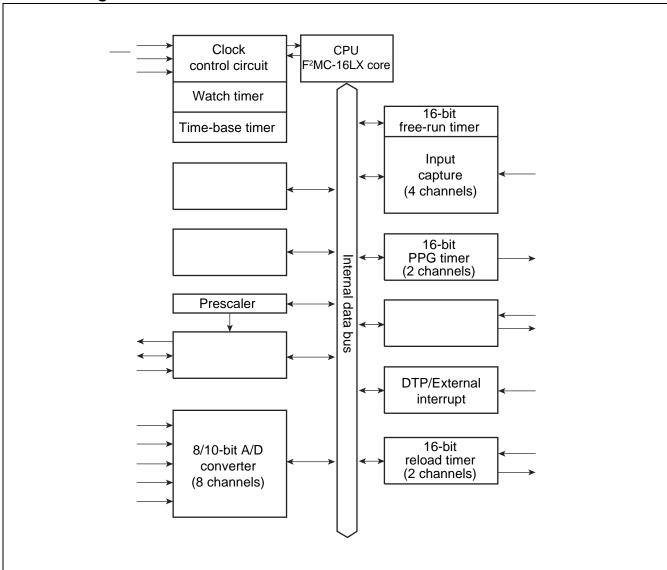


Welcome to **E-XFL.COM**


What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Supplier Device Package	48-LQFP (7x7)
Package / Case	48-LQFP
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 105°C (TA)
Oscillator Type	External
Data Converters	A/D 8x8/10b
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
RAM Size	2K x 8
EEPROM Size	-
Program Memory Type	Mask ROM
Program Memory Size	64KB (64K x 8)
Number of I/O	36
Peripherals	POR, WDT
Connectivity	CANbus, SCI, UART/USART
Speed	16MHz
Core Size	16-Bit
Core Processor	F ² MC-16LX
Product Status	Active

8. Block Diagram

9. Memory Map

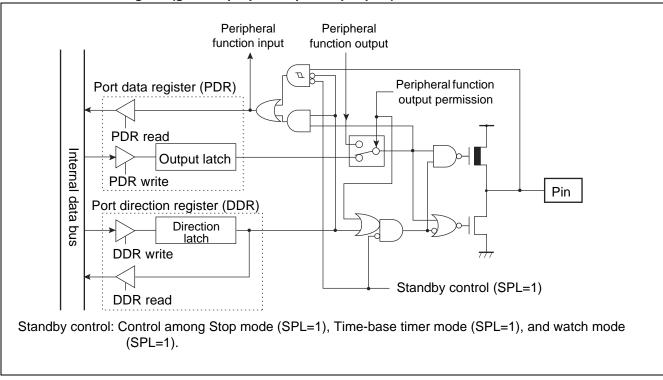
MB90385 series allows specifying a memory access mode "single chip mode."

9.1 Memory Allocation of MB90385

MB90385 series model has 24-bit wide internal address bus and up to 24-bit bus of external address bus. A maximum of 16-Mbyte memory space of external access memory is accessible.

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
0000В0н	ICR00	Interrupt control register 00	R/W	Interrupt controller	00000111в
0000В1н	ICR01	Interrupt control register 01			00000111в
0000В2н	ICR02	Interrupt control register 02			00000111в
0000ВЗн	ICR03	Interrupt control register 03			00000111в
0000В4н	ICR04	Interrupt control register 04			00000111в
0000В5н	ICR05	Interrupt control register 05			00000111в
0000В6н	ICR06	Interrupt control register 06			00000111в
0000В7н	ICR07	Interrupt control register 07			00000111в
0000В8н	ICR08	Interrupt control register 08			00000111в
0000В9н	ICR09	Interrupt control register 09			00000111в
0000ВАн	ICR10	Interrupt control register 10			00000111в
0000ВВн	ICR11	Interrupt control register 11			00000111в
0000ВСн	ICR12	Interrupt control register 12			00000111в
0000ВDн	ICR13	Interrupt control register 13			00000111в
0000ВЕн	ICR14	Interrupt control register 14			00000111в
0000ВГн	ICR15	Interrupt control register 15			00000111в
0000FFн 001FF0н	PADR0	Detection address setting register 0 (low-order)	R/W	Address matching detection function	XXXXXXXX
001FF1н	-	Detection address setting register 0 (middle-order)			XXXXXXXX
001FF2н		Detection address setting register 0 (high-order)			XXXXXXXX
001FF3н	PADR1	Detection address setting register 1 (low-order)	R/W		XXXXXXXXB
001FF4н		Detection address setting register 1 (middle-order)			XXXXXXXXB
001FF5н		Detection address setting register 1 (high-order)			XXXXXXXXB
003900н	TMR0/	16-bit timer register 0/16-bit reload	R,W	16-bit reload timer 0	XXXXXXXX
003901н	TMRLR0	register			XXXXXXXX
003902н	TMR1/	16-bit timer register 1/16-bit reload	R,W	16-bit reload timer 1	XXXXXXXX
003903н	TMRLR1	register			XXXXXXXX
003904н to 00390Fн		(Reser	ved area) *		

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value				
003D0Dн	(Reserved area) *								
003D0Ен	TIER	Send completion interrupt permission register	R/W	CAN controller	0000000В				
003D0Fн		(Reserv	ed area) *	•					
003D10н, 003D11н	AMSR	Acceptance mask selection register	R/W	CAN controller	XXXXXXX _B , XXXXXXXX _B				
003D12н, 003D13н		(Reserv	ed area) *	•					
003D14н to 003D17н	AMR0	Acceptance mask register 0	R/W	CAN controller	XXXXXXXXB to XXXXXXXXB				
003D18н to 003D1Вн	AMR1	Acceptance mask register 1	R/W		XXXXXXXB to XXXXXXXB				
003D1Сн to 003DFFн		(Reserv	ed area) *						
003E00н to 003EFFн		(Reserved area) *							
003FF0н to 003FFFн		(Reserv	ed area) *						


Initial values:

- 0: Initial value of this bit is "0."
- 1: Initial value of this bit is "1."
- X: Initial value of this bit is undefined.

Document Number: 002-07765 Rev. *A Page 20 of 81

^{*: &}quot;Reserved area" should not be written anything. Result of reading from "Reserved area" is undefined.

Port 3 Pins Block Diagram (general-purpose input/output port)

Port 3 Registers

- Port 3 registers include port 3 data register (PDR3) and port 3 direction register (DDR3).
- The bits configuring the register correspond to port 3 pins on a one-to-one basis.

Relation between Port 3 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 3	PDR3, DDR3	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	P37	P36*	P35*	-	P33	P32	P31	P30

^{*:} P35 and P36 do not exist on MB90387and MB90F387.

12.4 16-bit Input/Output Timer

The 16-bit input/output timer is a compound module composed of 16-bit free-run timer, (1 unit) and input capture (2 units, 4 input pins). The timer, using the 16-bit free-run timer as a basis, enables measurement of clock cycle of an input signal and its pulse width.

Configuration of 16-bit Input/Output Timer

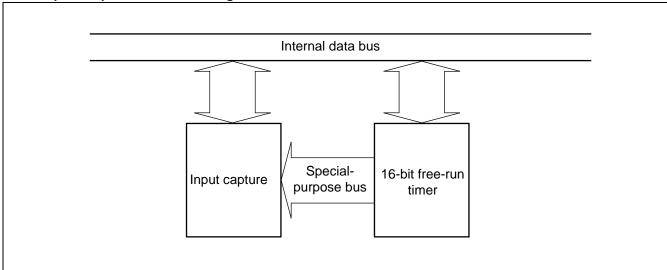
The 16-bit input/output timer is composed of the following modules:

- 16-bit free-run timer (1 unit)
- Input capture (2 units, 2 input pins per unit)

Functions of 16-bit Input/Output Timer

Functions of 16-bit Free-run Timer

The 16-bit free-run timer is composed of 16-bit up counter, timer counter control status register, and prescaler. The 16-bit up counter increments in synchronization with dividing ratio of machine clock.


- Count clock is set among four types of machine clock dividing rates.
- Generation of interrupt is allowed by counter value overflow.
- Activation of expanded intelligent I/O service (El²OS) is allowed by interrupt generation.
- Counter value of 16-bit free-run timer is cleared to "0000H" by either resetting or software-clearing with timer count clear bit (TCCS: CLR).
- Counter value of 16-bit free-run timer is output to input capture, which is available as base time for capture operation.

Functions of Input Capture

The input capture, upon detecting an edge of a signal input to the input pin from external device, stores a counter value of 16-bit freerun timer at the time of detection into the input capture data register. The function includes the input capture data registers corresponding to four input pins, input capture control status register, and edge detection circuit.

- Rising edge, falling edge, and both edges are selectable for detection.
- Generating interrupt on CPU is allowed by detecting an edge of input signal.
- Expanded intelligent I/O service (El²OS) is activated by interrupt generation.
- The four input capture input pins and input capture data registers allows monitoring of a maximum of four events.

16-bit Input/Output Timer Block Diagram

Document Number: 002-07765 Rev. *A Page 32 of 81

12.6 Watch Timer Outline

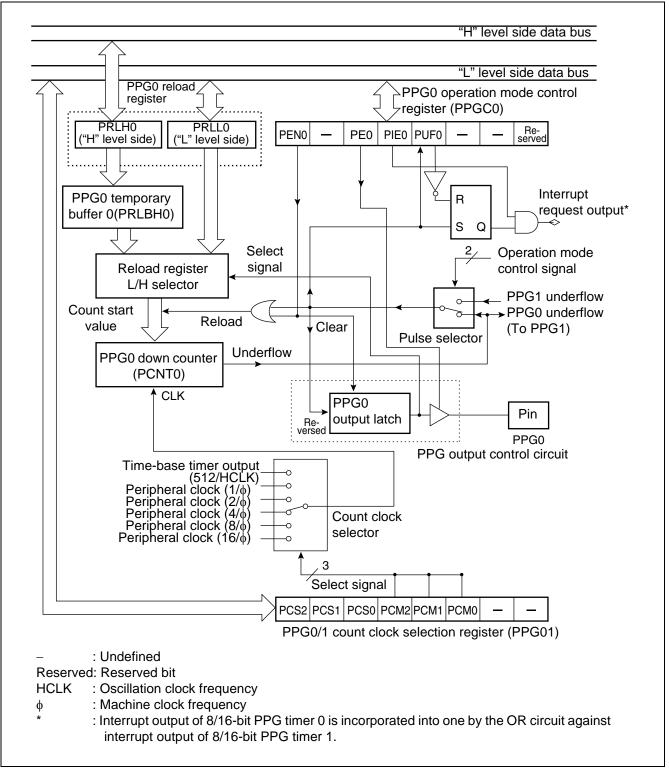
The watch timer is a 15-bit free-run counter that increments in synchronization with sub clock.

- Interval time is selectable among 7 choices, and generation of interrupt request is allowed for each interval.
- Provides operation clock to the subclock oscillation stabilizing wait timer and watchdog timer.
- Always uses subclock as a count clock regardless of settings of clock selection register (CKSCR).

Interval Timer Function

- In the watch timer, a bit corresponding to the interval time overflows (carry-over) when an interval time, which is specified by interval time selection bit, is reached. Then overflow flag bit is set (WTC: WTOF=1).
- If an interrupt by overflow is permitted (WTC: WTIE=1), an interrupt request is generated upon setting an overflow flag bit.
- Interval time of watch timer is selectable among the following seven choices:

Interval Time of Watch Timer


Sub Clock Cycle	Interval Time
1/SCLK (122 μs)	28/SCLK (31.25 ms)
	29/SCLK (62.5 ms)
	210/SCLK (125 ms)
	2 ¹¹ /SCLK (250 ms)
	212/SCLK (500 ms)
	213/SCLK (1.0 s)
	214/SCLK (2.0 s)

SCLK: Sub clock frequency

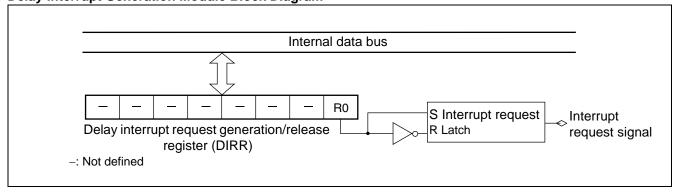
Values in parentheses "()" are calculation when operating with 8.192 kHz clock.

Document Number: 002-07765 Rev. *A Page 37 of 81

8/16-bit PPG Timer 0 Block Diagram

12.8 Delay Interrupt Generation Module Outline

The delay interrupt generation module is a module that generates interrupts for switching tasks. Generation of a hardware interrupt request is performed by software.


Delay Interrupt Generation Module Outline

Using the delay interrupt generation module, hardware interrupt request is generated and released by software.

Table 12-1. Delay Interrupt Generation Module Outline

	Function and Control
Cause of interrupt	Set "1" in R0 bit of delay interrupt request generation/release register (DIRR: R0=1), generating an interrupt request. Set "0" in R0 bit of delay interrupt request generation/release register (DIRR: R0=0), releasing an interrupt request.
Interrupt number	#42 (2Ан)
Interrupt control	No setting of permission register is provided.
Interrupt flag	Retained in DIRR: R0 bit
El ² OS	Not ready for expanded intelligent I/O service.

Delay Interrupt Generation Module Block Diagram

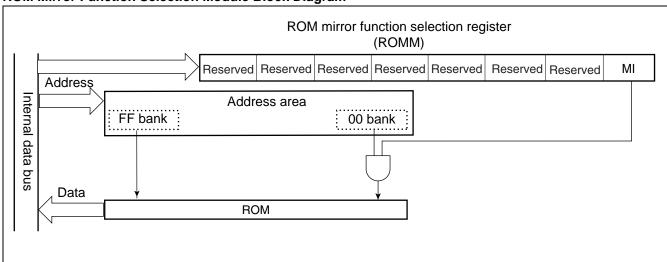
Interrupt Request Latch

A latch that retains settings on delay interrupt request generation/release register (generation or release of delay interrupt request).

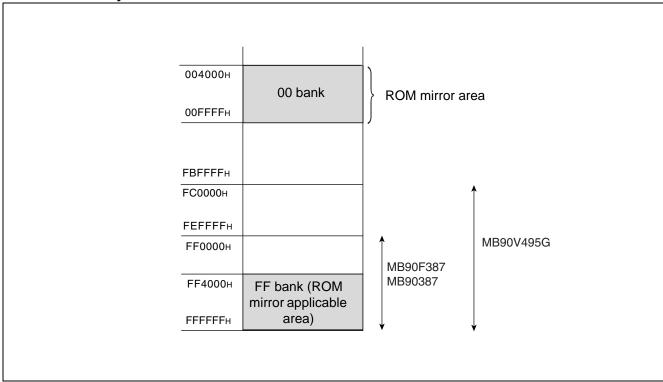
Delay Interrupt Request Generation/Release Register (DIRR)

Generates or releases delay interrupt request.

Interrupt Number


An interrupt number used in delay interrupt generation module is as follows:

Interrupt number: #42 (2AH)


12.14 ROM Mirror Function Selection Module Outline

The ROM mirror function selection module sets the data in ROM assigned to FF bank so that the data is read by access to 00 bank.

ROM Mirror Function Selection Module Block Diagram

FF Bank Access by ROM Mirror Function

Sector Configuration of 512 Kbit Flash Memory

Flash memory	CPU address	Writer address*
	FF0000H	70000н
SA0 (32 Kbytes)		
	FF7FFFH	77FFFн
	FF8000H	78000н
SA1 (8 Kbytes)		
	FF9FFFH	79FFFн
	FFA000H	7А000н
SA2 (8 Kbytes)		
	FFBFFFH	7BFFFн
	FFC000H	7С000н
SA3 (16 Kbytes)		
	FFFFFFH	7FFFFH

^{*: &}quot;Writer address" is an address equivalent to CPU address, which is used when data is written on Flash memory, using parallel writer. When writing/deleting data with general-purpose writer, the writer address is used for writing and deleting.

Document Number: 002-07765 Rev. *A Page 54 of 81

13. Electrical Characteristics

13.1 Absolute Maximum Rating

Donomotor	Comple of	Ra	ting	Unit	Domonico	
Parameter	Symbol	Min	Min Max		Remarks	
Power supply voltage*1	Vcc	Vss - 0.3	Vss + 6.0	V		
	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc*2	
	AVR	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVR*2	
Input voltage*1	Vı	Vss - 0.3	Vss + 6.0	V	*3	
Output voltage*1	Vo	Vss - 0.3	Vss + 6.0	V	*3	
Maximum clamp current	ICLAMP	- 2.0	+ 2.0	mA	*7	
Total maximum clamp current	Σ ICLAMP	_	20	mA	*7	
"L" level maximum output current	lo _{L1}	_	15	mA	Normal output*4	
	lol2	_	40	mA	High-current output*4	
"L" level average output current	lolav1	_	4	mA	Normal output*5	
	lolav2	_	30	mA	High-current output*5	
"L" level maximum total output current	Σ lol1	_	125	mA	Normal output	
	Σlol2	_	160	mA	High-current output	
"L" level average total output current	Σ l olav1	_	40	mA	Normal output*6	
	Σ l olav2	_	40	mA	High-current output*6	
"H" level maximum output current	Іон1	_	-15	mA	Normal output*4	
	І ОН2	_	-40	mA	High-current output*4	
"H" level average output current	Iohav1	_	-4	mA	Normal output*5	
	IOHAV2	_	-30	mA	High-current output*5	
"H" level maximum total output current	ΣІон1	_	-125	mA	Normal output	
	ΣІон2	_	-160	mA	High-current output	
"H" level average total output current	ΣΙομαν1	_	-40	mA	Normal output*6	
	ΣΙομαν2	_	-40	mA	High-current output*6	
Power consumption	PD	_	245	mW		
Operating temperature	TA	-40	+105	°C		
Storage temperature	Tstg	-55	+150	°C		

^{*1:} The parameter is based on Vss = AVss = 0.0 V.

*7

Document Number: 002-07765 Rev. *A Page 55 of 81

^{*2:} AVcc and AVR should not exceed Vcc.

^{*3:} V_I and V_O should not exceed Vcc + 0.3 V. However if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating.

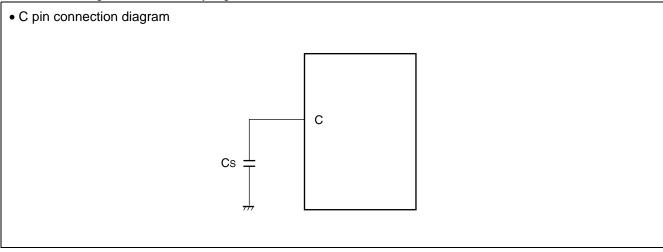
^{*4:} A peak value of an applicable one pin is specified as a maximum output current.

^{*5:} An average current value of an applicable one pin within 100 ms is specified as an average output current. (Average value is found by multiplying operating current by operating rate.)

^{*6:} An average current value of all pins within 100 ms is specified as an average total output current. (Average value is found by multiplying operating current by operating rate.)

Applicable to pins: P10 to P17, P20 to P27, P30 to P33, P35*, P36*, P37, P40 to P44, P50 to P57
 *: P35 and P36 are MB90387S and MB90F387S only.

13.2 Recommended Operating Conditions


(Vss = AVss = 0.0V)

Parameter	Symbol		Value		Unit	Remarks
raiailletei	Symbol	Min	Тур	Max	Onne	Remarks
Power supply voltage	Vcc	3.5	5.0	5.5	V	Under normal operation
		3.0	_	5.5		Retain status of stop operation
	AVcc	4.0	_	5.5	V	*2
Smoothing capacitor	Cs	0.1	_	1.0	μF	*1
Operating temperature	Та	-40	-	+105	°C	

^{*1:} Use a ceramic capacitor, or a capacitor of similar frequency characteristics. On the Vcc pin, use a bypass capacitor that has a larger capacity than that of Cs.

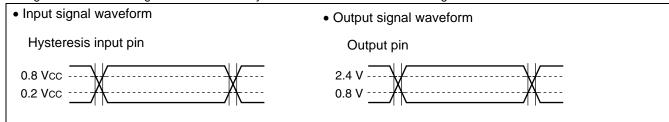
Refer to the following figure for connection of smoothing capacitor Cs.

*2: AVcc is a voltage at which accuracy is guaranteed. AVcc should not exceed Vcc.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

Document Number: 002-07765 Rev. *A Page 57 of 81

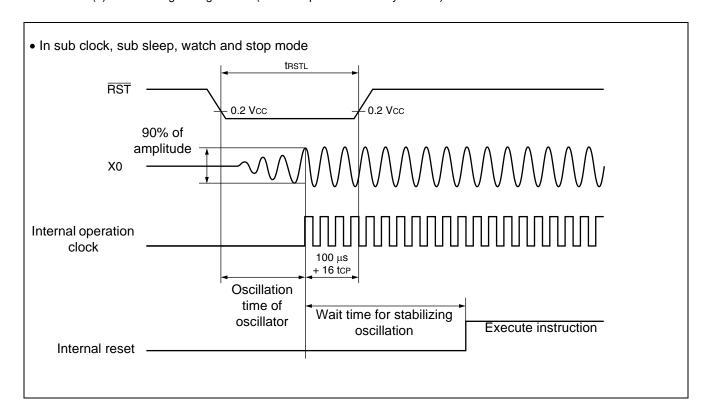

13.3 DC Characteristics

(Vcc = 5.0 V±10%, Vss = AVss = 0.0 V, Ta = -40 °C to +105 °C)

Doromotor	Cumbal	bol Pin Name Conditions			Unit	Remarks		
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
"H" level input	Vihs	CMOS hysteresis input pin	_	0.8 Vcc	_	Vcc + 0.3	V	
voltage	Vінм	MD input pin	_	Vcc - 0.3	_	Vcc + 0.3	V	
"L" level	VILS	CMOS hysteresis input pin	_	Vss - 0.3	_	0.2 Vcc	V	
voltage	VILM	MD input pin	_	Vss - 0.3	_	Vss + 0.3	V	
"H" level output	Vон1	Pins other than P14 to P17	Vcc = 4.5 V, Іон = -4.0 mA	Vcc - 0.5	_	_	٧	
voltage	Voн2	P14 to P17	Vcc = 4.5 V, Іон = -14.0 mA	Vcc - 0.5	_	_	V	
"L" level output	Vol1	Pins other than P14 to P17	Vcc = 4.5 V, lo _L = 4.0 mA	_	_	0.4	V	
voltage	V _{OL2}	P14 to P17	Vcc = 4.5 V, IoL = 20.0 mA	_	_	0.4	V	
Input leak current	lıL	All input pins	Vcc = 5.5 V, Vss < V _I < Vcc	- 5	_	+5	μА	
Power supply current*	Icc	Vcc	Vcc = 5.0 V, Internally operating at 16 MHz, normal operation.	_	25	30	mA	
			Vcc = 5.0 V, Internally operating at 16 MHz, writing on Flash memory.	_	45	50	mA	MB90F387/S
			Vcc = 5.0 V, Internally operating at 16 MHz, deleting on Flash memory.	_	45	50	mA	MB90F387/S
	Iccs		Vcc = 5.0 V, Internally operating at 16 MHz, sleeping.	_	8	12	mA	
	Істѕ		Vcc = 5.0 V, Internally operating at	_	0.75	1.0	mA	MB90F387/S
			2 MHz, transition from main clock mode, in time-base timer mode.		0.2	0.35		MB90387/S

Document Number: 002-07765 Rev. *A Page 58 of 81

Rating values of alternating current is defined by the measurement reference voltage values shown below:



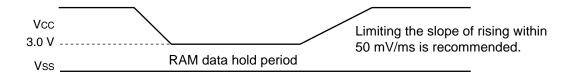
13.4.2 Reset Input Timing

Parameter	Symbol	Pin Name	Value	Unit	Remarks	
Parameter	Symbol	riii ivaille	Min	Max	Offic	Remarks
Reset input time	t RSTL	RST	16 tcp*3	-	ns	Normal operation
			Oscillation time of oscillator*1 + 100 μs + 16 tcp*3	-		In sub clock*2, sub sleep*2, watch*2 and stop mode
			100	_	μS	In timebase timer

^{*1:} Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.

^{*3:} Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).

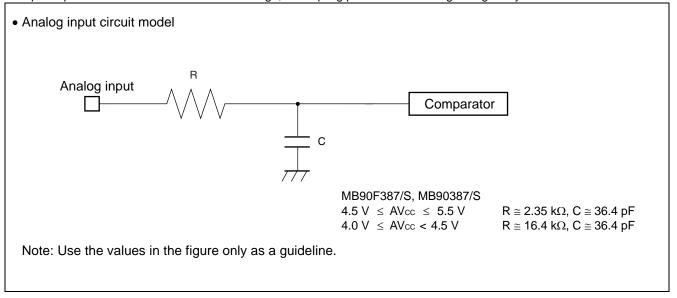
^{*2:} Except for MB90F387S and MB90387S.


13.4.3 Power-on Reset

 $(Vcc = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 \,^{\circ}\text{C to} + 105 \,^{\circ}\text{C})$

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
raiailletei	Syllibol	riii Naiile	Conditions	Min Max		Oilit	Remarks
Power supply rise time	t R	Vcc	_	0.05	30	ms	
Power supply shutdown time	toff	Vcc		1	-		Waiting time until power-on

Sudden change of power supply voltage may activate the power-on reset function. When changing power supply voltages during operation, raise the power smoothly by suppressing variation of voltages as shown below. When raising the power, do not use PLL clock. However, if voltage drop is 1V/s or less, use of PLL clock is allowed during operation.


13.7 Notes on A/D Converter Section

Use the device with external circuits of the following output impedance for analog inputs:

Recommended output impedance of external circuits are: Approx. 3.9 k Ω or lower (4.5 V \leq AVcc \leq 5.5 V) (sampling period=2.00 μ s at 16 MHz machine clock), Approx. 11 k Ω or lower (4.0 V \leq AVcc < 4.5 V) (sampling period=8.0 μ s at 16 MHz machine clock).

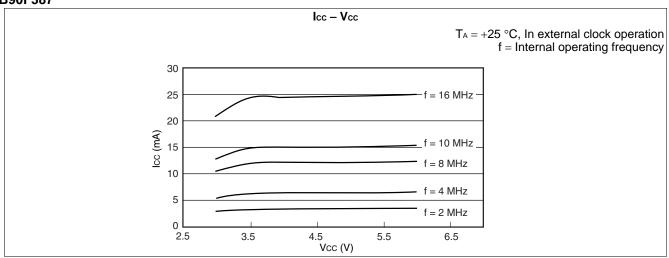
If an external capacitor is used, in consideration of the effect by tap capacitance caused by external capacitors and on-chip capacitors, capacitance of the external one is recommended to be several thousand times as high as internal capacitor.

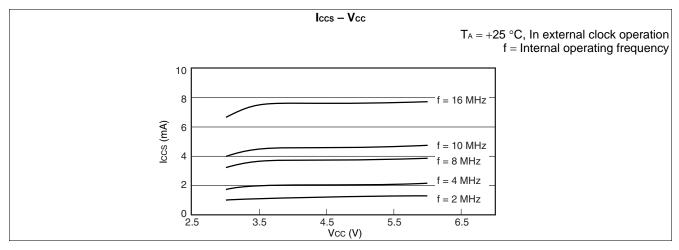
If output impedance of an external circuit is too high, a sampling period for an analog voltage may be insufficient.

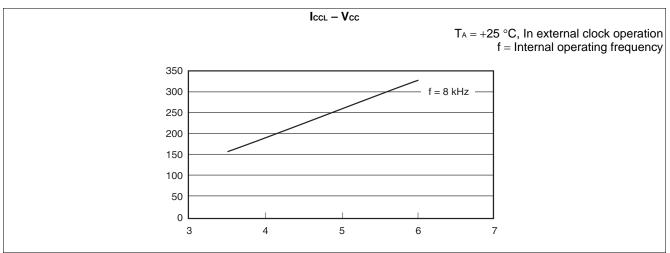
About errors

As [AVR-AVss] become smaller, values of relative errors grow larger.

13.8 Flash Memory Program/Erase Characteristics

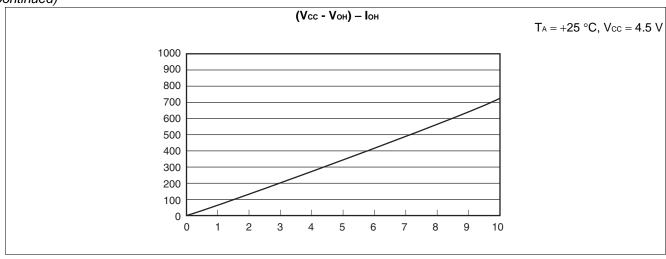

Parameter	Conditions	Value			Unit	Remarks
		Min	Тур	Max	Onit	Keillaiks
Sector erase time	$T_A = +25 ^{\circ}C$ Vcc = 5.0 V	-	1	15	s	Excludes 00H programming prior to erasure
Chip erase time		-	4	_	s	Excludes 00H programming prior to erasure
Word (16-bit width) programming time		-	16	3,600	μS	Except for the over head time of the system
Program/Erase cycle	-	10,000	-	-	cycle	
Flash Data Retention Time	Average T _A = + 85 °C	20	_	_	Year	*

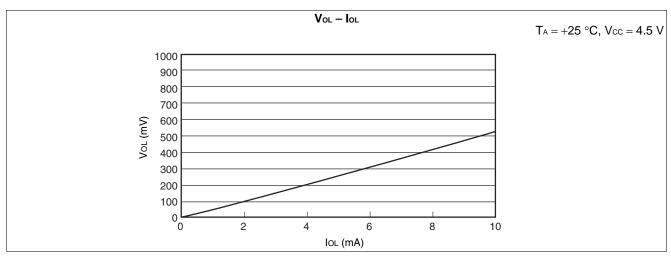

^{*:} This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C).

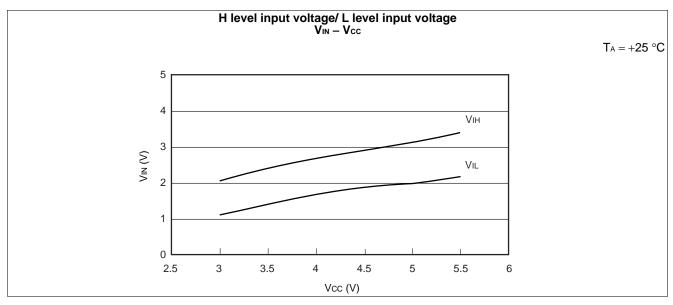

Document Number: 002-07765 Rev. *A Page 70 of 81

14. Example Characteristics

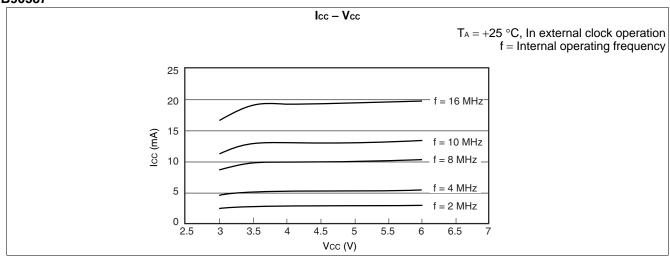
MB90F387

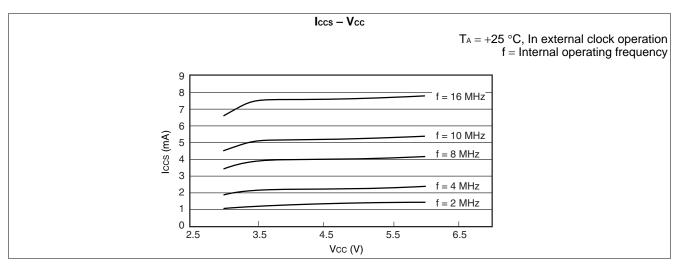


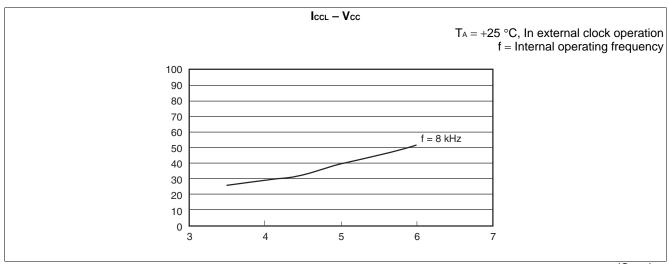


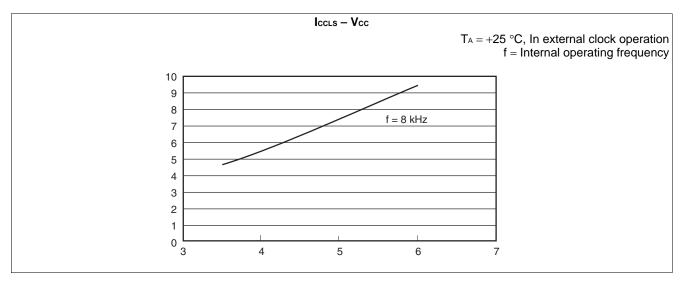


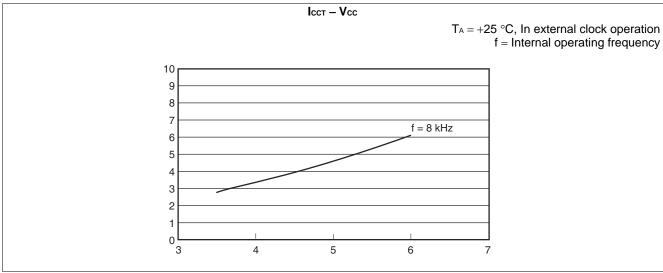
(Continued)

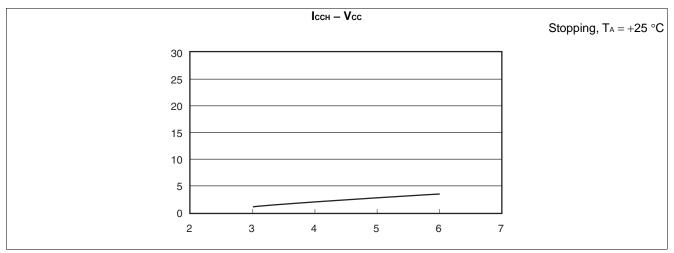







MB90387





(Continued)

(Continued)