (Average value is found by multiplying operating current by operating rate.)
- *6: An average current value of all pins within 100 ms is specified as an average total output current. (Average value is found by multiplying operating current by operating rate.)

*7:

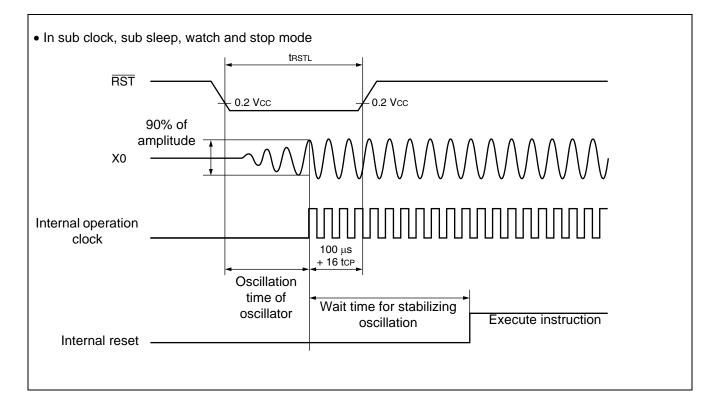

Applicable to pins: P10 to P17, P20 to P27, P30 to P33, P35*, P36*, P37, P40 to P44, P50 to P57
*: P35 and P36 are MB90387S and MB90F387S only.

13.3 DC Characteristics

			(****	- 5.0 V±107	Value	1V35 – 0.0 V	, 14 –	–40 °C to +105
Parameter	Symbol	Pin Name	Conditions	Min		Max	Unit	Remarks
"H" level input	Vins	CMOS hysteresis input pin	_	0.8 Vcc	Тур —	Vcc + 0.3	V	
voltage	Vінм	MD input pin	_	Vcc - 0.3	_	Vcc + 0.3	V	
"L" level input	Vils	CMOS hysteresis input pin	_	Vss - 0.3	_	0.2 Vcc	V	
voltage	Vilm	MD input pin	—	Vss - 0.3	—	Vss + 0.3	V	
"H" level output	Voh1	Pins other than P14 to P17	Vcc = 4.5 V, Іон = -4.0 mA	Vcc - 0.5	_	—	V	
voltage	Vон2	P14 to P17	Vcc = 4.5 V, Іон = -14.0 mA	Vcc - 0.5	_	—	V	
"L" level output	Vol1	Pins other than P14 to P17	Vcc = 4.5 V, IoL = 4.0 mA	—	_	0.4	V	
voltage	Vol2	P14 to P17	Vcc = 4.5 V, Io∟ = 20.0 mA	—	—	0.4	V	
Input leak current	lι∟	All input pins	Vcc = 5.5 V, Vss < Vi < Vcc	-5	_	+5	μA	
Power supply current*	Icc	Vcc	Vcc = 5.0 V, Internally operating at 16 MHz, normal operation.	—	25	30	mA	
			Vcc = 5.0 V, Internally operating at 16 MHz, writing on Flash memory.	_	45	50	mA	MB90F387/S
			Vcc = 5.0 V, Internally operating at 16 MHz, deleting on Flash memory.	_	45	50	mA	MB90F387/S
	lccs		Vcc = 5.0 V, Internally operating at 16 MHz, sleeping.	_	8	12	mA	
	Icts		Vcc = 5.0 V, Internally operating at 2 MHz, transition from main	—	0.75	1.0	mA	MB90F387/S
			clock mode, in time-base timer mode.		0.2	0.35		MB90387/S

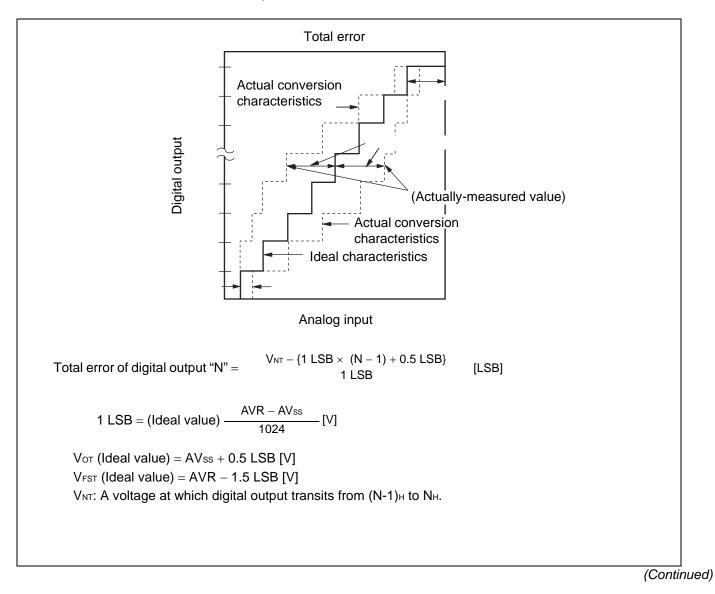
(Vcc = 5.0 V±10%, Vss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

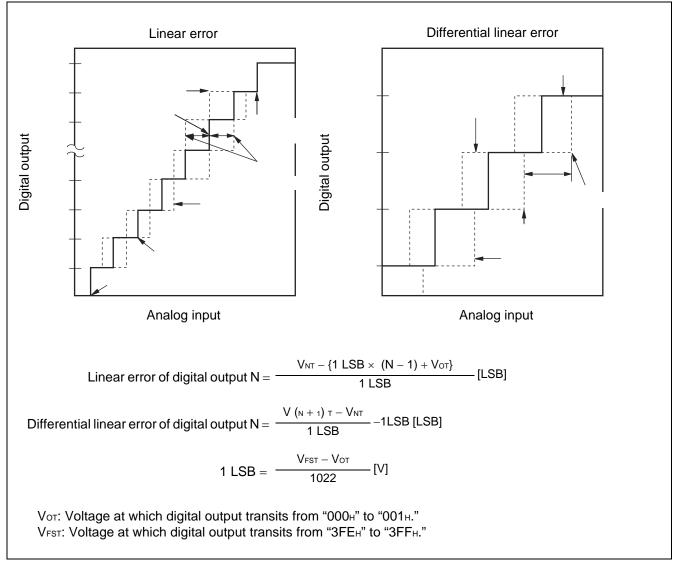
Rating values of alternating current is defined by the measurement reference voltage values shown below:

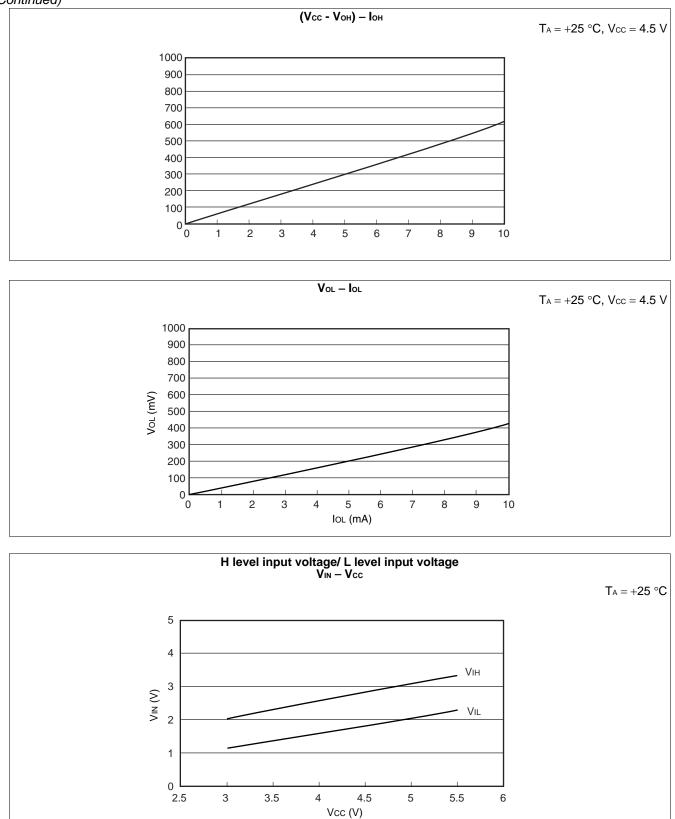

13.4.2 Reset Input Timing

Paramotor	Parameter Symbol Pin Name		Value	Unit	Remarks	
Falameter			Min	Max	Onit	Reindiks
Reset input time	t RSTL	RST	16 tce*3	-	ns	Normal operation
			Oscillation time of oscillator ^{*1} + $100 \ \mu s$ + $16 \ tcP^{*3}$	-		In sub clock ^{*2} , sub sleep ^{*2} , watch ^{*2} and stop mode
			100	_	μS	In timebase timer

*1: Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.


*2: Except for MB90F387S and MB90387S.


*3: Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).


13.6 Definition of A/D Converter Terms

Resolution:	Analog variation that is recognized by an A/D converter.
Linear error:	Deviation between a line across zero-transition line ("00 0000 00 0 0" \leftrightarrow "00 0000 0001") and full-scale transition line ("11 1111 11 1 0" \leftrightarrow "11 1111 1111") and actual conversion characteristics.
Differential linear error:	Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.
Total error:	Difference between an actual value and an ideal value. A total error includes zero transition error, full- scale transition error, and linear error.

(Continued)

(Continued)