

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f387spmt-g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin No.	Pin Name	Circuit Type	Function		
39	P42	D	General-purpose input/output port.		
	SOT1		Serial data input pin for UART. Valid only when serial data input/output setting on UART is "enabled."		
40	P43	D	General-purpose input/output port.		
	ТХ		Transmission output pin for CAN. Valid only when output setting is "enabled."		
41	P44	D	General-purpose input/output port.		
	RX		Transmission output pin for CAN. Valid only when output setting is "enabled."		
42 to 45	P30 to P33	D	General-purpose input/output ports.		
46	X0A*	А	Pin for low-rate oscillation.		
	P35*		General-purpose input/output port.		
47	X1A*	А	Pin for low-rate oscillation.		
	P36*		General-purpose input/output port.		
48	AVss	-	Vss power source input pin for A/D converter.		

*: MB90387, MB90F387: X1A, X0A MB90387S, MB90F387S: P36, P35

10. I/O Map

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value			
00000н	(Reserved area) *							
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXXXB			
000002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXXB			
000003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXXB			
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXXB			
000005н	PDR5	Port 5 data register	R/W	Port 5	XXXXXXXXB			
000006н to 000010н	ਹੇਸ (Reserved area) *							
000011н	DDR1	Port 1 direction data register	R/W	Port 1	0000000в			
000012н	DDR2	Port 2 direction data register	R/W	Port 2	0000000в			
000013н	DDR3	Port 3 direction data register	R/W	Port 3	000Х000в			
000014н	DDR4	Port 4 direction data register	R/W	Port 4	ХХХ00000в			
000015н	DDR5	Port 5 direction data register	R/W	Port 5	0000000в			
000016н to 00001Ан	н (Reserved area) *							
00001Bн	ADER	Analog input permission register	R/W	8/10-bit A/D converter	11111111в			
00001Cнto 000025н		(Reserve	ed area) *					
000026н	SMR1	Serial mode register 1	R/W	UART1	0000000в			
000027н	SCR1	Serial control register 1	R/W, W]	00000100в			
000028н	SIDR1/ SODR1	Serial input data register 1/ Serial output data register 1	R, W		XXXXXXXXB			
000029н	SSR1	Serial status data register 1	R, R/W		00001000в			
00002Ан		(Reserve	ed area) *					
00002Вн	CDCR1	Communication prescaler control register 1	R/W	UART1	0ХХХ0000в			
00002Cнto 00002Fн		(Reserve	ed area) *	<u>.</u>				
000030н	ENIR	DTP/External interrupt permission register	R/W	DTP/External interrupt	0000000в			
000031н	EIRR	DTP/External interrupt permission register	R/W		XXXXXXXXB			
000032н	ELVR	Detection level setting register	R/W		0000000в			
000033н	1		R/W	1	0000000в			
000034н	ADCS	A/D control status register	R/W	8/10-bit A/D	0000000в			
000035н	1		R/W, W	converter	0000000в			
000036н	ADCR	A/D data register	W, R	1	XXXXXXXXB			
000037н]		R]	00101XXXв			

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value	
000083н		(Reserve	ed area) *			
000084н	TCANR	Send cancel register	W	CAN controller	0000000в	
000085н		(Reserve	ed area) *		·	
000086н	TCR	Send completion register	R/W	CAN controller	0000000в	
000087н		(Reserve	ed area) *			
000088н	RCR	Receive completion register	R/W	CAN controller	0000000в	
000089н		(Reserve	ed area) *			
00008Ан	RRTRR	Receive RTR register	R/W	CAN controller	0000000в	
00008Вн		(Reserve	ed area) *			
00008Сн	ROVRR	Receive overrun register	R/W	CAN controller	0000000в	
00008Dн		(Reserve	ed area) *			
00008Eн	RIER	Receive completion interrupt permission register	R/W	CAN controller	0000000в	
00008Fн to 00009Dн	(Reserved area) *					
00009Ен	PACSR	Address detection control register	R/W	Address matching detection function	0000000в	
00009Fн	DIRR	Delay interrupt request generation/ release register	R/W	Delay interrupt generation module	XXXXXXX0B	
0000А0н	LPMCR	Lower power consumption mode control register	W,R/W	Lower power consumption mode	00011000в	
0000А1н	CKSCR	Clock selection register	R,R/W	Clock	1111100в	
0000А2н to 0000А7н		(Reserve	ed area) *			
0000А8н	WDTC	Watchdog timer control register	R,W	Watchdog timer	XXXXX111 _B	
0000А9н	TBTC	Time-base timer control register	R/W,W	Time-base timer	1XX00100в	
0000ААн	WTC	Watch timer control register	R,R/W	Watch timer	1Х001000в	
0000ABн to 0000ADн	(Reserved area) *					
0000AEн	FMCS	Flash memory control status register	R,W,R/W	512k-bit Flash memory	000Х0000в	
0000AFн	(Reserved area) *					

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
0000В0н	ICR00	Interrupt control register 00	R/W	Interrupt controller	00000111в
0000B1н	ICR01	Interrupt control register 01			00000111в
0000В2н	ICR02	Interrupt control register 02			00000111в
0000ВЗн	ICR03	Interrupt control register 03			00000111в
0000В4н	ICR04	Interrupt control register 04			00000111в
0000В5н	ICR05	Interrupt control register 05			00000111в
0000В6н	ICR06	Interrupt control register 06			00000111в
0000В7н	ICR07	Interrupt control register 07			00000111в
0000В8н	ICR08	Interrupt control register 08			00000111в
0000В9н	ICR09	Interrupt control register 09			00000111в
0000ВАн	ICR10	Interrupt control register 10			00000111в
0000ВВн	ICR11	Interrupt control register 11			00000111в
0000ВСн	ICR12	Interrupt control register 12			00000111в
0000BDн	ICR13	Interrupt control register 13			00000111в
0000ВЕн	ICR14	Interrupt control register 14			00000111в
0000BFн	ICR15	Interrupt control register 15			00000111в
0000C0н to 0000FFн		(Reserv	ed area) *		
001FF0н	PADR0	Detection address setting register 0 (low-order)	R/W	Address matching detection function	XXXXXXXXB
001FF1н		Detection address setting register 0 (middle-order)			XXXXXXXXB
001FF2н		Detection address setting register 0 (high-order)			XXXXXXXXB
001FF3н	PADR1	Detection address setting register 1 (low-order)	R/W		XXXXXXXXB
001FF4н		Detection address setting register 1 (middle-order)			XXXXXXXXB
001FF5н		Detection address setting register 1 (high-order)			XXXXXXXXB
003900н	TMR0/	16-bit timer register 0/16-bit reload	R,W	16-bit reload timer 0	XXXXXXXXB
003901н	TMRLR0	register			XXXXXXXXB
003902н	TMR1/	16-bit timer register 1/16-bit reload	R,W	16-bit reload timer 1	XXXXXXXXB
003903н	TMRLR1	register			XXXXXXXXB
003904н to 00390Fн		(Reserv	ed area) *		

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value		
003D0Dн	(Reserved area) *						
003D0Eн	TIER	Send completion interrupt permission register	R/W	CAN controller	0000000в		
003D0Fн		(Reserve	ed area) *				
003D10н, 003D11н	AMSR	Acceptance mask selection register	R/W	CAN controller	XXXXXXXXB, XXXXXXXB		
003D12н, 003D13н	(Reserved area) *						
003D14н to 003D17н	AMR0	Acceptance mask register 0	R/W	CAN controller	XXXXXXXXB to XXXXXXXB		
003D18н to 003D1Bн	AMR1	Acceptance mask register 1	R/W		XXXXXXXXB to XXXXXXXB		
003D1Cн to 003DFFн	(Reserved area) *						
003E00н to 003EFFн	(Reserved area) *						
003FF0н to 003FFFн		(Reserve	ed area) *				

Initial values:

0: Initial value of this bit is "0."

1: Initial value of this bit is "1."

X: Initial value of this bit is undefined.

*: "Reserved area" should not be written anything. Result of reading from "Reserved area" is undefined.

Interrupt Source	El ² OS	l	nterrup	t Vector	Interrupt C	Driority/*3	
interrupt Source	Readiness	Number		Address	ICR	Address	Flority
UART1 reception completed	0	#37	25н	FFFF68 _H	ICR13	0000BDH*1	High
UART1 transmission completed	Δ	#38	26н	FFFF64H			\uparrow
Reserved	×	#39	27н	FFFF60H	ICR14	0000BEн*1	
Reserved	×	#40	28н	FFFF5CH			
Flash memory	×	#41	29н	FFFF58н	ICR15	0000BFн*1	\downarrow
Delay interrupt generation module	×	#42	2Ан	FFFF54H			Low

○ : Available

× : Unavailable

© : Available El²OS function is provided.

 Δ : Available when a cause of interrupt sharing a same ICR is not used.

*1:

□ Peripheral functions sharing an ICR register have the same interrupt level.

□ If peripheral functions share an ICR register, only one function is available when using expanded intelligent I/O service.

If peripheral functions share an ICR register, a function using expanded intelligent I/O service does not allow interrupt by another function.

*2: Input capture 1 corresponds to EI2OS, however, PPG does not. When using EI2OS by input capture 1, interrupt should be disabled for PPG.

*3:Priority when two or more interrupts of a same level occur simultaneously.

12. Peripheral Resources

12.1 I/O Ports

The I/O ports are used as general-purpose input/output ports (parallel I/O ports). The MB60385 series model is provided with 5 ports (34 inputs). The ports function as input/output pins for peripheral functions also.

I/O Port Functions

An I/O port, using port data resister (PDR), outputs the output data to I/O pin and input a signal input to I/O port. The port direction register (DDR) specifies direction of input/output of I/O pins on a bit-by-bit basis.

The following summarizes functions of the ports and sharing peripheral functions:

- Port 1: General-purpose input/output port, used also for PPG timer output and input capture inputs.
- Port 2: General-purpose input/output port, used also for reload timer input/output and external interrupt input.
- Port 3: General-purpose input/output port, used also for A/D converter activation trigger pin.
- Port 4: General-purpose input/output port, used also for UART input/output and CAN controller send/receive pin.
- Port 5: General-purpose input/output port, used also analog input pin.

Time-base Timer Block Diagram

Actual interrupt request number of time-base timer is as follows: Interrupt request number: #16 (10_H)

16-bit Reload Timer Block Diagram

8/10-bit A/D Converter Block Diagram

UART Block Diagram

12.15 512 Kbit Flash Memory Outline

The following three methods are provided for data writing and deleting on Flash memory:

- 1. Parallel writer
- 2. Serial special-purpose writer
- 3. Writing/deleting by program execution

This section describes "3. Writing/deleting by program execution."

512 Kbit Flash Memory Outline

The 512 Kbit Flash memory is allocated on FF_H bank of CPU memory map. Using the function of Flash memory interface circuit, the memory allows read access and program access from CPU.

Writing/deleting on Flash memory is performed by instruction from CPU via Flash memory interface. Because rewriting is allowed on mounted memory, modifying program and data is performed efficiently.

Features of 512 Kbit Flash Memory

- 128 K words x 8 bits/64 K words x 16 bits (16 K + 8 K + 8 K + 32 K) sector configuration
- Automatic program algorithm (Embedded Algorithm: Similar to MBM29LV200.)
- Built-in deletion pause/deletion resume function
- Detection of completed writing/deleting by data polling and toggle bits.
- Detection of completed writing/deleting by CPU interrupt.
- Deletion is allowed on a sector-by-sector basis (sectors are combined freely).
- Number of writing/deleting operations (minimum): 10,000 times
- Sector protection
- Expanded sector protection
- Temporaly sector unprotection

Note: A function of reading manufacture code and device code is not provided. These codes are not accessible by command either.

Flash Memory Writing/Deleting

- Writing and reading data is not allowed simultaneously on the Flash memory.
- Data writing and deleting on the Flash memory is performed by the processes as follows: Make a copy of program on Flash memory onto RAM. Then, execute the program copied on the RAM.

List of Registers and Reset Values in Flash Memory

Sector Configuration

For access from CPU, SA0 to SA3 are allocated in FF bank register.

Sector Configuration of 512 Kbit Flash Memory

Flash memory	CPU address	Writer address*
	FF0000H	70000н
SA0 (32 Kbytes)		
	FF7FFFH	77FFFн
	FF8000H	78000н
SA1 (8 Kbytes)		
	FF9FFFH	79FFFн
	FFA000H	7А000н
SA2 (8 Kbytes)		
	FFBFFFH	7BFFFн
	FFC000H	7С000н
SA3 (16 Kbytes)		
	FFFFFH	7FFFFh

*: "Writer address" is an address equivalent to CPU address, which is used when data is written on Flash memory, using parallel writer. When writing/ deleting data with general-purpose writer, the writer address is used for writing and deleting.

13. Electrical Characteristics

13.1 Absolute Maximum Rating

Baramatar	Symbol	Rat	ing	Unit	Domorko	
Falameter	Symbol	Min	Max	Unit	Remarks	
Power supply voltage*1	Vcc	Vss - 0.3	Vss + 6.0	V		
	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc*2	
	AVR	Vss - 0.3	Vss + 6.0	V	$AVcc \ge AVR^{*2}$	
Input voltage*1	Vı	Vss - 0.3	Vss + 6.0	V	*3	
Output voltage*1	Vo	Vss - 0.3	Vss + 6.0	V	*3	
Maximum clamp current		- 2.0	+ 2.0	mA	*7	
Total maximum clamp current	Σ Iclamp	-	20	mA	*7	
"L" level maximum output current	lol1	-	15	mA	Normal output*4	
	lol2	-	40	mA	High-current output*4	
"L" level average output current	OLAV1	-	4	mA	Normal output*5	
	OLAV2	-	30	mA	High-current output*5	
"L" level maximum total output current	ΣΙοι	-	125	mA	Normal output	
	ΣΙοι2	-	160	mA	High-current output	
"L" level average total output current	Σ lolav1	-	40	mA	Normal output*6	
	Σ Iolav2	-	40	mA	High-current output*6	
"H" level maximum output current	Іон1	-	-15	mA	Normal output*4	
	Іон2	-	-40	mA	High-current output*4	
"H" level average output current	IOHAV1	-	-4	mA	Normal output*5	
	Іонау2	-	-30	mA	High-current output*5	
"H" level maximum total output current	Σ Ι ΟΗ1	-	-125	mA	Normal output	
	ΣІон2	-	-160	mA	High-current output	
"H" level average total output current	ΣΙομαν1	-	-40	mA	Normal output*6	
	ΣΙοήαν2	-	-40	mA	High-current output*6	
Power consumption	PD	-	245	mW		
Operating temperature	TA	-40	+105	°C		
Storage temperature	Tstg	-55	+150	°C		

*1: The parameter is based on $V_{SS} = AV_{SS} = 0.0 V.$

*2: AVcc and AVR should not exceed Vcc.

*3: VI and Vo should not exceed Vcc + 0.3 V. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating.

*4: A peak value of an applicable one pin is specified as a maximum output current.

- *5: An average current value of an applicable one pin within 100 ms is specified as an average output current. (Average value is found by multiplying operating current by operating rate.)
- *6: An average current value of all pins within 100 ms is specified as an average total output current. (Average value is found by multiplying operating current by operating rate.)

*7:

Applicable to pins: P10 to P17, P20 to P27, P30 to P33, P35*, P36*, P37, P40 to P44, P50 to P57
*: P35 and P36 are MB90387S and MB90F387S only.

13.4.5 Timer Input Timing

 $(V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin Namo	Conditions	Va	lue	Unit	Pomarks
rarameter	Symbol	Finite	Conditions	Min	Max	Unit	itemarks
Input pulse width	tтіwн	TIN0, TIN1	-	4 tcp*	-	ns	
	t⊤iwL	IN0 to IN3					

*: Refer to Clock Timing ratings for tcp (internal operation clock cycle time).

13.6 Definition of A/D Converter Terms

Resolution:	Analog variation that is recognized by an A/D converter.
Linear error:	Deviation between a line across zero-transition line ("00 0000 00 0" $\leftarrow \rightarrow$ "00 0000 0001") and full-scale transition line ("11 1111 11 0" $\leftarrow \rightarrow$ "11 1111 1111") and actual conversion characteristics.
Differential linear error:	Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.
Total error:	Difference between an actual value and an ideal value. A total error includes zero transition error, full- scale transition error, and linear error.

(Continued)

13.7 Notes on A/D Converter Section

Use the device with external circuits of the following output impedance for analog inputs:

Recommended output impedance of external circuits are: Approx. 3.9 k Ω or lower (4.5 V \leq AVcc \leq 5.5 V) (sampling period=2.00 μ s at 16 MHz machine clock), Approx. 11 k Ω or lower (4.0 V \leq AVcc < 4.5 V) (sampling period=8.0 μ s at 16 MHz machine clock).

If an external capacitor is used, in consideration of the effect by tap capacitance caused by external capacitors and on-chip capacitors, capacitance of the external one is recommended to be several thousand times as high as internal capacitor.

If output impedance of an external circuit is too high, a sampling period for an analog voltage may be insufficient.

About errors

As [AVR-AVss] become smaller, values of relative errors grow larger.

13.8 Flash Memory Program/Erase Characteristics

Paramotor	Conditions		Value		Unit	Bomarka	
Falameter	Conditions	Min	Тур	Max	Onit	Rellidiks	
Sector erase time	$\begin{array}{l} T_{\text{A}}=+~25~^{\circ}C\\ V_{\text{CC}}=5.0~V \end{array}$	-	1	15	S	Excludes 00H programming prior to erasure	
Chip erase time		-	4	-	S	Excludes 00H programming prior to erasure	
Word (16-bit width) programming time		-	16	3,600	μS	Except for the over head time of the system	
Program/Erase cycle	_	10,000	-	-	cycle		
Flash Data Retention Time	Average T _A = + 85 °C	20	-	-	Year	*	

*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C).

(Continued)

Document History

Document Title: MB90387/387S/F387/F387S, MB90V495G, 16-bit Microcontrollers F ² MC-16LX MB90385 Series Document Number:002-07765					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	_	AKIH	12/19/2008	Migrated to Cypress and assigned document number 002-07765. No change to document contents or format.	
*A	6059071	SSAS	02/05/2018	Updated to Cypress template Package: FPT-48P-M26> LQA048	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2004-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify a