

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90387spmt-gs-384e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number Parameter	MB90F387 MB90F387S	MB90387 MB90387S	MB90V495G	
8/10-bit A/D converter	Number of channels: 8 Resolution: Selectable 10-bit or 8-bit. Conversion time: $6.125 \ \mu s$ (at 16 MHz machine clock, including sampling time) Sequential conversion of two or more successive channels is allowed. (Setting a maximum of 8 channels is allowed.) Single conversion mode: Selected channel is converted only once. Sequential conversion mode: Selected channel is converted repetitively. Halt conversion mode: Conversion of selected channel is stopped and activated alter- nately.			
UART(SCI)	Number of channels: 1 Clock-synchronous transfer: 62.9 Clock-asynchronous transfer: 9,0 Communication is allowed by bi- slave type connection.	615 bps to 500 kbps	tion function and master/	
CAN	Compliant with Ver 2.0A and Ver 8 built-in message buffers. Transmission rate of 10 kbps to CAN wake-up	·	clock)	

*1: Settings of DIP switch S2 for using emulation pod MB2145-507. For details, see MB2145-507 Hardware Manual (2.7 Power Pin solely for Emulator).

*2: MB90387S, MB90F387S

2. Packages And Product Models

Package	MB90F387, MB90F387S	MB90387, MB90387S
LQA048	\bigcirc	\bigcirc

 \bigcirc : Yes \times : No

Note: Refer to Package Dimension for details of the package.

3. Product Comparison

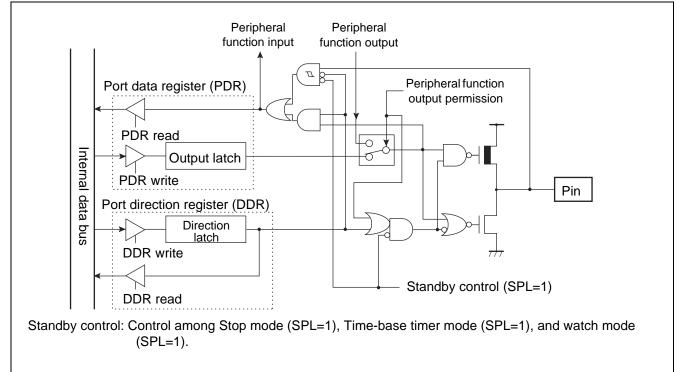
Memory Space

When testing with test product for evaluation, check the differences between the product and a product to be used actually. Pay attention to the following points:

- The MB90V495G has no built-in ROM. However, a special-purpose development tool allows the operations as those of one with built-in ROM. ROM capacity depends on settings on a development tool.
- On MB90V495G, an image from FF4000^H to FFFFFF^H is viewed on 00 bank and an image of FE0000^H to FF3FFF^H is viewed only on FE bank and FF bank. (Modified on settings of a development tool.)
- On MB90F387/F387S/387/387S, an image from FF4000H to FFFFFFH is viewed on 00 bank and an image of FE0000H to FF3FFFH is viewed only on FF bank.

Pin No.	Pin Name	Circuit Type	Function
39	P42	D	General-purpose input/output port.
	SOT1		Serial data input pin for UART. Valid only when serial data input/output setting on UART is "enabled."
40	P43	D	General-purpose input/output port.
	ТХ		Transmission output pin for CAN. Valid only when output setting is "enabled."
41	P44	D	General-purpose input/output port.
	RX		Transmission output pin for CAN. Valid only when output setting is "enabled."
42 to 45	P30 to P33	D	General-purpose input/output ports.
46	X0A*	А	Pin for low-rate oscillation.
	P35*		General-purpose input/output port.
47	X1A*	A	Pin for low-rate oscillation.
	P36*	1	General-purpose input/output port.
48	AVss	-	Vss power source input pin for A/D converter.

*: MB90387, MB90F387: X1A, X0A MB90387S, MB90F387S: P36, P35


Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
000083н		(Reserve	ed area) *		
000084н	TCANR	Send cancel register	W	CAN controller	0000000в
000085н		(Reserve	ed area) *		
000086н	TCR	Send completion register	R/W	CAN controller	0000000в
000087н		(Reserve	ed area) *		
000088н	RCR	Receive completion register	R/W	CAN controller	0000000в
000089н		(Reserve	ed area) *		
00008Ан	RRTRR	Receive RTR register	R/W	CAN controller	0000000в
00008Вн		(Reserve	ed area) *		
00008Сн	ROVRR	Receive overrun register	R/W	CAN controller	0000000в
00008Dн		(Reserve	ed area) *		
00008Eн	RIER	Receive completion interrupt permission register	R/W	CAN controller	0000000в
00008Fн to 00009Dн		(Reserv	ed area) *		
00009Eн	PACSR	Address detection control register	R/W	Address matching detection function	0000000в
00009Fн	DIRR	Delay interrupt request generation/ release register	R/W	Delay interrupt generation module	XXXXXXX0B
0000А0н	LPMCR	Lower power consumption mode control register	W,R/W	Lower power consumption mode	00011000в
0000A1н	CKSCR	Clock selection register	R,R/W	Clock	11111100в
0000А2н to 0000А7н		(Reserv	ed area) *		
0000A8н	WDTC	Watchdog timer control register	R,W	Watchdog timer	XXXXX111 _B
0000A9н	TBTC	Time-base timer control register	R/W,W	Time-base timer	1XX00100в
0000ААн	WTC	Watch timer control register	R,R/W	Watch timer	1Х001000в
0000ABн to 0000ADн		(Reserv	ed area) *	·	
0000AEн	FMCS	Flash memory control status register	R,W,R/W	512k-bit Flash memory	000X0000 _B
0000AFн		(Reserv	ed area) *	. 1	

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
0000В0н	ICR00	Interrupt control register 00	R/W	Interrupt controller	00000111в
0000B1н	ICR01	Interrupt control register 01			00000111в
0000В2н	ICR02	Interrupt control register 02	rupt control register 02		
0000ВЗн	ICR03	Interrupt control register 03			00000111в
0000В4н	ICR04	Interrupt control register 04			00000111в
0000B5н	ICR05	Interrupt control register 05			00000111в
0000В6н	ICR06	Interrupt control register 06			00000111в
0000B7 н	ICR07	Interrupt control register 07			00000111в
0000B8н	ICR08	Interrupt control register 08			00000111в
0000B9н	ICR09	Interrupt control register 09			00000111в
0000ВАн	ICR10	Interrupt control register 10			00000111в
0000ВВн	ICR11	Interrupt control register 11			00000111в
0000ВСн	ICR12	Interrupt control register 12			00000111в
0000BDн	ICR13	Interrupt control register 13			00000111в
0000ВЕн	ICR14	Interrupt control register 14		1 F	
0000BFн	ICR15	Interrupt control register 15			00000111в
0000C0н to 0000FFн		(Reser	ved area) *		
001FF0⊦	PADR0	Detection address setting register 0 (low-order)	R/W	Address matching detection function	XXXXXXXXB
001FF1⊦		Detection address setting register 0 (middle-order)			XXXXXXXXB
001FF2⊦		Detection address setting register 0 (high-order)			XXXXXXXXB
001FF3⊦	PADR1	Detection address setting register 1 (low-order)	R/W] [XXXXXXXXB
001FF4⊦		Detection address setting register 1 (middle-order)			XXXXXXXXB
001FF5н	1	Detection address setting register 1 (high-order)	1		XXXXXXXXB
003900н	TMR0/	16-bit timer register 0/16-bit reload	R,W	16-bit reload timer 0	XXXXXXXXB
003901н	TMRLR0	register		F F	XXXXXXXXB
003902н	TMR1/	16-bit timer register 1/16-bit reload	R,W	16-bit reload timer 1	XXXXXXXXB
003903н	TMRLR1	register			XXXXXXXXB
003904н to 00390Fн		(Reser	ved area) *		

11. Interrupt Sources, Interrupt Vectors, And Interrupt Control Registers

Interrupt Source	El ² OS	I	nterrup	t Vector	Interrupt C	ontrol Register	Priority*3
	Readiness	Nur	nber	Address	ICR	Address	Priority**
Reset	×	#08	08н	FFFFDC H	-	-	High
INT 9 instruction	×	#09	09н	FFFFD8H	-	-	↑
Exceptional treatment	×	#10	0Ан	FFFFD4H	-	-	
CAN controller reception completed (RX)	,	#11	0Вн	FFFFD0H	ICR00	0000B0н*1	
CAN controller transmission completed (TX) / Node status transition (NS)	,	#12	0Сн	FFFFCCH			
Reserved	×	#13	0Dн	FFFFC8H	ICR01	0000B1н	
Reserved	×	#14	0Ен	FFFFC4H	1		
CAN wakeup	Δ	#15	0Fн	FFFFC0H	ICR02	0000B2н*1	
Time-base timer	×	#16	10н	FFFFBC H	1		
16-bit reload timer 0	Δ	#17	11н	FFFFB8 _H	ICR03	0000B3н*1	
8/10-bit A/D converter	Δ	#18	12н	FFFFB4H			
16-bit free-run timer overflow	Δ	#19	13н	FFFFB0H	ICR04	0000B4н*1	
Reserved	×	#20	14н	FFFFAC H			
Reserved	×	#21	15 н	FFFFA8H	ICR05	0000B5н*1	
PPG timer ch0, ch1 underflow	,	#22	16 н	FFFFA4H			
Input capture 0-input	Δ	#23	17 н	FFFFA0н	ICR06	0000В6н*1	
External interrupt (INT4/INT5)	Δ	#24	18 н	FFFF9CH			
Input capture 1-input	Δ	#25	19 н	FFFF98н	ICR07	0000 B7 н*2	
PPG timer ch2, ch3 underflow	,	#26	1Ан	FFFF94⊦	-		
External interrupt (INT6/INT7)	Δ	#27	1Bн	FFFF90H	ICR08	0000B8н*1	
Watch timer	Δ	#28	1Сн	FFFF8CH			
Reserved	×	#29	1Dн	FFFF88H	ICR09	0000B9н*1	
Input capture 2-input Input capture 3-input	,	#30	1Ен	FFFF84⊦	-		
Reserved	×	#31	1Fн	FFFF80H	ICR10	0000BAн*1	
Reserved	×	#32	20н	FFFF7CH			
Reserved	×	#33	21н	FFFF78⊦	ICR11	0000BB _H *1	
Reserved	×	#34	22н	FFFF74 _H			
Reserved	×	#35	23н	FFFF70н	ICR12	0000BC _H *1	\downarrow
16-bit reload timer 1	0	#36	24н	FFFF6CH			Low

Port 3 Registers

- Port 3 registers include port 3 data register (PDR3) and port 3 direction register (DDR3).
- The bits configuring the register correspond to port 3 pins on a one-to-one basis.

Relation between Port 3 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 3	PDR3, DDR3	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	P37	P36*	P35*	_	P33	P32	P31	P30

*: P35 and P36 do not exist on MB90387and MB90F387.

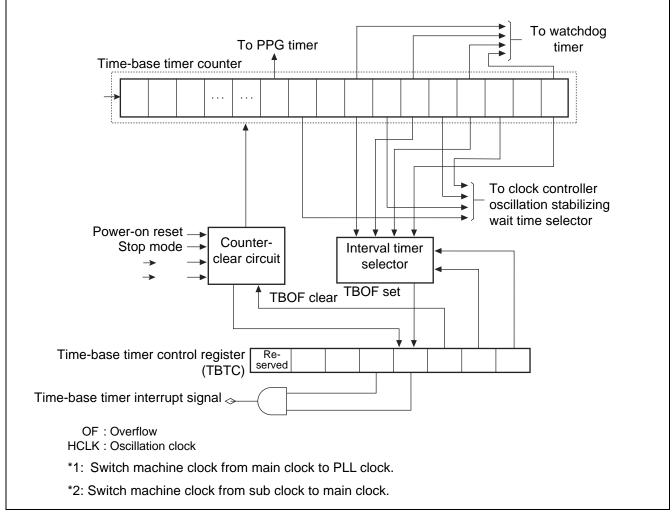
12.2 Time-Base Timer

The time-base time is an 18-bit free-run counter (time-base timer counter) that counts up in synchronization with the main clock (dividing main oscillation clock by 2).

- Four choices of interval time are selectable, and generation of interrupt request is allowed for each interval time.
- Provides operation clock signal to oscillation stabilizing wait timer and peripheral functions.

Interval Timer Function

- When the counter of time-base timer reaches an interval time specified by interval time selection bit (TBTC:TBC1, TBC0), an overflow (carrying-over) occurs (TBTC: TBOF=1) and interrupt request is generated.
- If an interrupt by overflow is permitted (TBTC: TBIE=1), an interrupt is generated when overflow occurs (TBTC: TBOF=1).
- The following four interval time settings are selectable:


Interval Time of Time-base Timer

Count Clock	Interval Time
2/HCLK (0.5 μs)	2 ¹² /HCLK (Approx. 1.0 ms)
	2 ¹⁴ /HCLK (Approx. 4.1 ms)
	216/HCLK (Approx. 16.4 ms)
	2 ¹⁹ /HCLK (Approx. 131.1 ms)

HCLK: Oscillation clock

Values in parentheses "()" are those under operation of 4-MHz oscillation clock.

Time-base Timer Block Diagram

Actual interrupt request number of time-base timer is as follows: Interrupt request number: #16 (10_H)

Watchdog timer control register(WDTC) Watch timer control register (WTC) WRST ERST SRST WTE WT1 WT0 PONR ____ WDCS Watchdog timer 2, Activate Reset occurs _ Counter Watchdog Shift to sleep mode -----2-bit Internal reset Count clock reset clear control Shift to time-base counter - 6 generation generation selector circuit timer mode circuit circuit Shift to watch mode Clear Shift to stop mode 4 4 Time-base timer counter Main clock $\times 2^2$ × 28 × 29 × 210 × 211 × 2¹² × 2¹³ × 2¹⁴ $\times 2^1$ × 215 × 216 × 2¹⁷ $\times 2^{18}$ (dividing HCLK by 2) Watch counter Sub clock $\times 2^2$ × 2⁵ $\times 2^{6}$ × 2⁸ × 2⁹ × 2¹⁰ × 2¹¹ × 2¹² × 2¹³ × 2¹⁴ × 2¹⁵ $\times 2^{1}$ $\times 2^7$. SCLK HCLK: Oscillation clock SCLK: Sub clock

Watchdog Timer Block Diagram

12.9 DTP/External Interrupt and CAN Wakeup Outline

DTP/external interrupt transfers an interrupt request generated by an external peripheral device or a data transmission request to CPU, generating external interrupt request and activating expanded intelligent I/O service. Input RX of CAN controller is used as external interrupt input.

DTP/External Interrupt and CAN Wakeup Function

An interrupt request input from external peripheral device to external input pins (INT7 to INT4) and RX pin, just as interrupt request of peripheral device, generates an interrupt request. The interrupt request generates an external interrupt and activates expanded intelligent I/O service (EI²OS).

If the expanded intelligent I/O service (EI²OS) has been disabled by interrupt control register (ICR: ISE=0), external interrupt function is enabled and branches to interrupt processing.

If the EI²OS has been enabled, (ICR: ISE=1), DTP function is enabled and automatic data transmission is performed by EI²OS. After performing specified number of data transmission processes, the process branches to interrupt processing.

	External Interrupt	DTP Function			
Input pin	5 pins (RX, and INT4 to INT7)				
Interrupt cause	Specify for each pin with detection level setting register (ELVR).				
	Input of "H" level/"L" level/rising edge/falling edge.	Input of "H" level/ "L" level			
Interrupt number	#15 (0Fн), #24 (18н), #27 (1Вн)				
Interrupt control	Enabling or disabling output of interrupt request, using DTP/external interrupt permission register (ENIR).				
Interrupt flag	Retaining interrupt cause with DTP/external inter	rrupt cause register (EIRR).			
Process selection	Disable El ² OS (ICR: ISE=0)	Enable El ² OS (ICR: ISE=1)			
Process	Branch to external interrupt process	After automatic data transmission by El ² OS for specified number of times, branch to interrupt process.			

Table 12-2.	DTP/External In	terrupt and CAN	Wakeup Outline
-------------	-----------------	-----------------	----------------

12.11 UART Outline

UART is a general-purpose serial data communication interface for synchronous and asynchronous communication using external devices.

- Provided with bi-directional communication function for both clock-synchronous and clock-asynchronous modes.
- Provided with master/slave communication function (multi-processor mode). (Only master side is available.)
- Interrupt request is generated upon completion of reception, completion of transmission and detection of reception error.
- Ready for expanded intelligent service, El²OS.

Table 12-3. UART Functions

	Description
Data buffer	Full-duplex double buffer
Transmission mode	Clock synchronous (No start/stop bit, no parity bit) Clock asynchronous (start-stop synchronous)
Baud rate	Built-in special-purpose baud-rate generator. Setting is selectable among 8 values. Input of external values is allowed. Use of clock from external timer (16-bit reload timer 0) is allowed.
Data length	7 bits (only asynchronous normal mode) 8 bits
Signaling system	Non Return to Zero (NRZ) system
Reception error detection	Framing error Overrun error Parity error (not detectable in operation mode 1 (multi-processor mode))
Interrupt request	Receive interrupt (reception completed, reception error detected) Transmission interrupt (transmission completed) Ready for expanded intelligent I/O service (EI ² OS) in both transmission and reception
Master/slave communication function (asynchronous, multi-processor mode)	Communication between 1 (master) and n (slaves) are available (usable as master only).

Note: Start/stop bit is not added upon clock-synchronous transmission. Data only is transmitted.

Table 12-4. UART Operation Modes

Operation Mode		Data L	ength	Synchronization	Stop Bit Length	
	Operation mode	With Parity	Without Parity	Synchronization	Stop Bit Length	
0	Asynchronous mode (normal mode)	7-bit or 8-bit		Asynchronous	1- bit or 2-bit *2	
1	Multi processor mode	8+1*1 –		Asynchronous		
2	Synchronous mode	8	_	Synchronous	No	

-: Disallowed

1: "+1" is an address/data selection bit used for communication control (bit 11 of SCR1 register: A/D).

2: Only 1 bit is detected as a stop bit on data reception.

12.15 512 Kbit Flash Memory Outline

The following three methods are provided for data writing and deleting on Flash memory:

- 1. Parallel writer
- 2. Serial special-purpose writer
- 3. Writing/deleting by program execution

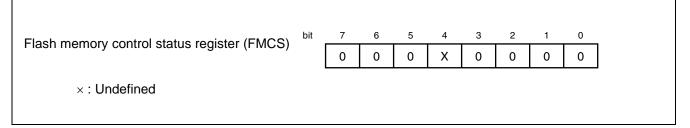
This section describes "3. Writing/deleting by program execution."

512 Kbit Flash Memory Outline

The 512 Kbit Flash memory is allocated on FF_H bank of CPU memory map. Using the function of Flash memory interface circuit, the memory allows read access and program access from CPU.

Writing/deleting on Flash memory is performed by instruction from CPU via Flash memory interface. Because rewriting is allowed on mounted memory, modifying program and data is performed efficiently.

Features of 512 Kbit Flash Memory


- 128 K words x 8 bits/64 K words x 16 bits (16 K + 8 K + 8 K + 32 K) sector configuration
- Automatic program algorithm (Embedded Algorithm: Similar to MBM29LV200.)
- Built-in deletion pause/deletion resume function
- Detection of completed writing/deleting by data polling and toggle bits.
- Detection of completed writing/deleting by CPU interrupt.
- Deletion is allowed on a sector-by-sector basis (sectors are combined freely).
- Number of writing/deleting operations (minimum): 10,000 times
- Sector protection
- Expanded sector protection
- Temporaly sector unprotection

Note: A function of reading manufacture code and device code is not provided. These codes are not accessible by command either.

Flash Memory Writing/Deleting

- Writing and reading data is not allowed simultaneously on the Flash memory.
- Data writing and deleting on the Flash memory is performed by the processes as follows: Make a copy of program on Flash memory onto RAM. Then, execute the program copied on the RAM.

List of Registers and Reset Values in Flash Memory

Sector Configuration

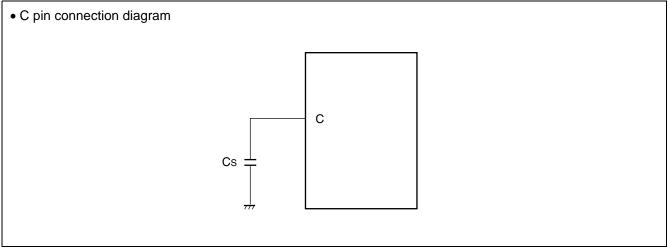
For access from CPU, SA0 to SA3 are allocated in FF bank register.

Sector Configuration of 512 Kbit Flash Memory

Flash memory	CPU address	Writer address*
	FF0000H	70000н
SA0 (32 Kbytes)		
	FF7FFFH	77FFFн
	FF8000H	78000н
SA1 (8 Kbytes)		
	FF9FFFH	79FFFH
	FFA000H	7А000н
SA2 (8 Kbytes)		
	FFBFFFH	7BFFFн
	FFC000H	7С000н
SA3 (16 Kbytes)		
	FFFFFH	7FFFFH

*: "Writer address" is an address equivalent to CPU address, which is used when data is written on Flash memory, using parallel writer. When writing/ deleting data with general-purpose writer, the writer address is used for writing and deleting.

13.2 Recommended Operating Conditions


(Vss = AVss = 0.0V)

Parameter	Symbol	Value				Remarks	
Falameter		Min	Тур	Max	Unit	Relliarks	
Power supply voltage Vcc 3.5 5.0 5.5		V	Under normal operation				
		3.0	_	5.5		Retain status of stop operation	
	AVcc	4.0	-	5.5	V	*2	
Smoothing capacitor	Cs	0.1	-	1.0	μF	*1	
Operating temperature	TA	-40	-	+105	°C		

*1: Use a ceramic capacitor, or a capacitor of similar frequency characteristics. On the Vcc pin, use a bypass capacitor that has a larger capacity than that of Cs.

Refer to the following figure for connection of smoothing capacitor Cs.

*2: AVcc is a voltage at which accuracy is guaranteed. AVcc should not exceed Vcc.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

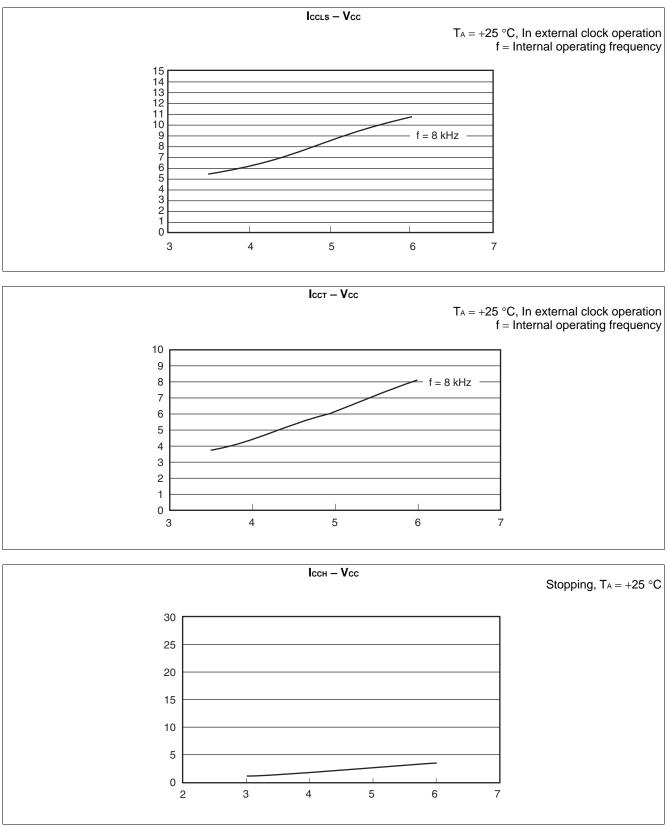
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

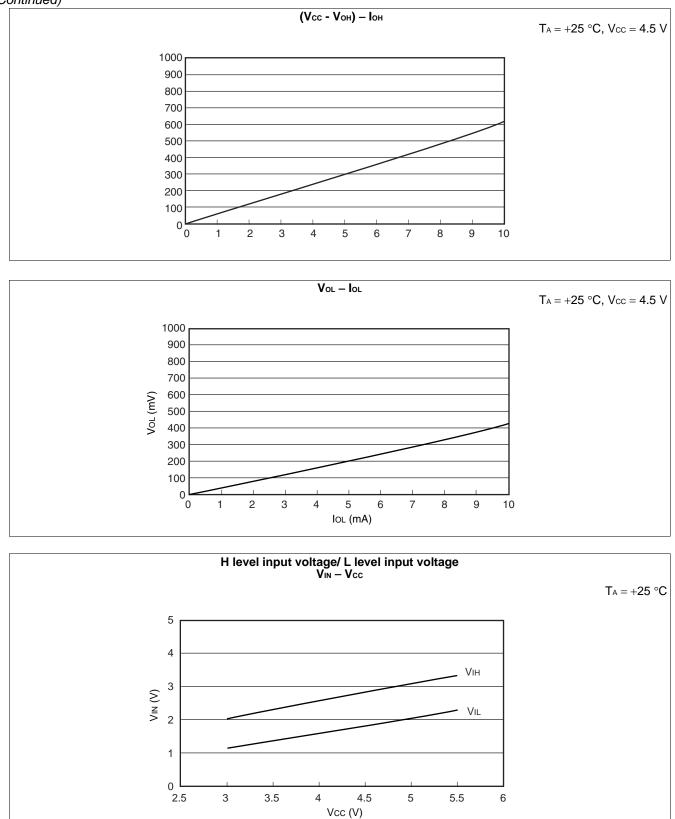
13.3 DC Characteristics

			(****	- 5.0 V±107	Value	1V35 – 0.0 V	, 14 –	–40 °C to +105
Parameter	Symbol	Pin Name	Conditions	Min Typ Max		Unit	Remarks	
"H" level input	Vins	CMOS hysteresis input pin	_	0.8 Vcc		Vcc + 0.3	V	
voltage	Vінм	MD input pin	_	Vcc - 0.3	_	Vcc + 0.3	V	
"L" level input	Vils	CMOS hysteresis input pin	_	Vss - 0.3	_	0.2 Vcc	V	
voltage	Vilm	MD input pin	—	Vss - 0.3	—	Vss + 0.3	V	
"H" level output	Vон1	Pins other than P14 to P17	Vcc = 4.5 V, Іон = -4.0 mA	Vcc - 0.5	_	—	V	
voltage	Vон2	P14 to P17	Vcc = 4.5 V, Іон = -14.0 mA	Vcc - 0.5	_	—	V	
"L" level output	Vol1	Pins other than P14 to P17	Vcc = 4.5 V, IoL = 4.0 mA	—	_	0.4	V	
voltage	Vol2	P14 to P17	Vcc = 4.5 V, Io∟ = 20.0 mA	—	—	0.4	V	
Input leak current	lι∟	All input pins	Vcc = 5.5 V, Vss < Vi < Vcc	-5	_	+5	μA	
Power supply current*	Icc	Vcc	Vcc = 5.0 V, Internally operating at 16 MHz, normal operation.	—	25	30	mA	
			Vcc = 5.0 V, Internally operating at 16 MHz, writing on Flash memory.	_	45	50	mA	MB90F387/S
			Vcc = 5.0 V, Internally operating at 16 MHz, deleting on Flash memory.	_	45	50	mA	MB90F387/S
	lccs		Vcc = 5.0 V, Internally operating at 16 MHz, sleeping.	_	8	12	mA	
	Icts		Vcc = 5.0 V, Internally operating at 2 MHz, transition from main	—	0.75	1.0	mA	MB90F387/S
			clock mode, in time-base timer mode.		0.2	0.35		MB90387/S

(Vcc = 5.0 V±10%, Vss = AVss = 0.0 V, T_A = -40 °C to +105 °C)


13.5 A/D Converter

Demonstration	0 miles	Pin Name	Value				_	
Parameter	Symbol		Min	Тур	Max	Unit	Remarks	
Resolution	-	-	_	_	10	bit		
Total error	_	_	_	_	± 3.0	LSB		
Nonlinear error	-	-	_	_	± 2.5	LSB		
Differential linear error	-	-	-	_	± 1.9	LSB		
Zero transition voltage	Vот	AN0 to AN7	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	1 LSB = (AVR – AVss) / 1024	
Full-scale transition voltage	Vfst	AN0 to AN7	AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	V	-	
Compare time	-	-	66 tcp *1	_	_	ns	With 16 MHz machine clock $5.5 \text{ V} \ge AV_{CC} \ge 4.5 \text{ V}$	
			88 tcp *1	_	_	ns	With 16 MHz machine clock $4.5 \text{ V} > AV_{CC} \ge 4.0 \text{ V}$	
Sampling time	-	-	32 tcp *1	_	_	ns	With 16 MHz machine clock $5.5 \text{ V} \ge AV_{CC} \ge 4.5 \text{ V}$	
			128 tcp *1	_	_	ns	With 16 MHz machine clock 4.5 V > AVcc \ge 4.0 V	
Analog port input current	Iain	AN0 to AN7	-	-	10	μA		
Analog input voltage	Vain	AN0 to AN7	AVss	-	AVR	V		
Reference voltage	_	AVR	AVss + 2.7	_	AVcc	V		
Power supply current	la	AVcc	—	3.5	7.5	mA		
	Іан	AVcc	—	-	5	μA	*2	
Reference voltage	IR	AVR	_	165	250	μA		
supplying current	IRH	AVR	_	_	5	μA	*2	
Variation among channels	-	AN0 to AN7	_	_	4	LSB		


 $(Vcc = AVcc = 4.0 \text{ V to } 5.5 \text{ V}, \text{ Vss} = AVss = 0.0 \text{ V}, 3.0 \text{ V} \le AVR - AVss, \text{ T}_{\text{A}} = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$

*1: Refer to Clock Timing on AC Characteristics.

*2: If A/D converter is not operating, a current when CPU is stopped is applicable (Vcc=AVcc=AVR=5.0 V).

(Continued)

(Continued)

17. Major Changes

Spansion Publication Number: DS07-13717-5E

Page	Section	Change Results
4	■ PRODUCT LINEUP	Changed the number of channel of 8/16 bit PPG timer. or one 16-bit channel \rightarrow or two 16-bit channels
13	■ BLOCK DIAGRAM	Changed the direction of arrow of TIN0, TIN1 signals of 16-bit reload timer. right arrow (output) \rightarrow left arrow (input)
67	 ELECTRIC CHARACTERISTICS 4. AC Characteristics (4) UART timing 	Changed the value of Serial clock. Serial clock "H" pulse width: 4tcp→2tcp Serial clock "L" pulse width: 4tcp→2tcp

NOTE: Please see "Document History" about later revised information.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2004-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify a