

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f387pmc-gte1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DTP/External Interrupt: 4 channels, CAN wakeup: 1channel

Module for activation of expanded intelligent I/O service (EI²OS), and generation of external interrupt.

Delay Interrupt Generator Module

Generates interrupt request for task switching.

8/10-bit A/D Converter: 8 channels

- Resolution is selectable between 8-bit and 10-bit.
- Activation by external trigger input is allowed.
- Conversion time: 6.125 μs (at 16 MHz machine clock, including sampling time)

Program Patch Function

■ Address matching detection for 2 address pointers.

5. Pin Description

Pin No.	Pin Name	Circuit Type	Function						
1	AVcc	-	Vcc power input pin for A/D converter.						
2	AVR	-	Power (Vref+) input pin for A/D converter. Use as input for Vcc or lower.						
3 to 10	P50 to P57	Е	General-purpose input/output ports.						
	AN0 to AN7		Functions as analog input pins for A/D converter. Valid when analog input setti "enabled."						
11	P37	D	General-purpose input/output port.						
	ADTG		Function as an external trigger input pin for A/D converter. Use the pin by setting as input port.						
12	P20	D	General-purpose input/output port.						
	TIN0		Function as an event input pin for reload timer 0. Use the pin by setting as input port.						
13	P21	D	General-purpose input/output port.						
	TOT0		Function as an event output pin for reload timer 0. Valid only when output setting is "enabled."						
14	P22	D	General-purpose input/output port.						
	TIN1		Function as an event input pin for reload timer 1. Use the pin by setting as input port.						
15	P23	D	General-purpose input/output port.						
	TOT1		Function as an event output pin for reload timer 1. Valid only when output setting is "enabled."						
16 to 19	P24 to P27	D	General-purpose input/output ports.						
	INT4 to INT7		Functions as external interrupt input pins. Use the pins by setting as input port.						
20	MD2	F	Input pin for specifying operation mode. Connect directly to Vss.						
21	MD1	С	Input pin for specifying operation mode. Connect directly to Vcc.						
22	MD0	С	Input pin for specifying operation mode. Connect directly to Vcc.						
23	RST	В	External reset input pin.						
24	Vcc	-	Power source (5 V) input pin.						
25	Vss	-	Power source (0 V) input pin.						
26	С	-	Capacitor pin for stabilizing power source. Connect a ceramic capacitor of approximately 0.1 $\mu\text{F}.$						
27	X0	А	Pin for high-rate oscillation.						
28	X1	А	Pin for high-rate oscillation.						
29 to 32	P10 to P13	D	General-purpose input/output ports.						
	IN0 to IN3		Functions as trigger input pins of input capture ch.0 to ch.3. Use the pins by setting as input ports.						
33 to 36	P14 to P17	G	General-purpose input/output ports. High-current output ports.						
	PPG0 to PPG3		Functions as output pins of PPG timers 01 and 23. Valid when output setting is "enabled."						
37	P40	D	General-purpose input/output port.						
	SIN1		Serial data input pin for UART. Use the pin by setting as input port.						
38	P41	D	General-purpose input/output port.						
	SCK1		Serial clock input pin for UART. Valid only when serial clock input/output setting on UART is "enabled."						

Notes When Using No Sub Clock

■ If an oscillator is not connected to X0A and X1A pin, apply pull-down resistor to X0A pin and leave X1A pin open.

About Power Supply Pins

- If two or more Vcc and Vss pins exist, the pins that should be at the same potential are connected to each other inside the device. For reducing unwanted emissions and preventing malfunction of strobe signals caused by increase of ground level, however, be sure to connect the Vcc and Vss pins to the power source and the ground externally.
- Pay attention to connect a power supply to Vcc and Vss of MB90385 series device in a lowest-possible impedance.
- Near pins of MB90385 series device, connecting a bypass capacitor is recommended at 0.1 µF across Vcc pin and Vss pin.

Crystal Oscillator Circuit

- Noises around X0 and X1 pins cause malfunctions on a MB90385 series device. Design a print circuit so that X0 and X1 pins, an crystal oscillator (or a ceramic oscillator), and bypass capacitor to the ground become as close as possible to each other. Furthermore, avoid wires to X0 and X1 pins crossing each other as much as possible.
- Print circuit designing that surrounds X0 and X1 pins with grounding wires, which ensures stable operation, is strongly recommended.

Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

Sequence of Turning on Power of A/D Converter and Applying Analog Input

- Be sure to turn on digital power (Vcc) before applying signals to the A/D converter and applying analog input signals (AN0 to AN7 pins).
- Be sure to turn off the power of A/D converter and analog input before turning off the digital power source.
- Be sure not to apply AVR exceeding AVcc when turning on and off. (No problems occur if analog and digital power is turned on and off simultaneously.)

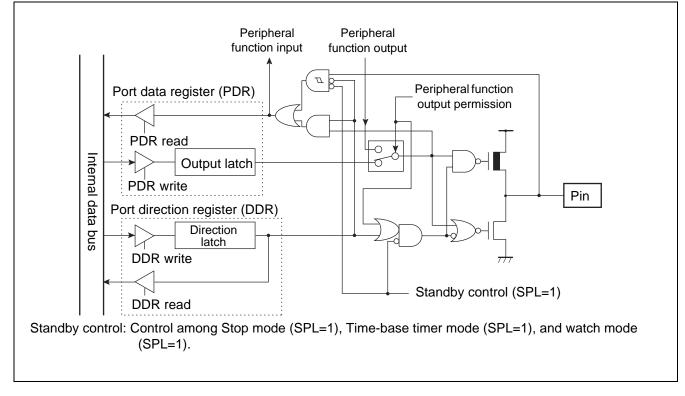
Handling Pins When A/D Converter is Not Used

■ If the A/D converter is not used, connect the pins under the following conditions: "AVcc=AVR=Vcc," and "AVss=Vss"

Note on Turning on Power

For preventing malfunctions on built-in step-down circuit, maintain a minimum of 50 μs of voltage rising time (between 0.2 V and 2.7V) when turning on the power.

Stabilization of Supply Voltage


■ A sudden change in the supply voltage may cause the device to malfunction even within the specified Vcc supply voltage operating range. Therefore, the Vcc supply voltage should be stabilized.

For reference, the supply voltage should be controlled so that Vcc ripple variations (peak-to-peak values) at commercial frequencies (50 Hz / 60 Hz) fall below 10% of the standard Vcc supply voltage and the coefficient of fluctuation does not exceed 0.1 V/ms at instantaneous power switching.

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
003910н	PRLL0	PPG0 reload register L	R/W	8/16-bit PPG timer	XXXXXXXXB
003911 н	PRLH0	PPG0 reload register H	R/W		XXXXXXXXB
003912н	PRLL1	PPG1 reload register L	R/W	XXXXXXXXB	
003913н	PRLH1	PPG1 reload register H	R/W		XXXXXXXXB
003914н	PRLL2	PPG2 reload register L	R/W		XXXXXXXXB
003915 н	PRLH2	PPG2 reload register H	R/W		XXXXXXXXB
003916 н	PRLL3	PPG3 reload register L	R/W		XXXXXXXX _B
003917 н	PRLH3	PPG3 reload register H	R/W		XXXXXXXXB
003918н to 00392Fн			(Reserved area) *		
003930н to 003BFFн			(Reserved area) *		
003C00н to 003C0Fн		RAM (General-purpose R	AM)	
003C10н to 003C13н	IDR0	ID register 0	R/W	CAN controller	XXXXXXXXB to XXXXXXXXB
003C14н to 003C17н	IDR1	ID register 1	R/W	-	XXXXXXXXB to XXXXXXXXB
003C18н to 003C1Bн	IDR2	ID register 2	R/W	_	XXXXXXXXB to XXXXXXXB
003C1Cн to 003C1Fн	IDR3	ID register 3	R/W	-	XXXXXXXXB to XXXXXXXXB
003C20н to 003C23н	IDR4	ID register 4	R/W	_	XXXXXXXXB to XXXXXXXXB
003C24н to 003C27н	IDR5	ID register 5	R/W	_	XXXXXXXXAB to XXXXXXXXB
003C28н to 003C2Bн	IDR6	ID register 6	R/W	-	XXXXXXXXB to XXXXXXXB
003C2Cн to 003C2Fн	IDR7	ID register 7	R/W		XXXXXXXXB to XXXXXXXB
003C30н, 003C31н	DLCR0	DLC register 0	R/W		XXXXXXXXB, XXXXXXXB
003C32н, 003C33н	DLCR1	DLC register 1	R/W		XXXXXXXXB, XXXXXXXB
003C34н, 003C35н	DLCR2	DLC register 2	R/W		XXXXXXXXB, XXXXXXXXB
003C36н, 003C37н	DLCR3	DLC register 3	R/W		XXXXXXXXB, XXXXXXXXB

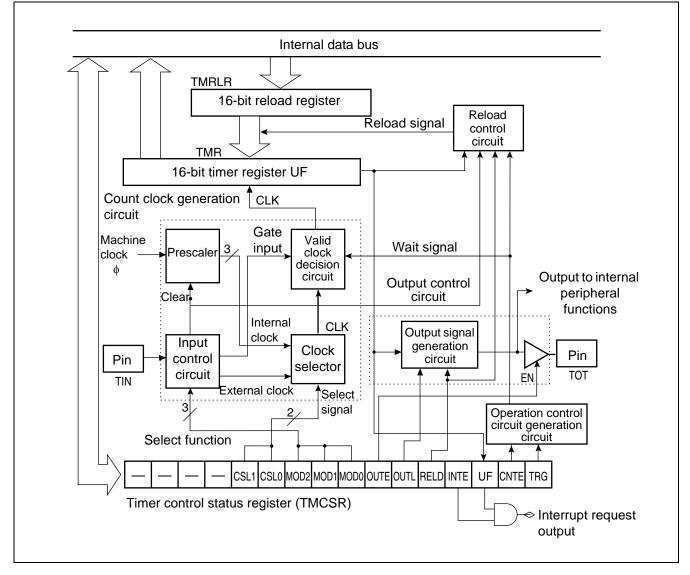
Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
003С38н, 003С39н	DLCR4	DLC register 4	R/W	CAN controller	XXXXXXXXB, XXXXXXXB
003С3Ан, 003С3Вн	DLCR5	DLC register 5	XXXXXXXXB, XXXXXXXB		
003C3Cн, 003C3Dн	DLCR6	DLC register 6		XXXXXXXXB, XXXXXXXB	
003C3Eн, 003C3Fн	DLCR7	DLC register 7	R/W		XXXXXXXXB, XXXXXXXB
003C40н to 003C47н	DTR0	Data register 0	R/W		XXXXXXXXB to XXXXXXXXB
003C48н to 003C4Fн	DTR1	Data register 1	R/W		XXXXXXXXB to XXXXXXXXB
003C50н to 003C57н	DTR2	Data register 2	R/W	-	XXXXXXXXB to XXXXXXXB
003C58н to 003C5Fн	DTR3	Data register 3	R/W	_	XXXXXXXXB to XXXXXXXXB
003C60н to 003C67н	DTR4	Data register 4	R/W		XXXXXXXXB to XXXXXXXXB
003C68н to 003C6Fн	DTR5	Data register 5	R/W		XXXXXXXXB to XXXXXXXXB
003C70н to 003C77н	DTR6	Data register 6	R/W		XXXXXXXXB to XXXXXXXXB
003C78н to 003C7Fн	DTR7	Data register 7	R/W		XXXXXXXXB to XXXXXXXXB
003C80н to 003CFFн		(Rese	rved area) *		
003D00н, 003D01н	CSR	Control status register	R/W, R	CAN controller	0XXXX001в, 00XXX000в
003D02н	LEIR	Last event display register	R/W		000XX000 _B
003D03н		(Rese	rved area) *		
003D04н, 003D05н	RTEC	Send/receive error counter	R	CAN controller	0000000в, 0000000в
003D06н, 003D07н	BTR	Bit timing register	R/W		11111111 _в , Х1111111 _в
003D08н	IDER	IDE register	R/W		XXXXXXXXB
003D09н		(Rese	rved area) *		
003D0Aн	TRTRR	Send RTR register	R/W	CAN controller	0000000в
003D0Bн		(Rese	rved area) *		
003D0CH	RFWTR	Remote frame receive wait register	R/W	CAN controller	XXXXXXXXB

Port 4 Pins Block Diagram

Port 4 Registers

- Port 4 registers include port 4 data register (PDR4) and port 4 direction register (DDR4).
- The bits configuring the register correspond to port 4 pins on a one-to-one basis.

Relation between Port 4 Registers and Pins


Port Name	Bits of Register and Corresponding Pins								
Port 4	PDR4, DDR4	PDR4, DDR4 – – – bit4 bit3 bit2 bit1 bit0						bit0	
	Corresponding pins	-	-	-	P44	P43	P42	P41	P40

MB90387/387S/F387/F387S MB90V495G

Watchdog timer control register(WDTC) Watch timer control register (WTC) WRST ERST SRST WTE WT1 WT0 PONR ____ WDCS Watchdog timer 2, Activate Reset occurs _ Counter Watchdog Shift to sleep mode -----2-bit Internal reset Count clock reset clear control Shift to time-base counter - 6 generation generation selector circuit timer mode circuit circuit Shift to watch mode Clear Shift to stop mode 4 4 Time-base timer counter Main clock $\times 2^2$ × 28 × 29 × 210 × 211 × 2¹² × 2¹³ × 2¹⁴ $\times 2^1$ × 215 × 216 × 2¹⁷ $\times 2^{18}$ (dividing HCLK by 2) Watch counter Sub clock $\times 2^2$ × 2⁵ $\times 2^{6}$ × 2⁸ × 2⁹ × 2¹⁰ × 2¹¹ × 2¹² × 2¹³ × 2¹⁴ × 2¹⁵ $\times 2^{1}$ $\times 2^7$. SCLK HCLK: Oscillation clock SCLK: Sub clock

Watchdog Timer Block Diagram

16-bit Reload Timer Block Diagram

12.7 8/16-bit PPG Timer Outline

The 8/16-bit PPG timer is a 2-channel reload timer module (PPG0 and PPG1) that allows outputting pulses of arbitrary cycle and duty cycle. Combination of the two channels allows selection among the following operations:

- 8-bit PPG output 2-channel independent operation mode
- 16-bit PPG output operation mode
- 8-bit and 8-bit PPG output operation mode

MB90385 series device has two 8/16-bit built-in PPG timers. This section describes functions of PPG0/1. PPG2/3 have the same functions as those of PPG0/1.

Functions of 8/16-bit PPG Timer

The 8/16-bit PPG timer is composed of four 8-bit reload register (PRLH0/PRLL0, PRLH1/PRLL1) and two PPG down counters (PCNT0, PCNT1).

- Widths of "H" and "L" in output pulse are specifiable independently. Cycle and duty factor of output pulse is specifiable arbitrarily.
- Count clock is selectable among 6 internal clocks.
- The timer is usable as an interval timer, by generating interrupt requests for each interval.
- The time is usable as a D/A converter, with an external circuit.

12.10 8/10-bit A/D Converter

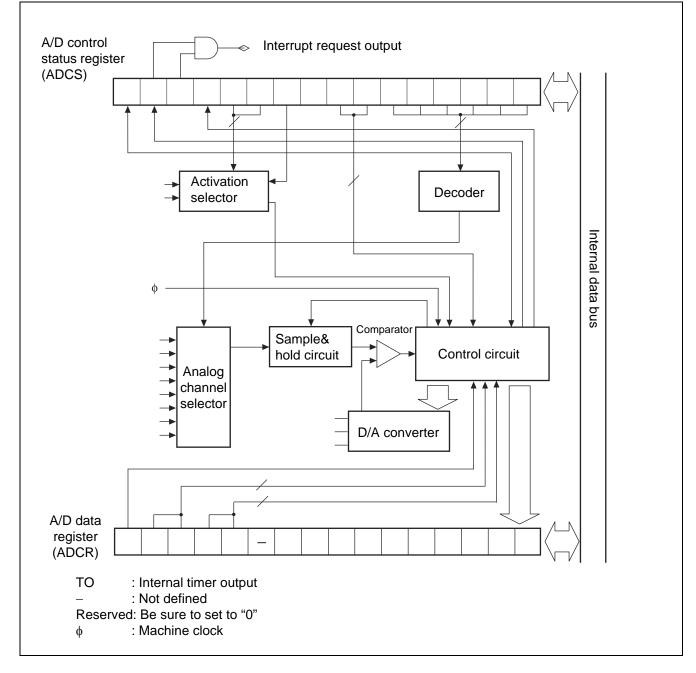
The 8/10-bit A/D converter converts an analog input voltage into 8-bit or 10/bit digital value, using the RC-type successive approximation conversion method.

- Input signal is selected among 8 channels of analog input pins.
- Activation trigger is selected among software trigger, internal timer output, and external trigger.

Functions of 8/10-bit A/D Converter

The 8/10-bit A/D converter converts an analog voltage (input voltage) input to analog input pin into an 8-bit or 10-bit digital value (A/D conversion).

The 8/10-bit A/D converter has the following functions:


- A/D conversion takes a minimum of 6.12 µs* for 1 channel, including sampling time. (A/D conversion)
- Sampling of one channel takes a minimum of 2.0 µs*.
- RC-type successive approximation conversion method, with sample & hold circuit is used for conversion.
- Resolution of either 8 bits or 10 bits is specifiable.
- A maximum of 8 channels of analog input pins are allowed for use.
- Generation of interrupt request is allowed, by storing A/D conversion result in A/D data register.
- Activation of EI²OS is allowed upon occurrence of an interrupt request. With use of EI²OS, data loss is avoided even if A/D conversion is performed successively.
- An activation trigger is selectable among software trigger, internal timer output, and external trigger (fall edge).
- : When operating with 16 MHz machine clock

8/10-bit A/D Converter Conversion Mode

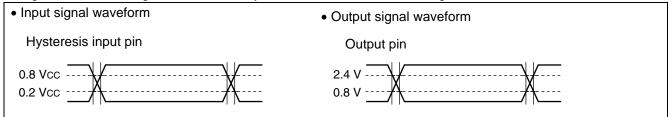
Conversion Mode	Description
Singular conversion mode	The A/D conversion is performed form a start channel to an end channel sequentially. Upon completion of A/D conversion on an end channel, A/D conversion function stops.
Sequential conversion mode	The A/D conversion is performed form a start channel to an end channel sequentially. Upon completion of A/D conversion on an end channel, A/D conversion function resumes from the start channel.
Pausing conversion mode	The A/D conversion is performed by pausing at each channel. Upon completion of A/D conversion on an end channel, A/D conversion and pause functions resume from the start channel.

MB90387/387S/F387/F387S MB90V495G

8/10-bit A/D Converter Block Diagram

Sector Configuration of 512 Kbit Flash Memory

Flash memory	CPU address	Writer address*
	FF0000H	70000н
SA0 (32 Kbytes)		
	FF7FFFH	77FFFH
	FF8000H	78000н
SA1 (8 Kbytes)		
	FF9FFFH	79FFFH
	FFA000H	7А000н
SA2 (8 Kbytes)		
	FFBFFFH	7BFFFH
	FFC000H	7С000н
SA3 (16 Kbytes)		
	FFFFFH	7FFFFH

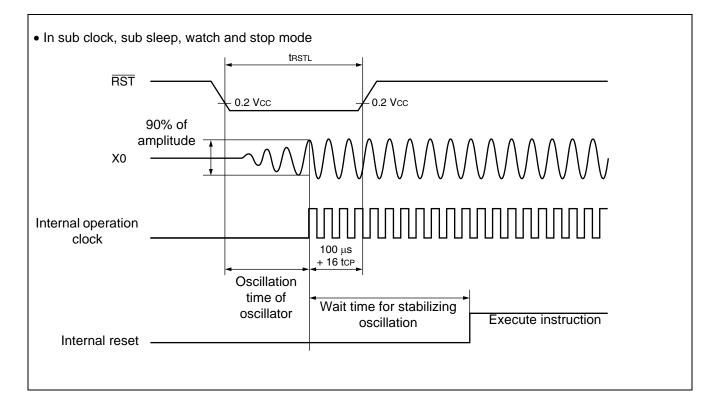

*: "Writer address" is an address equivalent to CPU address, which is used when data is written on Flash memory, using parallel writer. When writing/ deleting data with general-purpose writer, the writer address is used for writing and deleting.

Deremeter	Symbol	Pin Name	Conditions		Value		Unit	Remarks
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
Power supply current*	lcc∟	Vcc	Vcc = 5.0 V, Internally operating at 8 kHz, subclock operation,	_	0.3	1.2	mA	MB90F387/S
000			$T_A = +25^{\circ}C$		40	100	μΑ	MB90387/S
	ICCLS		$V_{CC} = 5.0 V$, Internally operating at 8 kHz, subclock, sleep mode, $T_{A} = + 25^{\circ}C$	_	10	30	μA	
	Ісст		Vcc = 5.0 V, Internally operating at 8 kHz, watch mode, $T_A = + 25^{\circ}C$		8	25	μΑ	
	Іссн		Stopping, T _A = + 25°C	_	5	20	μΑ	
Input capacity	CIN	Other than AVcc, AVss, AVR, C, Vcc, Vss	-	_	5	15	pF	
Pull-up resistor	Rup	RST	-	25	50	100	kΩ	
Pull-down resistor	Rdown	MD2	-	25	50	100	kΩ	Flash product is not provided with pull-down resistor.

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 \circ C to +105 \circ C)$

*: Test conditions of power supply current are based on a device using external clock.

Rating values of alternating current is defined by the measurement reference voltage values shown below:


13.4.2 Reset Input Timing

Parameter	eter Symbol Pin Name Value			Unit	Remarks	
Falameter	Symbol		Min	lin Max		Reillarks
Reset input time	t RSTL	RST	16 tce*3	-	ns	Normal operation
			Oscillation time of oscillator ^{*1} + $100 \ \mu s$ + $16 \ tcP^{*3}$	-		In sub clock ^{*2} , sub sleep ^{*2} , watch ^{*2} and stop mode
			100	_	μS	In timebase timer

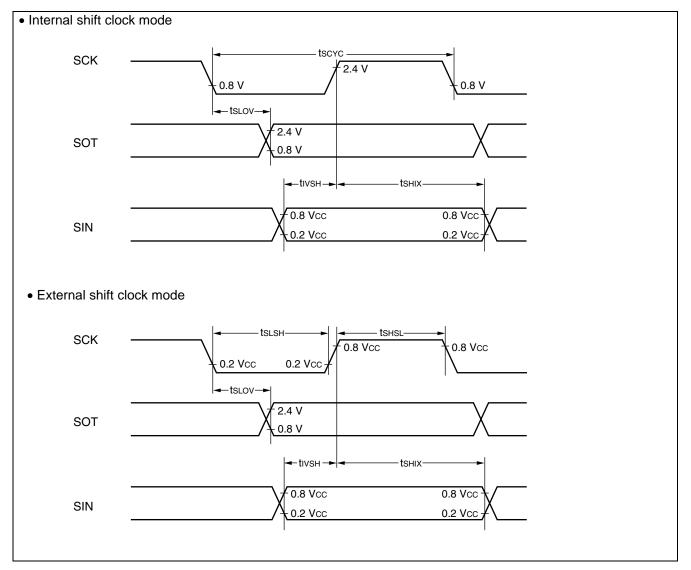
*1: Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.

*2: Except for MB90F387S and MB90387S.

*3: Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).

13.4.4 UART Timing

Parameter	Symbol Pin Name		Conditions	Va	lue	Unit	Remarks
Falameter	Symbol		Conditions	Min	Max	Unit	Remarks
Serial clock cycle time	tscyc	SCK1	Internal shift clock	4 tcp *	-	ns	
$SCK \downarrow \to SOT$ delay time	t slov	SCK1, SOT1	mode output pin is: CL = 80 pF+1TTL.	-80	+80	ns	
Valid SIN \rightarrow SCK \uparrow	t ivsh	SCK1, SIN1		100	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнix	SCK1, SIN1		60	-	ns	
Serial clock "H" pulse width	t shsl	SCK1	External shift clock	2 tcp *	-	ns	
Serial clock "L" pulse width	tslsh	SCK1	mode output pin is: CL = 80 pF+1TTL.	2 tcp *	-	ns	
$SCK \downarrow \to SOT$ delay time	tslov	SCK1, SOT1		-	150	ns	
Valid SIN \rightarrow SCK \uparrow	t ivsh	SCK1, SIN1		60	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнix	SCK1, SIN1		60	_	ns	


(Vcc = 4.5 V to 5.5 V, Vss = 0.0 V, T_A = -40 °C to +105 °C)

*: Refer to Clock Timing ratings for $t_{\mbox{\tiny CP}}$ (internal operation clock cycle time).

Notes:

■ AC Characteristics in CLK synchronous mode.

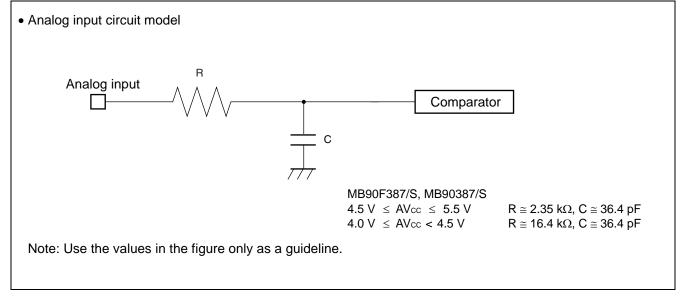
 \blacksquare C_L is a load capacitance value on pins for testing.

13.4.5 Timer Input Timing

 $(V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
Falameter	Symbol	Finite	Conditions	Min	Max	Onit	Remains
Input pulse width	tтіwн	TIN0, TIN1	-	4 tcp*	-	ns	
	t⊤ıw∟	IN0 to IN3					

*: Refer to Clock Timing ratings for tcp (internal operation clock cycle time).


13.7 Notes on A/D Converter Section

Use the device with external circuits of the following output impedance for analog inputs:

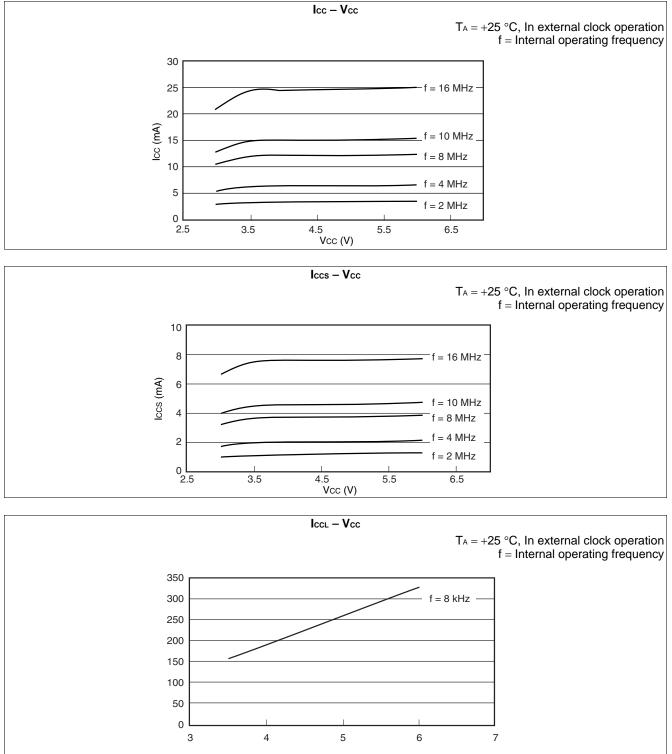
Recommended output impedance of external circuits are: Approx. 3.9 k Ω or lower (4.5 V \leq AVcc \leq 5.5 V) (sampling period=2.00 μ s at 16 MHz machine clock), Approx. 11 k Ω or lower (4.0 V \leq AVcc < 4.5 V) (sampling period=8.0 μ s at 16 MHz machine clock).

If an external capacitor is used, in consideration of the effect by tap capacitance caused by external capacitors and on-chip capacitors, capacitance of the external one is recommended to be several thousand times as high as internal capacitor.

If output impedance of an external circuit is too high, a sampling period for an analog voltage may be insufficient.

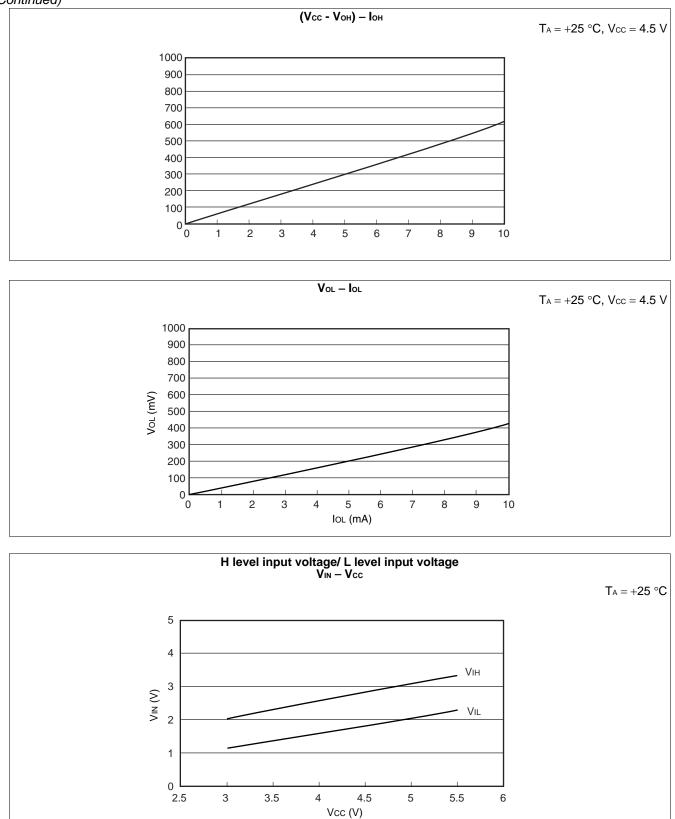
About errors

As [AVR-AVss] become smaller, values of relative errors grow larger.


13.8 Flash Memory Program/Erase Characteristics

Parameter	Conditions		Value		Unit	Remarks
Falameter	Conditions	Min	Тур	Max	Onit	Remarks
Sector erase time	$\begin{array}{l} T_{\text{A}}=+~25~^{\circ}C\\ V_{\text{CC}}=5.0~V \end{array}$	-	1	15	S	Excludes 00H programming prior to erasure
Chip erase time		-	4	-	S	Excludes 00H programming prior to erasure
Word (16-bit width) programming time		-	16	3,600	μS	Except for the over head time of the system
Program/Erase cycle	_	10,000	-	-	cycle	
Flash Data Retention Time	Average T _A = + 85 °C	20	-	-	Year	*

*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C).


14. Example Characteristics

MB90F387

(Continued)

MB90387/387S/F387/F387S MB90V495G

(Continued)

Document History

Document Title: MB90387/387S/F387/F387S, MB90V495G, 16-bit Microcontrollers F ² MC-16LX MB90385 Series Document Number:002-07765				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	_	AKIH	12/19/2008	Migrated to Cypress and assigned document number 002-07765. No change to document contents or format.
*A	6059071	SSAS	02/05/2018	Updated to Cypress template Package: FPT-48P-M26> LQA048