

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90387spmt-gs-255

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16-bit Microcontrollers F²MC-16LX MB90385 Series

MB90385 series devices are general-purpose high-performance 16-bit micro controllers designed for process control of consumer products, which require high-speed real-time processing. The devices of this series have the built-in full-CAN interface.

The system, inheriting the architecture of F²MC family, employs additional instruction ready for high-level languages, expanded addressing mode, enhanced multiply-divide instructions, and enriched bit-processing instructions. Furthermore, employment of 32-bit accumulator achieves processing of long-word data (32 bits).

The peripheral resources of MB90385 series include the following:

8/10-bit A/D converter, UART (SCI), 8/16-bit PPG timer, 16-bit input-output timer (16-bit free-run timer, input capture 0, 1, 2, 3 (ICU)), and CAN controller.

Features

Clock

- Built-in PLL clock frequency multiplication circuit
- Selection of machine clocks (PLL clocks) is allowed among frequency division by two on oscillation clock, and multiplication of 1 to 4 times of oscillation clock (for 4-MHz oscillation clock, 4 MHz to 16 MHz).
- Operation by sub-clock (8.192 kHz) is allowed. (MB90387, MB90F387)
- Minimum execution time of instruction: 62.5 ns (when operating with 4-MHz oscillation clock, and 4-time multiplied PLL clock).

16 Mbyte CPU memory Space

24-bit internal addressing

Instruction System Best Suited to Controller

- Wide choice of data types (bit, byte, word, and long word)
- Wide choice of addressing modes (23 types)
- Enhanced multiply-divide instructions and RETI instructions
- Enhanced high-precision computing with 32-bit accumulator

Instruction System Compatible with High-level Language (C language) and Multitask

- Employing system stack pointer
- Enhanced various pointer indirect instructions
- Barrel shift instructions

Increased Processing Speed

4-byte instruction queue

Powerful Interrupt Function with 8 Levels and 34 Factors

Automatic Data Transfer Function Independent of CPU

Expanded intelligent I/O service function (EI² OS): Maximum of 16 channels

Low Power Consumption (standby) Mode

■ Sleep mode (a mode that halts CPU operating clock)

- Time-base timer mode (a mode that operates oscillation clock, sub clock, time-base timer and watch timer only)
- Watch mode (a mode that operates sub clock and watch timer only)
- Stop mode (a mode that stops oscillation clock and sub clock)
- CPU blocking operation mode

Process

CMOS technology

I/O Port

General-purpose input/output port (CMOS output):

MB90387, MB90F387: 34 ports (including 4 high-current output ports) MB90387S, MB90F387S: 36 ports (including 4 high-current output ports)

Timer

- Time-base timer, watch timer, watchdog timer: 1 channel
- 8/16-bit PPG timer: 8-bit x 4 channels, or 16-bit x 2 channels
- 16-bit reload timer: 2 channels
- 16-bit input/output timer
- 16-bit free run timer: 1 channel
- □ 16-bit input capture: (ICU): 4 channels

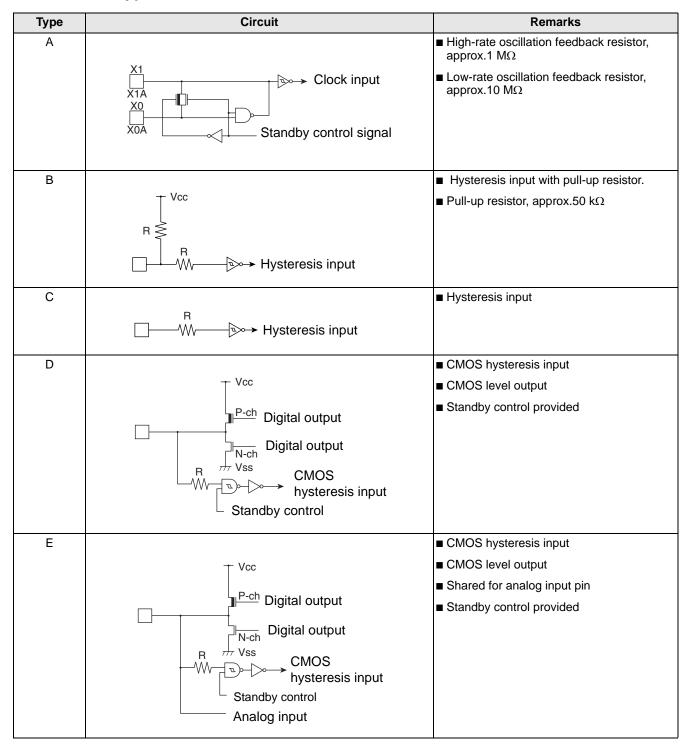
Interrupt request is issued upon latching a count value of 16bit free run timer by detection of an edge on pin input.

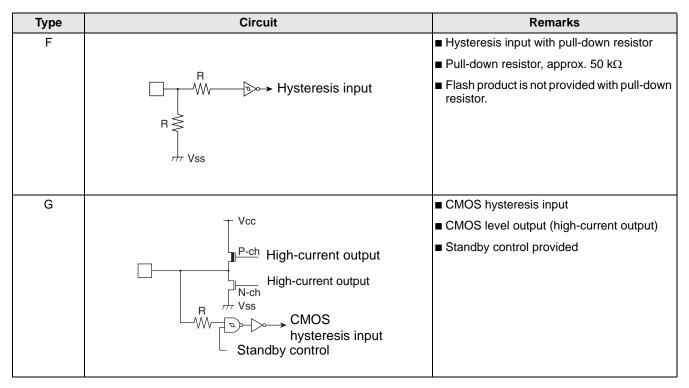
CAN Controller: 1 channel

- Compliant with Ver2.0A and Ver2.0B CAN specifications
- 8 built-in message buffers
- Transmission rate of 10 kbps to 1 Mbps (by 16 MHz machine clock)
- CAN wake-up

198 Champion Court

UART (SCI): 1 channel


- Equipped with full-duplex double buffer
- Clock-asynchronous or clock-synchronous serial transmission is available.


Cypress Semiconductor Corporation

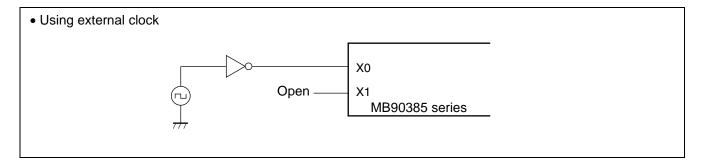
Document Number: 002-07765 Rev. *A

San Jose, CA 95134-1709
 408-943-2600
 Revised February 5, 2018

6. I/O Circuit Type

7. Handling Devices

Do Not Exceed Maximum Rating (preventing "latch up")


- On a CMOS IC, latch-up may occur when applying a voltage higher than Vcc or a voltage lower than Vss to input or output pin, which has no middle or high withstand voltage. Latch-up may also occur when a voltage exceeding maximum rating is applied across Vcc pin and Vss pin.
- Latch-up causes drastic increase of power current, which may lead to destruction of elements by heat. Extreme caution must be taken not to exceed maximum rating.
- When turning on and off analog power source, take extra care not to apply an analog power voltages (AVcc and AVR) and analog input voltage that are higher than digital power voltage (Vcc).

Handling Unused Pins

Leaving unused input pins open may cause permanent destruction by malfunction or latch-up. Apply pull-up or pull-down process to the unused pins using resistors of 2 kΩ or higher. Leave unused input/output pins open under output status, or process as input pins if they are under input status.

Using External Clock

■ When using an external clock, drive only X0 pin and leave X1 pin open. An example of using an external clock is shown below.

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value	
000038н		(Reserve	ed area) *			
to 00003Fн						
000040н	PPGC0	PPG0 operation mode control register	8/16-bit PPG timer 0/	0Х000ХХ1в		
000041н	PPGC1	PPG1 operation mode control register		0Х00001в		
000042н	PPG01	PPG0/1 count clock selection register	R/W		000000XXB	
000043н		(Reserve	ed area) *			
000044н	PPGC2	PPG2 operation mode control register	0X000XX1в			
000045н	PPGC3	PPG3 operation mode control register	3			
000046н	PPG23	PPG2/3 count clock selection register	R/W	1 [00000XXв	
000047н to 00004Fн		(Reserve	ed area) *	· ·		
000050н	IPCP0	Input capture data register 0	oture data register 0 R 16-bit ir		XXXXXXXXB	
000051н				timer	XXXXXXXXB	
000052н	IPCP1	Input capture data register 1	R	1 [XXXXXXXXB	
000053н					XXXXXXXXB	
000054н	ICS01	Input capture control status register	R/W	1 [0000000в	
000055н	ICS23				0000000в	
000056н	TCDT	Timer counter data register	R/W	1 [0000000в	
000057н					0000000в	
000058н	TCCS	Timer counter control status register	R/W	1 [0000000в	
000059н		(Reserve	ed area) *			
00005Ан	IPCP2	Input capture data register 2	R	16-bit input/output	XXXXXXXXB	
00005Вн				timer	XXXXXXXXB	
00005Сн	IPCP3	Input capture data register 3	R		XXXXXXXXB	
00005Dн					XXXXXXXXB	
00005Eнto 000065н		(Reserve	ed area) *			
000066н	TMCSR0	Timer control status register	R/W	16-bit reload timer 0	0000000в	
000067н			R/W		XXXX0000 _B	
000068н	TMCSR1		R/W	16-bit reload timer 1	0000000в	
000069н			R/W] Γ	XXXX0000b	
00006Анto 00006Ен		(Reserve	ed area) *			
00006Fн	ROMM	ROM mirroring function selection register	W	ROM mirroring function selection module	XXXXXXX1B	
000070н to 00007Fн		(Reserve	ed area) *			
000080н	BVALR	Message buffer enabling register	R/W	CAN controller	0000000в	
000081н			ed area) *			
000082н	TREQR	Send request register	R/W	CAN controller	0000000в	

Interrupt Source	El ² OS				Interrupt C	Priority*3	
interrupt Source	Readiness	Number		Address	ICR	Address	FIOTILY
UART1 reception completed	O	#37	25н	FFFF68H	ICR13	0000BDH*1	High
UART1 transmission completed	Δ	#38	26н	FFFF64⊦			\uparrow
Reserved	×	#39	27н	FFFF60H	ICR14	0000BE _H *1	
Reserved	×	#40	28н	FFFF5CH			
Flash memory	×	#41	29н	FFFF58H	ICR15	0000BF _H *1	\downarrow
Delay interrupt generation module	×	#42	2Ан	FFFF54⊦	<u> </u>		Low

○ : Available

× : Unavailable

© : Available El²OS function is provided.

 Δ : Available when a cause of interrupt sharing a same ICR is not used.

*1:

□ Peripheral functions sharing an ICR register have the same interrupt level.

□ If peripheral functions share an ICR register, only one function is available when using expanded intelligent I/O service.

If peripheral functions share an ICR register, a function using expanded intelligent I/O service does not allow interrupt by another function.

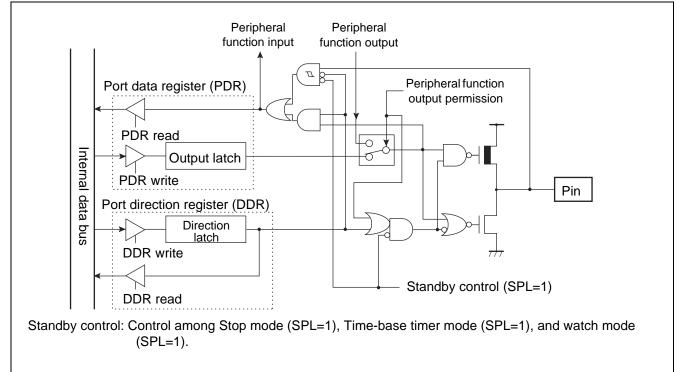
*2: Input capture 1 corresponds to EI2OS, however, PPG does not. When using EI2OS by input capture 1, interrupt should be disabled for PPG.

*3:Priority when two or more interrupts of a same level occur simultaneously.

12. Peripheral Resources

12.1 I/O Ports

The I/O ports are used as general-purpose input/output ports (parallel I/O ports). The MB60385 series model is provided with 5 ports (34 inputs). The ports function as input/output pins for peripheral functions also.

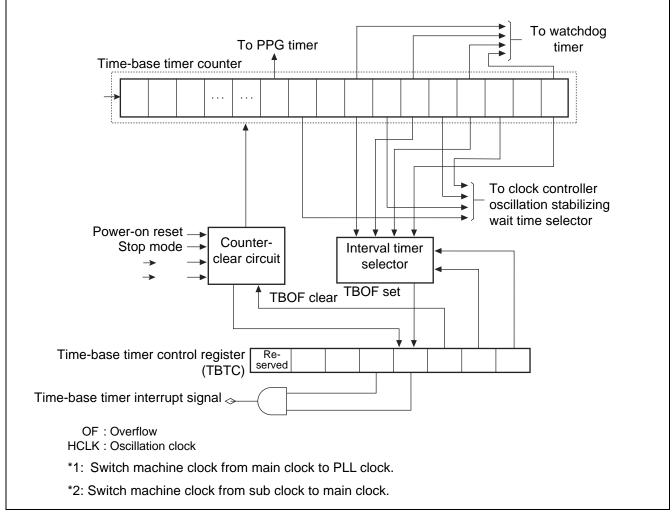

I/O Port Functions

An I/O port, using port data resister (PDR), outputs the output data to I/O pin and input a signal input to I/O port. The port direction register (DDR) specifies direction of input/output of I/O pins on a bit-by-bit basis.

The following summarizes functions of the ports and sharing peripheral functions:

- Port 1: General-purpose input/output port, used also for PPG timer output and input capture inputs.
- Port 2: General-purpose input/output port, used also for reload timer input/output and external interrupt input.
- Port 3: General-purpose input/output port, used also for A/D converter activation trigger pin.
- Port 4: General-purpose input/output port, used also for UART input/output and CAN controller send/receive pin.
- Port 5: General-purpose input/output port, used also analog input pin.

Port 3 Registers


- Port 3 registers include port 3 data register (PDR3) and port 3 direction register (DDR3).
- The bits configuring the register correspond to port 3 pins on a one-to-one basis.

Relation between Port 3 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 3	PDR3, DDR3	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	P37	P36*	P35*	_	P33	P32	P31	P30

*: P35 and P36 do not exist on MB90387and MB90F387.

Time-base Timer Block Diagram

Actual interrupt request number of time-base timer is as follows: Interrupt request number: #16 (10_H)

Watchdog timer control register(WDTC) Watch timer control register (WTC) WRST ERST SRST WTE WT1 WT0 PONR ____ WDCS Watchdog timer 2, Activate Reset occurs _ Counter Watchdog Shift to sleep mode -----2-bit Internal reset Count clock reset clear control Shift to time-base counter - 6 generation generation selector circuit timer mode circuit circuit Shift to watch mode Clear Shift to stop mode 4 4 Time-base timer counter Main clock $\times 2^2$ × 28 × 29 × 210 × 211 × 2¹² × 2¹³ × 2¹⁴ $\times 2^1$ × 215 × 216 × 2¹⁷ $\times 2^{18}$ (dividing HCLK by 2) Watch counter Sub clock $\times 2^2$ × 2⁵ $\times 2^{6}$ × 2⁸ × 2⁹ × 2¹⁰ × 2¹¹ × 2¹² × 2¹³ × 2¹⁴ × 2¹⁵ $\times 2^{1}$ $\times 2^7$. SCLK HCLK: Oscillation clock SCLK: Sub clock

Watchdog Timer Block Diagram

12.4 16-bit Input/Output Timer

The 16-bit input/output timer is a compound module composed of 16-bit free-run timer, (1 unit) and input capture (2 units, 4 input pins). The timer, using the 16-bit free-run timer as a basis, enables measurement of clock cycle of an input signal and its pulse width.

Configuration of 16-bit Input/Output Timer

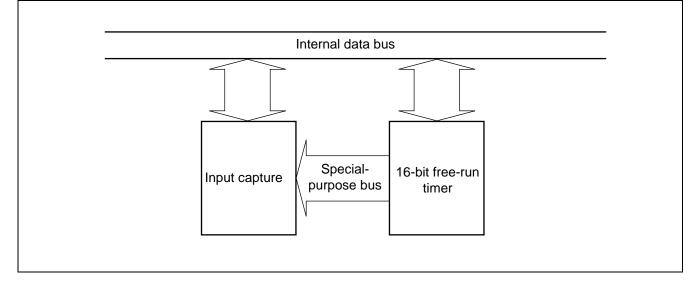
The 16-bit input/output timer is composed of the following modules:

- 16-bit free-run timer (1 unit)
- Input capture (2 units, 2 input pins per unit)

Functions of 16-bit Input/Output Timer

Functions of 16-bit Free-run Timer

The 16-bit free-run timer is composed of 16-bit up counter, timer counter control status register, and prescaler. The 16-bit up counter increments in synchronization with dividing ratio of machine clock.


- Count clock is set among four types of machine clock dividing rates.
- Generation of interrupt is allowed by counter value overflow.
- Activation of expanded intelligent I/O service (EI²OS) is allowed by interrupt generation.
- Counter value of 16-bit free-run timer is cleared to "0000^H" by either resetting or software-clearing with timer count clear bit (TCCS: CLR).
- Counter value of 16-bit free-run timer is output to input capture, which is available as base time for capture operation.

Functions of Input Capture

The input capture, upon detecting an edge of a signal input to the input pin from external device, stores a counter value of 16-bit freerun timer at the time of detection into the input capture data register. The function includes the input capture data registers corresponding to four input pins, input capture control status register, and edge detection circuit.

- Rising edge, falling edge, and both edges are selectable for detection.
- Generating interrupt on CPU is allowed by detecting an edge of input signal.
- Expanded intelligent I/O service (EI²OS) is activated by interrupt generation.
- The four input capture input pins and input capture data registers allows monitoring of a maximum of four events.

16-bit Input/Output Timer Block Diagram

12.7 8/16-bit PPG Timer Outline

The 8/16-bit PPG timer is a 2-channel reload timer module (PPG0 and PPG1) that allows outputting pulses of arbitrary cycle and duty cycle. Combination of the two channels allows selection among the following operations:

- 8-bit PPG output 2-channel independent operation mode
- 16-bit PPG output operation mode
- 8-bit and 8-bit PPG output operation mode

MB90385 series device has two 8/16-bit built-in PPG timers. This section describes functions of PPG0/1. PPG2/3 have the same functions as those of PPG0/1.

Functions of 8/16-bit PPG Timer

The 8/16-bit PPG timer is composed of four 8-bit reload register (PRLH0/PRLL0, PRLH1/PRLL1) and two PPG down counters (PCNT0, PCNT1).

- Widths of "H" and "L" in output pulse are specifiable independently. Cycle and duty factor of output pulse is specifiable arbitrarily.
- Count clock is selectable among 6 internal clocks.
- The timer is usable as an interval timer, by generating interrupt requests for each interval.
- The time is usable as a D/A converter, with an external circuit.

12.9 DTP/External Interrupt and CAN Wakeup Outline

DTP/external interrupt transfers an interrupt request generated by an external peripheral device or a data transmission request to CPU, generating external interrupt request and activating expanded intelligent I/O service. Input RX of CAN controller is used as external interrupt input.

DTP/External Interrupt and CAN Wakeup Function

An interrupt request input from external peripheral device to external input pins (INT7 to INT4) and RX pin, just as interrupt request of peripheral device, generates an interrupt request. The interrupt request generates an external interrupt and activates expanded intelligent I/O service (EI²OS).

If the expanded intelligent I/O service (EI²OS) has been disabled by interrupt control register (ICR: ISE=0), external interrupt function is enabled and branches to interrupt processing.

If the EI²OS has been enabled, (ICR: ISE=1), DTP function is enabled and automatic data transmission is performed by EI²OS. After performing specified number of data transmission processes, the process branches to interrupt processing.

	External Interrupt	DTP Function						
Input pin	5 pins (RX, and INT4 to INT7)							
Interrupt cause	Specify for each pin with detection level setting register (ELVR).							
	Input of "H" level/"L" level/rising edge/falling edge.	Input of "H" level/ "L" level						
Interrupt number	#15 (0Fн), #24 (18н), #27 (1Вн)	#15 (0Fн), #24 (18н), #27 (1Вн)						
Interrupt control	Enabling or disabling output of interrupt request, (ENIR).	using DTP/external interrupt permission register						
Interrupt flag	Retaining interrupt cause with DTP/external inter	rrupt cause register (EIRR).						
Process selection	Disable El ² OS (ICR: ISE=0)	Enable El ² OS (ICR: ISE=1)						
Process	Branch to external interrupt process	After automatic data transmission by El ² OS for specified number of times, branch to interrupt process.						

Table 12-2.	DTP/External In	terrupt and CAN	Wakeup Outline
-------------	-----------------	-----------------	----------------

12.11 UART Outline

UART is a general-purpose serial data communication interface for synchronous and asynchronous communication using external devices.

- Provided with bi-directional communication function for both clock-synchronous and clock-asynchronous modes.
- Provided with master/slave communication function (multi-processor mode). (Only master side is available.)
- Interrupt request is generated upon completion of reception, completion of transmission and detection of reception error.
- Ready for expanded intelligent service, El²OS.

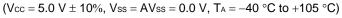
Table 12-3. UART Functions

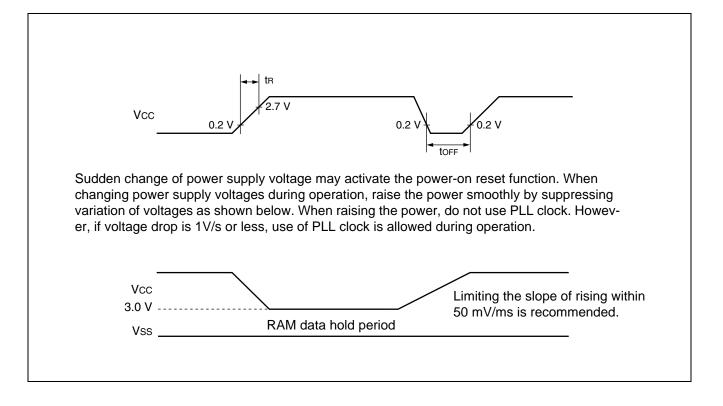
	Description
Data buffer	Full-duplex double buffer
Transmission mode	Clock synchronous (No start/stop bit, no parity bit) Clock asynchronous (start-stop synchronous)
Baud rate	Built-in special-purpose baud-rate generator. Setting is selectable among 8 values. Input of external values is allowed. Use of clock from external timer (16-bit reload timer 0) is allowed.
Data length	7 bits (only asynchronous normal mode) 8 bits
Signaling system	Non Return to Zero (NRZ) system
Reception error detection	Framing error Overrun error Parity error (not detectable in operation mode 1 (multi-processor mode))
Interrupt request	Receive interrupt (reception completed, reception error detected) Transmission interrupt (transmission completed) Ready for expanded intelligent I/O service (El ² OS) in both transmission and reception
Master/slave communication function (asynchronous, multi-processor mode)	Communication between 1 (master) and n (slaves) are available (usable as master only).

Note: Start/stop bit is not added upon clock-synchronous transmission. Data only is transmitted.

Table 12-4. UART Operation Modes

	Operation Mode	Data L	ength	Synchronization	Stop Bit Length		
	Operation mode	With Parity	Without Parity	Synchronization	Stop Bit Length		
0	Asynchronous mode (normal mode)	7-bit c	or 8-bit	Asynchronous	1- bit or 2-bit *2		
1	Multi processor mode	8+1*1	8+1*1 –				
2	Synchronous mode	8 –		Synchronous mode 8 – S		Synchronous	No


-: Disallowed


1: "+1" is an address/data selection bit used for communication control (bit 11 of SCR1 register: A/D).

2: Only 1 bit is detected as a stop bit on data reception.

13.4.3 Power-on Reset

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
Farameter	Symbol		Conditions	Min		Onit	reliaiks
Power supply rise time	tR	Vcc	-	0.05	30	ms	
Power supply shutdown time	toff	Vcc		1	-	ms	Waiting time until power-on

13.4.4 UART Timing

Parameter	Symbol	Symbol Pin Name Con		Value		Unit	Remarks
Falameter	Parameter Symbol Pin Name Conditions		Conditions	Min	Max	Unit	Remarks
Serial clock cycle time	tscyc	SCK1	Internal shift clock	4 tcp *	-	ns	
$SCK \downarrow \to SOT$ delay time	t slov	SCK1, SOT1	mode output pin is: CL = 80 pF+1TTL.	-80	+80	ns	
Valid SIN \rightarrow SCK \uparrow	t ivsh	SCK1, SIN1		100	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнix	SCK1, SIN1		60	-	ns	
Serial clock "H" pulse width	t shsl	SCK1	External shift clock	2 tcp *	-	ns	
Serial clock "L" pulse width	tslsh	SCK1	mode output pin is: CL = 80 pF+1TTL.	2 tcp *	-	ns	
$SCK \downarrow \to SOT$ delay time	tslov	SCK1, SOT1		-	150	ns	
Valid SIN \rightarrow SCK \uparrow	t ivsh	SCK1, SIN1		60	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнix	SCK1, SIN1		60	_	ns	

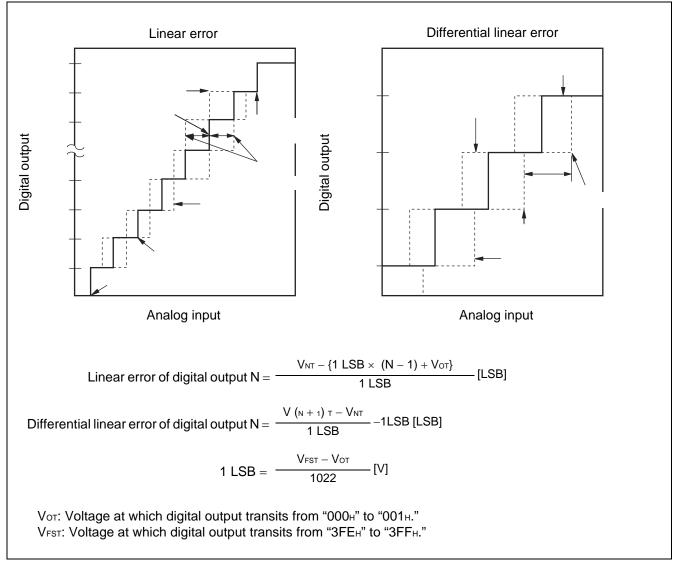
(Vcc = 4.5 V to 5.5 V, Vss = 0.0 V, T_A = -40 °C to +105 °C)

*: Refer to Clock Timing ratings for $t_{\mbox{\tiny CP}}$ (internal operation clock cycle time).

Notes:

■ AC Characteristics in CLK synchronous mode.

 \blacksquare C_L is a load capacitance value on pins for testing.


13.5 A/D Converter

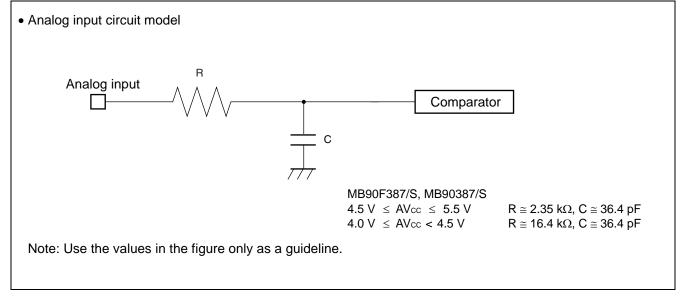
Deremeter	Cumple of	Din Marrie		Value	l les it	Domorika	
Parameter	Symbol	Pin Name	Min	Тур	Max	Unit	Remarks
Resolution	-	-	_	_	10	bit	
Total error	_	_	_	_	± 3.0	LSB	
Nonlinear error	-	_	_	_	± 2.5	LSB	
Differential linear error	-	-	_	_	± 1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	1 LSB = (AVR – AVss) / 1024
Full-scale transition voltage	Vfst	AN0 to AN7	AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	V	
Compare time	-	-	66 tcp *1	_	_	ns	With 16 MHz machine clock $5.5 \text{ V} \ge AV_{CC} \ge 4.5 \text{ V}$
			88 tcp *1	_	_	ns	With 16 MHz machine clock $4.5 \text{ V} > AV_{CC} \ge 4.0 \text{ V}$
Sampling time	-	-	32 tcp *1	_	_	ns	With 16 MHz machine clock $5.5 \text{ V} \ge AV_{CC} \ge 4.5 \text{ V}$
			128 tcp *1	_	_	ns	With 16 MHz machine clock 4.5 V > AVcc ≥ 4.0 V
Analog port input current	Iain	AN0 to AN7	-	-	10	μA	
Analog input voltage	Vain	AN0 to AN7	AVss	-	AVR	V	
Reference voltage	-	AVR	AVss + 2.7	_	AVcc	V	
Power supply current	la	AVcc	_	3.5	7.5	mA	
	Іан	AVcc	—	-	5	μA	*2
Reference voltage	IR	AVR	_	165	250	μA	
supplying current	IRH	AVR	_	_	5	μA	*2
Variation among channels	-	AN0 to AN7	_	-	4	LSB	

 $(V_{CC} = AV_{CC} = 4.0 \text{ V to } 5.5 \text{ V}, \text{ Vss} = AV_{SS} = 0.0 \text{ V}, 3.0 \text{ V} \le AVR - AV_{SS}, T_A = -40 \text{ }^{\circ}C \text{ to } +105 \text{ }^{\circ}C)$

*1: Refer to Clock Timing on AC Characteristics.

*2: If A/D converter is not operating, a current when CPU is stopped is applicable (Vcc=AVcc=AVR=5.0 V).

(Continued)

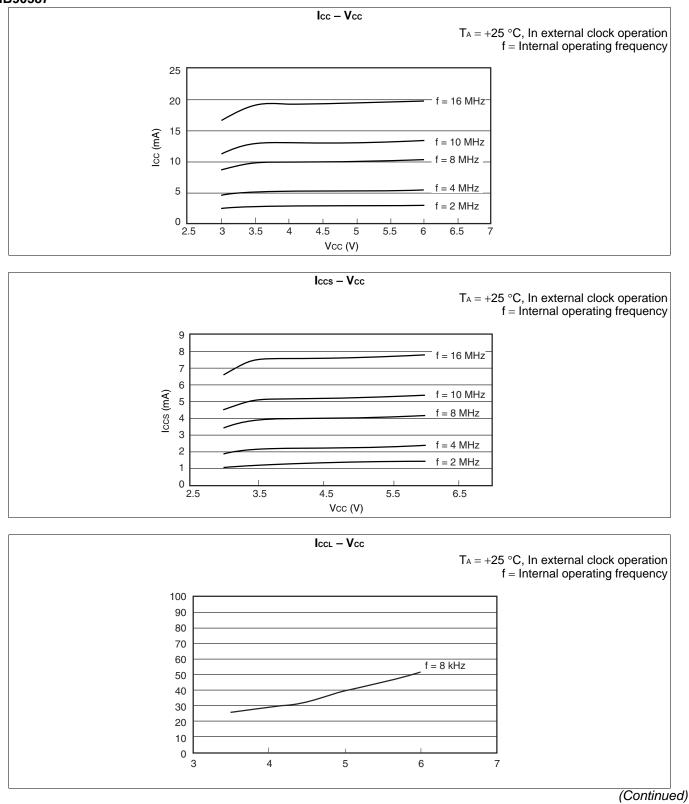

13.7 Notes on A/D Converter Section

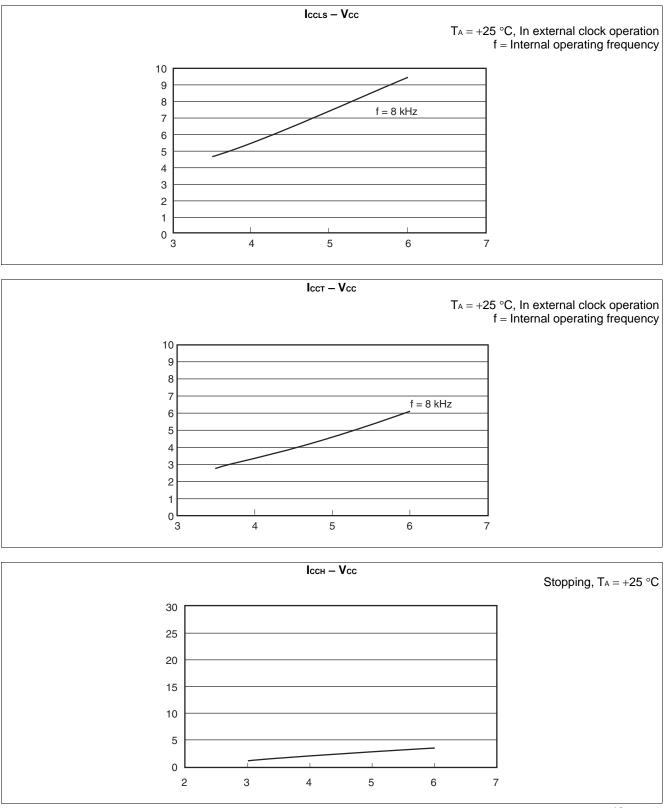
Use the device with external circuits of the following output impedance for analog inputs:

Recommended output impedance of external circuits are: Approx. 3.9 k Ω or lower (4.5 V \leq AVcc \leq 5.5 V) (sampling period=2.00 μ s at 16 MHz machine clock), Approx. 11 k Ω or lower (4.0 V \leq AVcc < 4.5 V) (sampling period=8.0 μ s at 16 MHz machine clock).

If an external capacitor is used, in consideration of the effect by tap capacitance caused by external capacitors and on-chip capacitors, capacitance of the external one is recommended to be several thousand times as high as internal capacitor.

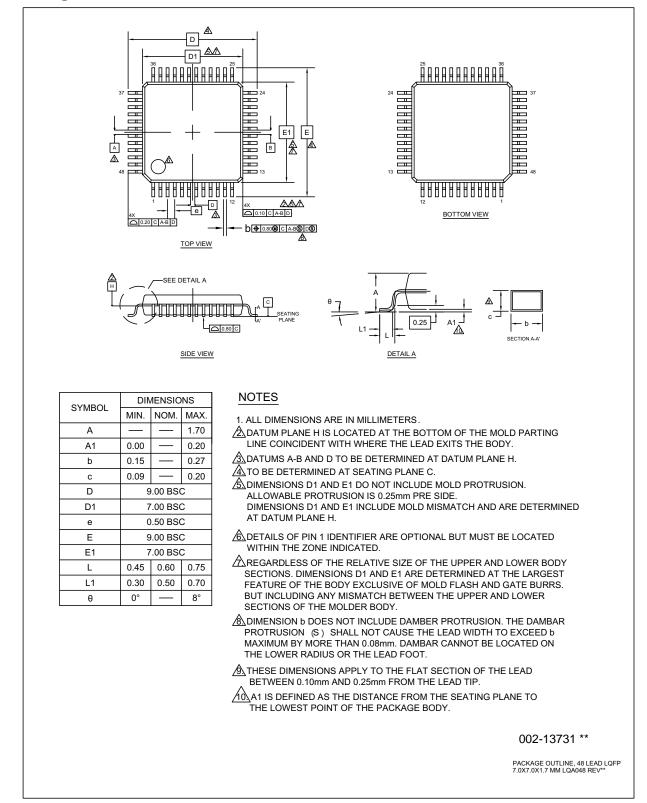
If output impedance of an external circuit is too high, a sampling period for an analog voltage may be insufficient.


About errors


As [AVR-AVss] become smaller, values of relative errors grow larger.

13.8 Flash Memory Program/Erase Characteristics

Parameter	Conditions		Value		Unit	Remarks
Falameter	Conditions	Min	Тур	Max	Onit	Remarks
Sector erase time	$\begin{array}{l} T_{\text{A}}=+~25~^{\circ}C\\ V_{\text{CC}}=5.0~V \end{array}$	-	1	15	S	Excludes 00H programming prior to erasure
Chip erase time		-	4	-	S	Excludes 00H programming prior to erasure
Word (16-bit width) programming time		-	16	3,600	μS	Except for the over head time of the system
Program/Erase cycle	_	10,000	-	-	cycle	
Flash Data Retention Time	Average T _A = + 85 °C	20	_	-	Year	*


*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C).

16. Package Dimension

