

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90387spmt-gs-156

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notes When Using No Sub Clock

■ If an oscillator is not connected to X0A and X1A pin, apply pull-down resistor to X0A pin and leave X1A pin open.

About Power Supply Pins

- If two or more Vcc and Vss pins exist, the pins that should be at the same potential are connected to each other inside the device. For reducing unwanted emissions and preventing malfunction of strobe signals caused by increase of ground level, however, be sure to connect the Vcc and Vss pins to the power source and the ground externally.
- Pay attention to connect a power supply to Vcc and Vss of MB90385 series device in a lowest-possible impedance.
- Near pins of MB90385 series device, connecting a bypass capacitor is recommended at 0.1 µF across Vcc pin and Vss pin.

Crystal Oscillator Circuit

- Noises around X0 and X1 pins cause malfunctions on a MB90385 series device. Design a print circuit so that X0 and X1 pins, an crystal oscillator (or a ceramic oscillator), and bypass capacitor to the ground become as close as possible to each other. Furthermore, avoid wires to X0 and X1 pins crossing each other as much as possible.
- Print circuit designing that surrounds X0 and X1 pins with grounding wires, which ensures stable operation, is strongly recommended.

Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

Sequence of Turning on Power of A/D Converter and Applying Analog Input

- Be sure to turn on digital power (Vcc) before applying signals to the A/D converter and applying analog input signals (AN0 to AN7 pins).
- Be sure to turn off the power of A/D converter and analog input before turning off the digital power source.
- Be sure not to apply AVR exceeding AVcc when turning on and off. (No problems occur if analog and digital power is turned on and off simultaneously.)

Handling Pins When A/D Converter is Not Used

■ If the A/D converter is not used, connect the pins under the following conditions: "AVcc=AVR=Vcc," and "AVss=Vss"

Note on Turning on Power

For preventing malfunctions on built-in step-down circuit, maintain a minimum of 50 μs of voltage rising time (between 0.2 V and 2.7V) when turning on the power.

Stabilization of Supply Voltage

■ A sudden change in the supply voltage may cause the device to malfunction even within the specified Vcc supply voltage operating range. Therefore, the Vcc supply voltage should be stabilized.

For reference, the supply voltage should be controlled so that Vcc ripple variations (peak-to-peak values) at commercial frequencies (50 Hz / 60 Hz) fall below 10% of the standard Vcc supply voltage and the coefficient of fluctuation does not exceed 0.1 V/ms at instantaneous power switching.

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
003910 н	PRLL0	PPG0 reload register L	R/W	8/16-bit PPG timer	XXXXXXXXB
003911 н	PRLH0	PPG0 reload register H	R/W	-	XXXXXXXXB
003912н	PRLL1	PPG1 reload register L	R/W		XXXXXXXXB
003913 н	PRLH1	PPG1 reload register H	R/W		XXXXXXXAB
003914 н	PRLL2	PPG2 reload register L	R/W		XXXXXXXAB
003915 н	PRLH2	PPG2 reload register H	R/W		XXXXXXXAB
003916 н	PRLL3	PPG3 reload register L	R/W		XXXXXXXAB
003917 н	PRLH3	PPG3 reload register H	R/W		XXXXXXXAB
003918н to 00392Fн		(Reserv	ed area) *		
003930н to 003BFFн		(Reserv	ed area) *		
003C00н to 003C0Fн		RAM (General	-purpose RA	M)	
003C10н to 003C13н	IDR0	ID register 0	R/W	CAN controller	XXXXXXXXB to XXXXXXXB
003C14н to 003C17н	IDR1	ID register 1	R/W		XXXXXXXXB to XXXXXXXB
003C18н to 003C1Bн	IDR2	ID register 2	R/W		XXXXXXXXB to XXXXXXXB
003C1Cн to 003C1Fн	IDR3	ID register 3	R/W		XXXXXXXXB to XXXXXXXB
003C20н to 003C23н	IDR4	ID register 4	R/W		XXXXXXXXB to XXXXXXXB
003C24н to 003C27н	IDR5	ID register 5	R/W		XXXXXXXXB to XXXXXXXB
003C28н to 003C2Bн	IDR6	ID register 6	R/W		XXXXXXXXB to XXXXXXXB
003C2Cн to 003C2Fн	IDR7	ID register 7	R/W		XXXXXXXXB to XXXXXXXB
003C30н, 003C31н	DLCR0	DLC register 0	R/W		XXXXXXXXB, XXXXXXXB
003С32н, 003С33н	DLCR1	DLC register 1	R/W		XXXXXXXXB, XXXXXXXB
003C34н, 003C35н	DLCR2	DLC register 2	R/W		XXXXXXXXB, XXXXXXXB
003C36н, 003C37н	DLCR3	DLC register 3	R/W		XXXXXXXXB, XXXXXXXB

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value		
003D0Dн		(Reserve		•			
003D0Eн	TIER	Send completion interrupt permission register	R/W	CAN controller	0000000в		
003D0Fн		(Reserve	ed area) *				
003D10н, 003D11н	AMSR	Acceptance mask selection register	R/W	CAN controller	XXXXXXXXB, XXXXXXXB		
003D12н, 003D13н		(Reserve	ed area) *	·			
003D14н to 003D17н	AMR0	Acceptance mask register 0	R/W	CAN controller	XXXXXXXXB to XXXXXXXB		
003D18н to 003D1Bн	AMR1	Acceptance mask register 1	R/W		XXXXXXXXB to XXXXXXXB		
003D1Cн to 003DFFн		(Reserve	ed area) *				
003E00н to 003EFFн	(Reserved area) *						
003FF0н to 003FFFн		(Reserve	ed area) *				

Initial values:

0: Initial value of this bit is "0."

1: Initial value of this bit is "1."

X: Initial value of this bit is undefined.

*: "Reserved area" should not be written anything. Result of reading from "Reserved area" is undefined.

11. Interrupt Sources, Interrupt Vectors, And Interrupt Control Registers

	El ² OS	Interrupt Vector			Interrupt C	Dui o uitu (*3	
Interrupt Source	Readiness	Nur	nber	Address	ICR	Address	- Priority ^{**}
Reset	×	#08	08н	FFFFDCH	-	-	High
INT 9 instruction	×	#09	09н	FFFFD8H	-	-	\uparrow
Exceptional treatment	×	#10	0Ан	FFFFD4н	-	-	1
CAN controller reception completed (RX)	,	#11	0Вн	FFFFD0H	ICR00	0000B0н*1	
CAN controller transmission completed (TX) / Node status transition (NS)	,	#12	0Сн	FFFFCCH			
Reserved	×	#13	0Dн	FFFFC8H	ICR01	0000B1н	-
Reserved	×	#14	0Ен	FFFFC4H	-		
CAN wakeup	Δ	#15	0 F н	FFFFC0H	ICR02	0000B2 _H *1	-
Time-base timer	×	#16	10н	FFFFBCH	-		
16-bit reload timer 0	Δ	#17	11н	FFFFB8⊦	ICR03	0000B3н*1	1
8/10-bit A/D converter	Δ	#18	12н	FFFFB4⊦	-		
16-bit free-run timer overflow	Δ	#19	13 н	FFFFB0H	ICR04	0000B4н*1	-
Reserved	×	#20	14н	FFFFACH	-		
Reserved	×	#21	15 н	FFFFA8H	ICR05	0000B5н*1	-
PPG timer ch0, ch1 underflow	,	#22	16 н	FFFFA4H			
Input capture 0-input	Δ	#23	17 н	FFFFA0H	ICR06	0000B6н*1	
External interrupt (INT4/INT5)	Δ	#24	18 н	FFFF9CH	-		
Input capture 1-input	Δ	#25	19 н	FFFF98H	ICR07	0000B7н*2	-
PPG timer ch2, ch3 underflow	,	#26	1Ан	FFFF94H			
External interrupt (INT6/INT7)	Δ	#27	1Вн	FFFF90H	ICR08	0000B8н*1	-
Watch timer	Δ	#28	1Сн	FFFF8CH	-		
Reserved	×	#29	1Dн	FFFF88⊦	ICR09	0000B9н*1	1
Input capture 2-input Input capture 3-input	,	#30	1Ен	FFFF84⊦			
Reserved	×	#31	1Fн	FFFF80H	ICR10	0000BAн*1	-
Reserved	×	#32	20н	FFFF7Cн			
Reserved	×	#33	21н	FFFF78н	ICR11	0000BB _H *1	1
Reserved	×	#34	22н	FFFF74н	1		
Reserved	×	#35	23н	FFFF70H	ICR12	0000BCH*1	\downarrow
16-bit reload timer 1	0	#36	24н	FFFF6CH			Low

Time-base Timer Block Diagram

Actual interrupt request number of time-base timer is as follows: Interrupt request number: #16 (10_H)

Watchdog timer control register(WDTC) Watch timer control register (WTC) WRST ERST SRST WTE WT1 WT0 PONR ____ WDCS Watchdog timer 2, Activate Reset occurs _ Counter Watchdog Shift to sleep mode -----2-bit Internal reset Count clock reset clear control Shift to time-base counter - 6 generation generation selector circuit timer mode circuit circuit Shift to watch mode Clear Shift to stop mode 4 4 Time-base timer counter Main clock $\times 2^2$ × 28 × 29 × 210 × 211 × 2¹² × 2¹³ × 2¹⁴ $\times 2^1$ × 215 × 216 × 2¹⁷ $\times 2^{18}$ (dividing HCLK by 2) Watch counter Sub clock $\times 2^2$ × 2⁵ $\times 2^{6}$ × 2⁸ × 2⁹ × 2¹⁰ × 2¹¹ × 2¹² × 2¹³ × 2¹⁴ × 2¹⁵ $\times 2^{1}$ $\times 2^7$. . . SCLK HCLK: Oscillation clock SCLK: Sub clock

Watchdog Timer Block Diagram

12.4 16-bit Input/Output Timer

The 16-bit input/output timer is a compound module composed of 16-bit free-run timer, (1 unit) and input capture (2 units, 4 input pins). The timer, using the 16-bit free-run timer as a basis, enables measurement of clock cycle of an input signal and its pulse width.

Configuration of 16-bit Input/Output Timer

The 16-bit input/output timer is composed of the following modules:

- 16-bit free-run timer (1 unit)
- Input capture (2 units, 2 input pins per unit)

Functions of 16-bit Input/Output Timer

Functions of 16-bit Free-run Timer

The 16-bit free-run timer is composed of 16-bit up counter, timer counter control status register, and prescaler. The 16-bit up counter increments in synchronization with dividing ratio of machine clock.

- Count clock is set among four types of machine clock dividing rates.
- Generation of interrupt is allowed by counter value overflow.
- Activation of expanded intelligent I/O service (EI²OS) is allowed by interrupt generation.
- Counter value of 16-bit free-run timer is cleared to "0000H" by either resetting or software-clearing with timer count clear bit (TCCS: CLR).
- Counter value of 16-bit free-run timer is output to input capture, which is available as base time for capture operation.

Functions of Input Capture

The input capture, upon detecting an edge of a signal input to the input pin from external device, stores a counter value of 16-bit freerun timer at the time of detection into the input capture data register. The function includes the input capture data registers corresponding to four input pins, input capture control status register, and edge detection circuit.

- Rising edge, falling edge, and both edges are selectable for detection.
- Generating interrupt on CPU is allowed by detecting an edge of input signal.
- Expanded intelligent I/O service (EI²OS) is activated by interrupt generation.
- The four input capture input pins and input capture data registers allows monitoring of a maximum of four events.

16-bit Input/Output Timer Block Diagram

16-bit Free-run Timer

Counter value of 16-bit free-run timer is used as reference time (base time) of input capture.

Input Capture

Input capture detects rising edge, falling edge or both edges and retains a counter value of 16-bit free-run timer. Detection of edge on input signal is allowed to generate interrupt.

16-bit Free-run Timer Block Diagram

Detailed Pin Assignment on Block Diagram

The 16-bit input/output timer includes a 16-bit free-run timer. Interrupt request number of the 16-bit free-run timer is as follows: Interrupt request number: 19 (13_H)

Prescaler

The prescaler divides a machine clock and provides a counter clock to the 16-bit up counter. Dividing ratio of the machine clock is specified by timer counter control status register (TCCS) among four values.

Timer Counter Data Register (TCDT)

The timer counter data register is a 16-bit up counter. A current counter value of the 16-bit free-run timer is read. Writing a value during halt of the counter allows setting an arbitrary counter value.

Input Capture Block Diagram

12.6 Watch Timer Outline

The watch timer is a 15-bit free-run counter that increments in synchronization with sub clock.

- Interval time is selectable among 7 choices, and generation of interrupt request is allowed for each interval.
- Provides operation clock to the subclock oscillation stabilizing wait timer and watchdog timer.
- Always uses subclock as a count clock regardless of settings of clock selection register (CKSCR).

Interval Timer Function

- In the watch timer, a bit corresponding to the interval time overflows (carry-over) when an interval time, which is specified by interval time selection bit, is reached. Then overflow flag bit is set (WTC: WTOF=1).
- If an interrupt by overflow is permitted (WTC: WTIE=1), an interrupt request is generated upon setting an overflow flag bit.
- Interval time of watch timer is selectable among the following seven choices:

Interval Time of Watch Timer

Sub Clock Cycle	Interval Time
1/SCLK (122 μs)	2 ⁸ /SCLK (31.25 ms)
	2º/SCLK (62.5 ms)
	2 ¹⁰ /SCLK (125 ms)
	2 ¹¹ /SCLK (250 ms)
	2 ¹² /SCLK (500 ms)
	2 ¹³ /SCLK (1.0 s)
	2 ¹⁴ /SCLK (2.0 s)

SCLK: Sub clock frequency

Values in parentheses "()" are calculation when operating with 8.192 kHz clock.

Watch Timer Block Diagram

Actual interrupt request number of watch timer is as follows: Interrupt request number: #28 (1C_H)

Watch Timer Counter

A 15-bit up counter that uses sub clock (SCLK) as a count clock.

Counter Clear Circuit

A circuit that clears the watch timer counter.

8/16-bit PPG Timer 1 Block Diagram

12.12 CAN Controller

The Controller Area Network (CAN) is a serial communication protocol compliant with CANVer2.0A and Ver2.0B. The protocol allows data transmission and reception in both standard frame format and expanded frame format.

Features of CAN Controller

- CAN controller format is compliant with CANVer2.0A and Ver2.0B.
- The protocol allows data transmission and reception in standard frame format and expanded frame format.
- Automatic transmission of data frame by remote frame reception is allowed.
- Baud rate ranges from 10 kbps to 1 Mbps (with 16-MHz machine clock).

Table 12-5. Data Transmission Baud Rate

Machine Clock	Baud Rate (Max)
16 MHz	1 Mbps
12 MHz	1 Mbps
8 MHz	1 Mbps
4 MHz	500 kbps
2 MHz	250 kbps

- Provided with 8 transmission/reception message buffers.
- Transmission/reception is allowed at ID 11 bit in standard format, and at ID 29 bit in expanded frame format.
- Specifying 0 byte to 8 bytes is allowed in message data.
- Multi-level message buffer configuration is allowed.
- CAN controller has two built-in acceptance masks. Mask settings are independently allowed for the two acceptance masks on reception IDs.
- The two acceptance masks allow reception in standard frame format and expanded frame format.
- For types of masking, all-bit comparison, all-bit masking, and partial masking with acceptance mask register 0/1, are specifiable.

Sector Configuration of 512 Kbit Flash Memory

Flash memory	CPU address	Writer address*
	FF0000H	70000н
SA0 (32 Kbytes)		
	FF7FFFH	77FFFн
	FF8000H	78000н
SA1 (8 Kbytes)		
	FF9FFFH	79FFFн
	FFA000H	7А000н
SA2 (8 Kbytes)		
	FFBFFFH	7BFFFн
	FFC000H	7С000н
SA3 (16 Kbytes)		
	FFFFFH	7FFFFh

*: "Writer address" is an address equivalent to CPU address, which is used when data is written on Flash memory, using parallel writer. When writing/ deleting data with general-purpose writer, the writer address is used for writing and deleting.

13. Electrical Characteristics

13.1 Absolute Maximum Rating

Baramatar	Symbol	Rat	ing	Unit	Bomarka
Falameter	Symbol	Min	Max	Unit	Remarks
Power supply voltage*1	Vcc	Vss - 0.3	Vss + 6.0	V	
	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc*2
	AVR	Vss - 0.3	Vss + 6.0	V	$AVcc \ge AVR^{*2}$
Input voltage*1	Vı	Vss - 0.3	Vss + 6.0	V	*3
Output voltage*1	Vo	Vss - 0.3	Vss + 6.0	V	*3
Maximum clamp current		- 2.0	+ 2.0	mA	*7
Total maximum clamp current	Σ Iclamp	-	20	mA	*7
"L" level maximum output current	lol1	-	15	mA	Normal output*4
	lol2	-	40	mA	High-current output*4
"L" level average output current	OLAV1	-	4	mA	Normal output*5
	OLAV2	-	30	mA	High-current output*5
"L" level maximum total output current	ΣΙοι	-	125	mA	Normal output
	ΣΙοι2	-	160	mA	High-current output
"L" level average total output current	Σ lolav1	-	40	mA	Normal output*6
	Σ Iolav2	-	40	mA	High-current output*6
"H" level maximum output current	Іон1	-	-15	mA	Normal output*4
	Іон2	-	-40	mA	High-current output*4
"H" level average output current	IOHAV1	-	-4	mA	Normal output*5
	IOHAV2	-	-30	mA	High-current output*5
"H" level maximum total output current	Σ Ι ΟΗ1	-	-125	mA	Normal output
	ΣІон2	-	-160	mA	High-current output
"H" level average total output current	ΣΙομαν1	-	-40	mA	Normal output*6
	ΣΙοήαν2	-	-40	mA	High-current output*6
Power consumption	PD	-	245	mW	
Operating temperature	TA	-40	+105	°C	
Storage temperature	Tstg	-55	+150	°C	

*1: The parameter is based on $V_{SS} = AV_{SS} = 0.0 V.$

*2: AVcc and AVR should not exceed Vcc.

*3: VI and Vo should not exceed Vcc + 0.3 V. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating.

*4: A peak value of an applicable one pin is specified as a maximum output current.

- *5: An average current value of an applicable one pin within 100 ms is specified as an average output current. (Average value is found by multiplying operating current by operating rate.)
- *6: An average current value of all pins within 100 ms is specified as an average total output current. (Average value is found by multiplying operating current by operating rate.)

*7:

Applicable to pins: P10 to P17, P20 to P27, P30 to P33, P35*, P36*, P37, P40 to P44, P50 to P57
 *: P35 and P36 are MB90387S and MB90F387S only.

13.4 AC Characteristics

13.4.1 Clock Timing

Parameter	Symbol	Pin Name	Value			Unit	Demarka
Farameter	Symbol		Min	Тур	Max	Unit	Remarks
Clock frequency	fc	X0, X1	3	—	8	MHz	When crystal or ceramic resonator is used*2
			3	_	16	MHz	External clock input*1, *2
			4	_	16	MHz	PLL Multiply by 1 *2
			4	_	8	MHz	PLL Multiply by 2 *2
			4	_	5.33	MHz	PLL Multiply by 3 *2
			4	—	4	MHz	PLL Multiply by 4 *2
	fc∟	X0A, X1A	_	32.768		kHz	
Clock cycle time	t HCYL	X0, X1	125	—	333	ns	
	t LCYL	X0A, X1A	_	30.5		μS	
Input clock pulse width	Pwh, Pwl	X0	10	—	_	ns	Set duty factor at 30% to 70% as a guideline.
	Pwlh,Pwll	X0A	_	15.2	_	μs	
Input clock rise time and fall time	tcr, tcr	X0	_	—	5	ns	When external clock is used
Internal operation clock frequency	fср		1.5	—	16	MHz	When main clock is used
	f LCP	_	_	8.192		kHz	When sub clock is used
Internal operation clock cycle time	tcp	—	62.5	—	666	ns	When main clock is used
	t LCP	_	_	122.1		μS	When sub clock is used

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 \circ C to +105 \circ C)$

*1: Internal operation clock frequency should not exceed 16 MHz.

*2: When selecting the PLL clock, the range of clock frequency is limited. Use this product within range as mentioned in "Relation among external clock frequency and internal clock frequency".

Rating values of alternating current is defined by the measurement reference voltage values shown below:

13.4.2 Reset Input Timing

Baramotor	Symbol	Din Nama	Value	Unit	Pomarks	
Farameter	Symbol		Min	Max	Onit	Remarks
Reset input time	t RSTL	RST	16 tcP ^{*3}	Ι	ns	Normal operation
			Oscillation time of oscillator ^{*1} + $100 \ \mu s + 16 \ t_{CP}^{*3}$	_	_	In sub clock*2, sub sleep*2, watch*2 and stop mode
			100	-	μS	In timebase timer

*1: Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.

*2: Except for MB90F387S and MB90387S.

*3: Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).

(Continued)

17. Major Changes

Spansion Publication Number: DS07-13717-5E

Page	Section	Change Results
4	■ PRODUCT LINEUP	Changed the number of channel of 8/16 bit PPG timer. or one 16-bit channel \rightarrow or two 16-bit channels
13	■ BLOCK DIAGRAM	Changed the direction of arrow of TIN0, TIN1 signals of 16-bit reload timer. right arrow (output) \rightarrow left arrow (input)
67	 ELECTRIC CHARACTERISTICS 4. AC Characteristics (4) UART timing 	Changed the value of Serial clock. Serial clock "H" pulse width: 4tcp→2tcp Serial clock "L" pulse width: 4tcp→2tcp

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB90387/387S/F387/F387S, MB90V495G, 16-bit Microcontrollers F ² MC-16LX MB90385 Series Document Number:002-07765						
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
**	—	AKIH	12/19/2008	Migrated to Cypress and assigned document number 002-07765. No change to document contents or format.		
*A	6059071	SSAS	02/05/2018	Updated to Cypress template Package: FPT-48P-M26> LQA048		