

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f387pmt-g-n2e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number Parameter	MB90F387 MB90F387S	MB90387 MB90387S	MB90V495G		
8/10-bit A/D converter	Number of channels: 8 Resolution: Selectable 10-bit or 8-bit. Conversion time: $6.125 \ \mu s$ (at 16 MHz machine clock, including sampling time) Sequential conversion of two or more successive channels is allowed. (Setting a maximum of 8 channels is allowed.) Single conversion mode: Selected channel is converted only once. Sequential conversion mode: Selected channel is converted repetitively. Halt conversion mode: Conversion of selected channel is stopped and activated alter- nately.				
UART(SCI)	Number of channels: 1 Clock-synchronous transfer: 62.5 kbps to 2 Mbps Clock-asynchronous transfer: 9,615 bps to 500 kbps Communication is allowed by bi-directional serial communication function and master slave type connection.				
CAN Compliant with Ver 2.0A and Ver 2.0B CAN specifications. 8 built-in message buffers. Transmission rate of 10 kbps to 1 Mbps (by 16 MHz machine clock) CAN wake-up					

*1: Settings of DIP switch S2 for using emulation pod MB2145-507. For details, see MB2145-507 Hardware Manual (2.7 Power Pin solely for Emulator).

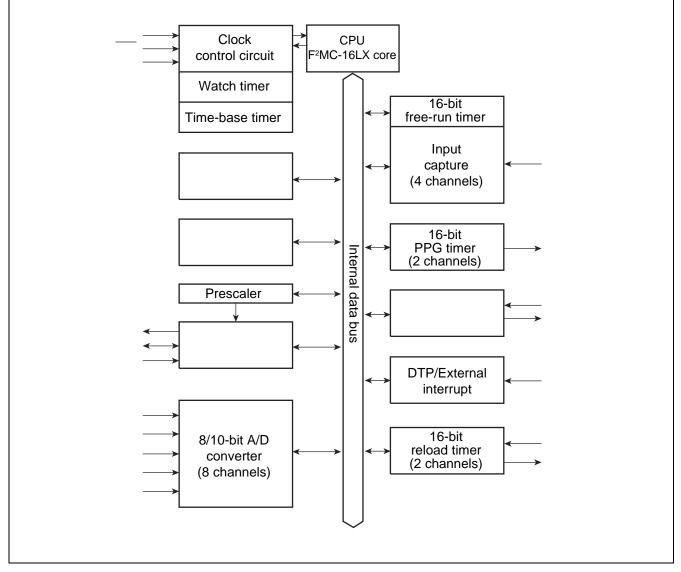
*2: MB90387S, MB90F387S

2. Packages And Product Models

Package	MB90F387, MB90F387S	MB90387, MB90387S
LQA048	\bigcirc	\bigcirc

 \bigcirc : Yes \times : No

Note: Refer to Package Dimension for details of the package.


3. Product Comparison

Memory Space

When testing with test product for evaluation, check the differences between the product and a product to be used actually. Pay attention to the following points:

- The MB90V495G has no built-in ROM. However, a special-purpose development tool allows the operations as those of one with built-in ROM. ROM capacity depends on settings on a development tool.
- On MB90V495G, an image from FF4000^H to FFFFFF^H is viewed on 00 bank and an image of FE0000^H to FF3FFF^H is viewed only on FE bank and FF bank. (Modified on settings of a development tool.)
- On MB90F387/F387S/387/387S, an image from FF4000H to FFFFFFH is viewed on 00 bank and an image of FE0000H to FF3FFFH is viewed only on FF bank.

8. Block Diagram

9. Memory Map

MB90385 series allows specifying a memory access mode "single chip mode."

9.1 Memory Allocation of MB90385

MB90385 series model has 24-bit wide internal address bus and up to 24-bit bus of external address bus. A maximum of 16-Mbyte memory space of external access memory is accessible.

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value		
003D0Dн		(Reserv	ed area) *				
003D0Eн	TIER	Send completion interrupt permission register	R/W	CAN controller	0000000в		
003D0Fн		(Reserv	ed area) *	·			
003D10н, 003D11н	AMSR	Acceptance mask selection register	R/W	CAN controller	XXXXXXXXB, XXXXXXXB		
003D12н, 003D13н	(Reserved area) *						
003D14н to 003D17н	AMR0	Acceptance mask register 0	R/W	CAN controller	XXXXXXXXB to XXXXXXXXB		
003D18н to 003D1Bн	AMR1	Acceptance mask register 1	R/W		XXXXXXXXB to XXXXXXXXB		
003D1Cн to 003DFFн		(Reserv	ed area) *				
003E00н to 003EFFн	(Reserved area) *						
003FF0н to 003FFFн		(Reserv	ed area) *				

Initial values:

0: Initial value of this bit is "0."

1: Initial value of this bit is "1."

X: Initial value of this bit is undefined.

*: "Reserved area" should not be written anything. Result of reading from "Reserved area" is undefined.

11. Interrupt Sources, Interrupt Vectors, And Interrupt Control Registers

Interrupt Source	El ² OS	I	nterrup	t Vector	Interrupt C	ontrol Register	- Priority*3
Interrupt Source	Readiness	Nur	nber	Address	ICR	Address	
Reset	×	#08	08н	FFFFDC H	-	-	High
INT 9 instruction	×	#09	09н	FFFFD8H	-	-	↑
Exceptional treatment	×	#10	0Ан	FFFFD4H	-	-	
CAN controller reception completed (RX)	,	#11	0Вн	FFFFD0H	ICR00	0000B0н*1	
CAN controller transmission completed (TX) / Node status transition (NS)	,	#12	0Сн	FFFFCCH			
Reserved	×	#13	0Dн	FFFFC8H	ICR01	0000B1н	
Reserved	×	#14	0Ен	FFFFC4H	1		
CAN wakeup	Δ	#15	0Fн	FFFFC0H	ICR02	0000B2н*1	
Time-base timer	×	#16	10н	FFFFBC H	1		
16-bit reload timer 0	Δ	#17	11н	FFFFB8 _H	ICR03	0000B3н*1	
8/10-bit A/D converter	Δ	#18	12н	FFFFB4H			
16-bit free-run timer overflow	Δ	#19	13н	FFFFB0H	ICR04 0000B4H*1		1
Reserved	×	#20	14н	FFFFAC H			
Reserved	×	#21	15 н	FFFFA8H	ICR05	0000B5н*1	
PPG timer ch0, ch1 underflow	,	#22	16 н	FFFFA4H			
Input capture 0-input	Δ	#23	17 н	FFFFA0н	ICR06	0000В6н*1	
External interrupt (INT4/INT5)	Δ	#24	18 н	FFFF9CH			
Input capture 1-input	Δ	#25	19 н	FFFF98н	ICR07	0000 B7 н*2	
PPG timer ch2, ch3 underflow	,	#26	1Ан	FFFF94⊦	-		
External interrupt (INT6/INT7)	Δ	#27	1Bн	FFFF90H	ICR08	0000B8н*1	
Watch timer	Δ	#28	1Сн	FFFF8CH			
Reserved	×	#29	1Dн	FFFF88H	ICR09	0000B9н*1	
Input capture 2-input Input capture 3-input	,	#30	1Ен	FFFF84 _H	-		
Reserved	×	#31	1Fн	FFFF80H	ICR10	0000BAн*1	
Reserved	×	#32	20н	FFFF7CH			
Reserved	×	#33	21н	FFFF78⊦	ICR11	0000BB _H *1	
Reserved	×	#34	22н	FFFF74 _H			
Reserved	×	#35	23н	FFFF70н	ICR12	0000BC _H *1	\downarrow
16-bit reload timer 1	0	#36	24н	FFFF6CH			Low

Interrupt Source	El ² OS	Interrupt Vector			Interrupt C	Priority*3	
interrupt Source	Readiness	Number		Address	ICR	Address	FIOTILY
UART1 reception completed	O	#37	25н	FFFF68H	ICR13	0000BDH*1	High
UART1 transmission completed	Δ	#38	26н	FFFF64⊦			\uparrow
Reserved	×	#39	27н	FFFF60H	ICR14	0000BE _H *1	
Reserved	×	#40	28н	FFFF5CH			
Flash memory	×	#41	29н	FFFF58H	ICR15	0000BF _H *1	\downarrow
Delay interrupt generation module	×	#42	2Ан	FFFF54⊦	<u> </u>		Low

○ : Available

× : Unavailable

© : Available El²OS function is provided.

 Δ : Available when a cause of interrupt sharing a same ICR is not used.

*1:

□ Peripheral functions sharing an ICR register have the same interrupt level.

□ If peripheral functions share an ICR register, only one function is available when using expanded intelligent I/O service.

If peripheral functions share an ICR register, a function using expanded intelligent I/O service does not allow interrupt by another function.

*2: Input capture 1 corresponds to EI2OS, however, PPG does not. When using EI2OS by input capture 1, interrupt should be disabled for PPG.

*3:Priority when two or more interrupts of a same level occur simultaneously.

12. Peripheral Resources

12.1 I/O Ports

The I/O ports are used as general-purpose input/output ports (parallel I/O ports). The MB60385 series model is provided with 5 ports (34 inputs). The ports function as input/output pins for peripheral functions also.

I/O Port Functions

An I/O port, using port data resister (PDR), outputs the output data to I/O pin and input a signal input to I/O port. The port direction register (DDR) specifies direction of input/output of I/O pins on a bit-by-bit basis.

The following summarizes functions of the ports and sharing peripheral functions:

- Port 1: General-purpose input/output port, used also for PPG timer output and input capture inputs.
- Port 2: General-purpose input/output port, used also for reload timer input/output and external interrupt input.
- Port 3: General-purpose input/output port, used also for A/D converter activation trigger pin.
- Port 4: General-purpose input/output port, used also for UART input/output and CAN controller send/receive pin.
- Port 5: General-purpose input/output port, used also analog input pin.

12.2 Time-Base Timer

The time-base time is an 18-bit free-run counter (time-base timer counter) that counts up in synchronization with the main clock (dividing main oscillation clock by 2).

- Four choices of interval time are selectable, and generation of interrupt request is allowed for each interval time.
- Provides operation clock signal to oscillation stabilizing wait timer and peripheral functions.

Interval Timer Function

- When the counter of time-base timer reaches an interval time specified by interval time selection bit (TBTC:TBC1, TBC0), an overflow (carrying-over) occurs (TBTC: TBOF=1) and interrupt request is generated.
- If an interrupt by overflow is permitted (TBTC: TBIE=1), an interrupt is generated when overflow occurs (TBTC: TBOF=1).
- The following four interval time settings are selectable:

Interval Time of Time-base Timer

Count Clock	Interval Time
2/HCLK (0.5 μs)	2 ¹² /HCLK (Approx. 1.0 ms)
	2 ¹⁴ /HCLK (Approx. 4.1 ms)
	216/HCLK (Approx. 16.4 ms)
	2 ¹⁹ /HCLK (Approx. 131.1 ms)

HCLK: Oscillation clock

Values in parentheses "()" are those under operation of 4-MHz oscillation clock.

12.4 16-bit Input/Output Timer

The 16-bit input/output timer is a compound module composed of 16-bit free-run timer, (1 unit) and input capture (2 units, 4 input pins). The timer, using the 16-bit free-run timer as a basis, enables measurement of clock cycle of an input signal and its pulse width.

Configuration of 16-bit Input/Output Timer

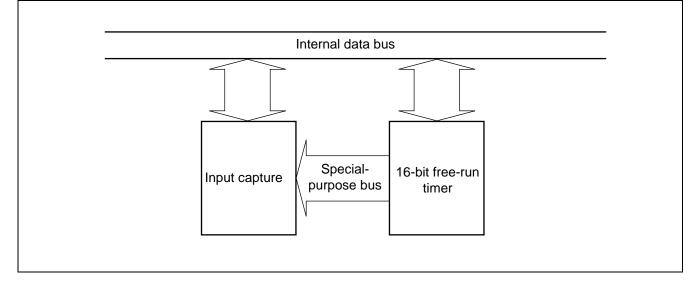
The 16-bit input/output timer is composed of the following modules:

- 16-bit free-run timer (1 unit)
- Input capture (2 units, 2 input pins per unit)

Functions of 16-bit Input/Output Timer

Functions of 16-bit Free-run Timer

The 16-bit free-run timer is composed of 16-bit up counter, timer counter control status register, and prescaler. The 16-bit up counter increments in synchronization with dividing ratio of machine clock.


- Count clock is set among four types of machine clock dividing rates.
- Generation of interrupt is allowed by counter value overflow.
- Activation of expanded intelligent I/O service (EI²OS) is allowed by interrupt generation.
- Counter value of 16-bit free-run timer is cleared to "0000^H" by either resetting or software-clearing with timer count clear bit (TCCS: CLR).
- Counter value of 16-bit free-run timer is output to input capture, which is available as base time for capture operation.

Functions of Input Capture

The input capture, upon detecting an edge of a signal input to the input pin from external device, stores a counter value of 16-bit freerun timer at the time of detection into the input capture data register. The function includes the input capture data registers corresponding to four input pins, input capture control status register, and edge detection circuit.

- Rising edge, falling edge, and both edges are selectable for detection.
- Generating interrupt on CPU is allowed by detecting an edge of input signal.
- Expanded intelligent I/O service (EI²OS) is activated by interrupt generation.
- The four input capture input pins and input capture data registers allows monitoring of a maximum of four events.

16-bit Input/Output Timer Block Diagram

12.5 16-bit Reload Timer

The 16-bit reload timer has the following functions:

- Count clock is selectable among 3 internal clocks and external event clock.
- Activation trigger is selectable between software trigger and external trigger.
- Generation of CPU interrupt is allowed upon occurrence of underflow on 16-bit timer register. Available as an interval timer using the interrupt function.
- When underflow of 16-bit timer register (TMR) occurs, one of two reload modes is selectable between one-shot mode that halts counting operation of TMR, and reload mode that reloads 16-bit reload register value to TMR, continuing TMR counting operation.
- The 16-bit reload timer is ready for expanded intelligent I/O service (El²OS).
- MB90385 series device has 2 channels of built-in 16-bit reload timer.

Operation Mode of 16-bit Reload Timer

Count Clock	Activation Trigger	Operation upon Underflow		
Internal clock mode	Software trigger, external trigger	One-shot mode, reload mode		
Event count mode	Software trigger	One-shot mode, reload mode		

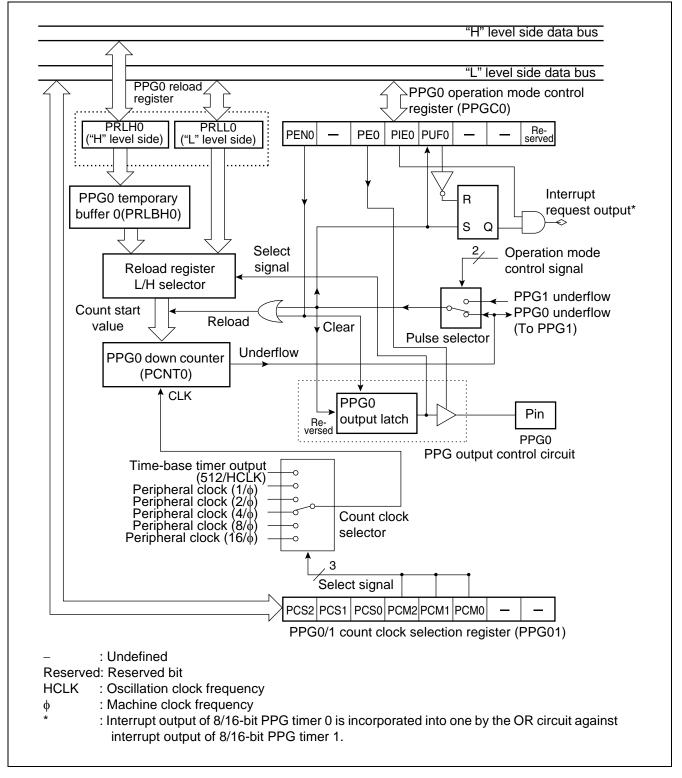
Internal Clock Mode

- The 16-bit reload timer is set to internal clock mode, by setting count clock selection bit (TMCSR: CSL1, CSL0) to "00_B", "01_B", "10_B".
- In the internal clock mode, the counter decrements in synchronization with the internal clock.
- Three types of count clock cycles are selectable by count clock selection bit (TMCSR: CSL1, CSL0) in timer control status register.
- Edge detection of software trigger or external trigger is specified as an activation trigger.

12.7 8/16-bit PPG Timer Outline

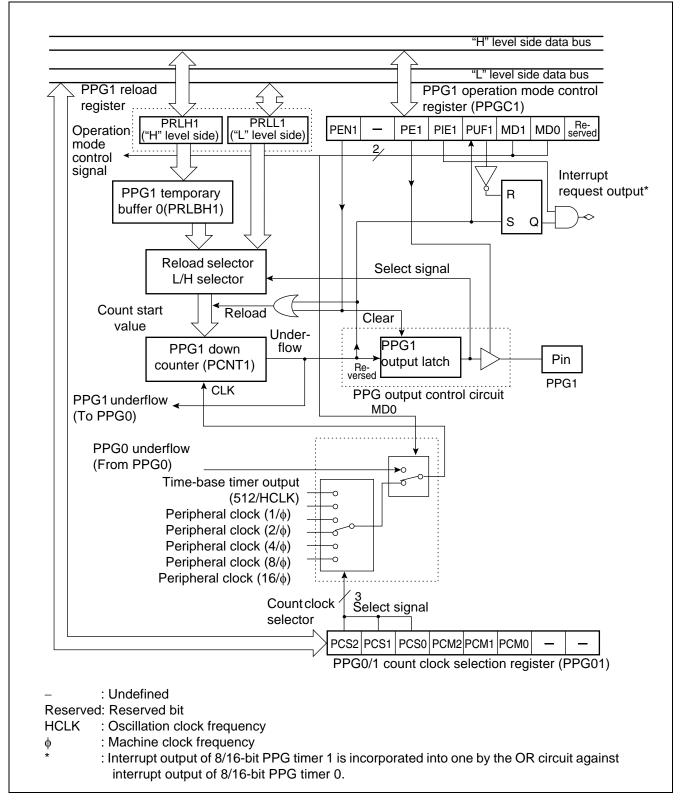
The 8/16-bit PPG timer is a 2-channel reload timer module (PPG0 and PPG1) that allows outputting pulses of arbitrary cycle and duty cycle. Combination of the two channels allows selection among the following operations:

- 8-bit PPG output 2-channel independent operation mode
- 16-bit PPG output operation mode
- 8-bit and 8-bit PPG output operation mode


MB90385 series device has two 8/16-bit built-in PPG timers. This section describes functions of PPG0/1. PPG2/3 have the same functions as those of PPG0/1.

Functions of 8/16-bit PPG Timer

The 8/16-bit PPG timer is composed of four 8-bit reload register (PRLH0/PRLL0, PRLH1/PRLL1) and two PPG down counters (PCNT0, PCNT1).


- Widths of "H" and "L" in output pulse are specifiable independently. Cycle and duty factor of output pulse is specifiable arbitrarily.
- Count clock is selectable among 6 internal clocks.
- The timer is usable as an interval timer, by generating interrupt requests for each interval.
- The time is usable as a D/A converter, with an external circuit.

8/16-bit PPG Timer 0 Block Diagram

MB90387/387S/F387/F387S MB90V495G

8/16-bit PPG Timer 1 Block Diagram

12.11 UART Outline

UART is a general-purpose serial data communication interface for synchronous and asynchronous communication using external devices.

- Provided with bi-directional communication function for both clock-synchronous and clock-asynchronous modes.
- Provided with master/slave communication function (multi-processor mode). (Only master side is available.)
- Interrupt request is generated upon completion of reception, completion of transmission and detection of reception error.
- Ready for expanded intelligent service, El²OS.

Table 12-3. UART Functions

	Description
Data buffer	Full-duplex double buffer
Transmission mode	Clock synchronous (No start/stop bit, no parity bit) Clock asynchronous (start-stop synchronous)
Baud rate	Built-in special-purpose baud-rate generator. Setting is selectable among 8 values. Input of external values is allowed. Use of clock from external timer (16-bit reload timer 0) is allowed.
Data length	7 bits (only asynchronous normal mode) 8 bits
Signaling system	Non Return to Zero (NRZ) system
Reception error detection	Framing error Overrun error Parity error (not detectable in operation mode 1 (multi-processor mode))
Interrupt request	Receive interrupt (reception completed, reception error detected) Transmission interrupt (transmission completed) Ready for expanded intelligent I/O service (El ² OS) in both transmission and reception
Master/slave communication function (asynchronous, multi-processor mode)	Communication between 1 (master) and n (slaves) are available (usable as master only).

Note: Start/stop bit is not added upon clock-synchronous transmission. Data only is transmitted.

Table 12-4. UART Operation Modes

	Operation Mode	Data L	ength	Synchronization	Stop Bit Length	
	Operation mode	With Parity	Without Parity	Synchronization		
0	Asynchronous mode (normal mode)	7-bit or 8-bit		Asynchronous	1- bit or 2-bit *2	
1	Multi processor mode	8+1*1 –		Asynchronous		
2	Synchronous mode	8 –		Synchronous	No	

-: Disallowed

1: "+1" is an address/data selection bit used for communication control (bit 11 of SCR1 register: A/D).

2: Only 1 bit is detected as a stop bit on data reception.

12.15 512 Kbit Flash Memory Outline

The following three methods are provided for data writing and deleting on Flash memory:

- 1. Parallel writer
- 2. Serial special-purpose writer
- 3. Writing/deleting by program execution

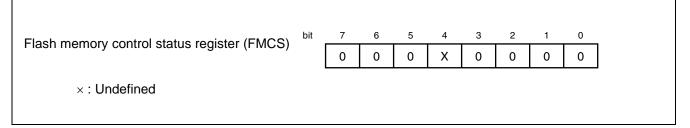
This section describes "3. Writing/deleting by program execution."

512 Kbit Flash Memory Outline

The 512 Kbit Flash memory is allocated on FF_H bank of CPU memory map. Using the function of Flash memory interface circuit, the memory allows read access and program access from CPU.

Writing/deleting on Flash memory is performed by instruction from CPU via Flash memory interface. Because rewriting is allowed on mounted memory, modifying program and data is performed efficiently.

Features of 512 Kbit Flash Memory


- 128 K words x 8 bits/64 K words x 16 bits (16 K + 8 K + 8 K + 32 K) sector configuration
- Automatic program algorithm (Embedded Algorithm: Similar to MBM29LV200.)
- Built-in deletion pause/deletion resume function
- Detection of completed writing/deleting by data polling and toggle bits.
- Detection of completed writing/deleting by CPU interrupt.
- Deletion is allowed on a sector-by-sector basis (sectors are combined freely).
- Number of writing/deleting operations (minimum): 10,000 times
- Sector protection
- Expanded sector protection
- Temporaly sector unprotection

Note: A function of reading manufacture code and device code is not provided. These codes are not accessible by command either.

Flash Memory Writing/Deleting

- Writing and reading data is not allowed simultaneously on the Flash memory.
- Data writing and deleting on the Flash memory is performed by the processes as follows: Make a copy of program on Flash memory onto RAM. Then, execute the program copied on the RAM.

List of Registers and Reset Values in Flash Memory

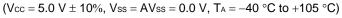
Sector Configuration

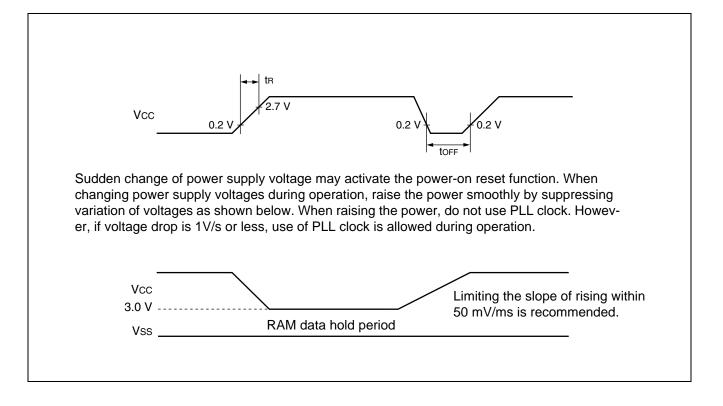
For access from CPU, SA0 to SA3 are allocated in FF bank register.

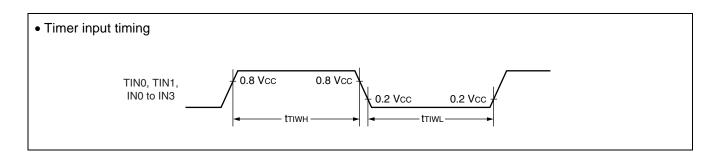
Sector Configuration of 512 Kbit Flash Memory

Flash memory	CPU address	Writer address*
	FF0000H	70000н
SA0 (32 Kbytes)		
	FF7FFFH	77FFFH
	FF8000H	78000н
SA1 (8 Kbytes)		
	FF9FFFH	79FFFH
	FFA000H	7А000н
SA2 (8 Kbytes)		
	FFBFFFH	7BFFFH
	FFC000H	7С000н
SA3 (16 Kbytes)		
	FFFFFH	7FFFFH

*: "Writer address" is an address equivalent to CPU address, which is used when data is written on Flash memory, using parallel writer. When writing/ deleting data with general-purpose writer, the writer address is used for writing and deleting.

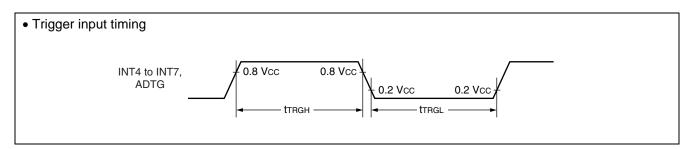

Deremeter	Symbol	Pin Name	Conditions		Value	Unit	Remarks	
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
Power supply current*	lcc∟	Vcc	Vcc = 5.0 V, Internally operating at 8 kHz, subclock operation,		0.3	1.2	mA	MB90F387/S
000			$T_A = +25^{\circ}C$		40	100	μΑ	MB90387/S
	ICCLS		$V_{CC} = 5.0 V$, Internally operating at 8 kHz, subclock, sleep mode, $T_{A} = + 25^{\circ}C$	_	10	30	μA	
	Ісст		Vcc = 5.0 V, Internally operating at 8 kHz, watch mode, $T_A = + 25^{\circ}C$		8	25	μΑ	
	Іссн		Stopping, T _A = + 25°C	_	5	20	μΑ	
Input capacity	CIN	Other than AVcc, AVss, AVR, C, Vcc, Vss	-	_	5	15	pF	
Pull-up resistor	Rup	RST	-	25	50	100	kΩ	
Pull-down resistor	Rdown	MD2	-	25	50	100	kΩ	Flash product is not provided with pull-down resistor.


 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 \circ C to +105 \circ C)$


*: Test conditions of power supply current are based on a device using external clock.

13.4.3 Power-on Reset

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks	
raiailleter				Min	Max	Unit	Rellidiks	
Power supply rise time	t ℝ	Vcc	-	0.05	30	ms		
Power supply shutdown time	toff	Vcc		1	-	ms	Waiting time until power-on	



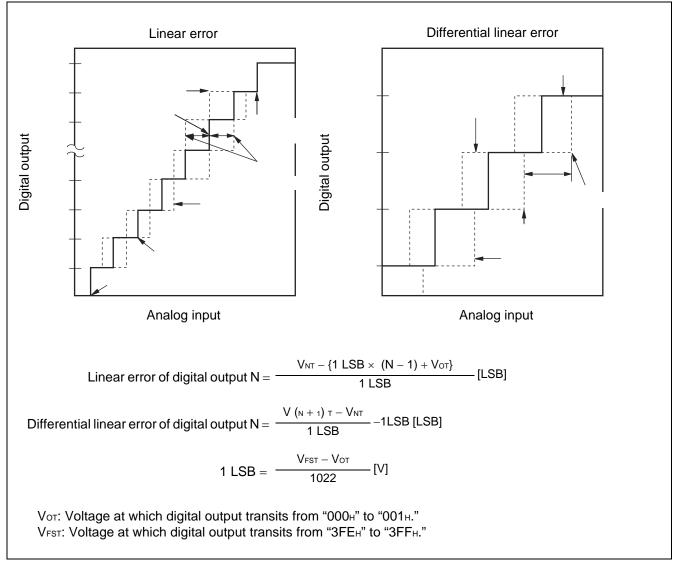
13.4.6 Trigger Input Timing

(Vcc = 4.5 V to 5.5 V, Vss = 0.0 V, $T_A = -40 \text{ °C to } +105 \text{ °C}$)

Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit	Remarks
Farameter				Min	Max		
Input pulse width	ttrgh ttrgl	INT4 to INT7, ADTG	_	5 tcթ *	_	ns	

*: Refer to Clock Timing ratings for tcp (internal operation clock cycle time).

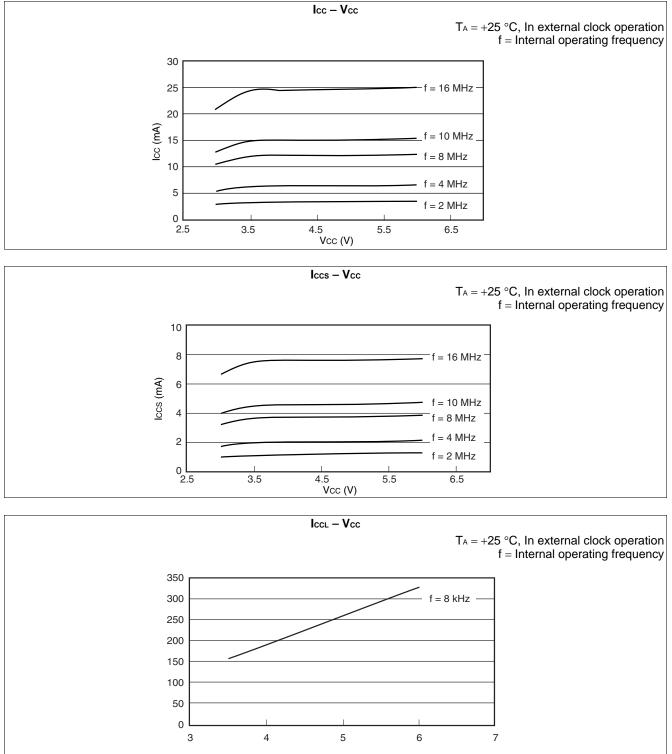
13.5 A/D Converter


Parameter		Pin Name		Value				
	Symbol		Min	Тур	Max	Unit	Remarks	
Resolution	-	-	_	_	10	bit		
Total error	-	_	_	_	± 3.0	LSB		
Nonlinear error	-	-	_	_	± 2.5	LSB		
Differential linear error	-	-	-	_	± 1.9	LSB		
Zero transition voltage	Vот	AN0 to AN7	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	1 LSB = (AVR – AVss) / 1024	
Full-scale transition voltage	Vfst	AN0 to AN7	AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	V		
Compare time	-	-	66 tcp *1	_	_	ns	With 16 MHz machine clock $5.5 \text{ V} \ge AV_{CC} \ge 4.5 \text{ V}$	
			88 tcp *1	_	_	ns	With 16 MHz machine clock $4.5 \text{ V} > AV_{CC} \ge 4.0 \text{ V}$	
Sampling time	-	-	32 tcp *1	_	_	ns	With 16 MHz machine clock $5.5 \text{ V} \ge AV_{CC} \ge 4.5 \text{ V}$	
			128 tcp *1	_	_	ns	With 16 MHz machine clock 4.5 V > AVcc ≥ 4.0 V	
Analog port input current	Iain	AN0 to AN7	-	-	10	μA		
Analog input voltage	Vain	AN0 to AN7	AVss	-	AVR	V		
Reference voltage	_	AVR	AVss + 2.7	_	AVcc	V		
Power supply current	la	AVcc	—	3.5	7.5	mA		
	Іан	AVcc	—	-	5	μA	*2	
Reference voltage supplying current	IR	AVR	_	165	250	μA		
	IRH	AVR	_	_	5	μA	*2	
Variation among channels	-	AN0 to AN7	_	-	4	LSB		

 $(Vcc = AVcc = 4.0 \text{ V to } 5.5 \text{ V}, \text{ Vss} = AVss = 0.0 \text{ V}, 3.0 \text{ V} \le AVR - AVss, \text{ T}_{\text{A}} = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$

*1: Refer to Clock Timing on AC Characteristics.

*2: If A/D converter is not operating, a current when CPU is stopped is applicable (Vcc=AVcc=AVR=5.0 V).


MB90387/387S/F387/F387S MB90V495G

(Continued)

14. Example Characteristics

MB90F387

(Continued)