

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f387spmt-gs-9002

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number Parameter	MB90F387 MB90F387S	MB90387 MB90387S	MB90V495G			
8/10-bit A/D converter	Number of channels: 8 Resolution: Selectable 10-bit or 8-bit. Conversion time: 6.125 µs (at 16 MHz machine clock, including sampling time) Sequential conversion of two or more successive channels is allowed. (Setting a maximum of 8 channels is allowed.) Single conversion mode: Selected channel is converted only once. Sequential conversion mode: Selected channel is converted repetitively. Halt conversion mode: Conversion of selected channel is stopped and activated alter- nately.					
UART(SCI)	Number of channels: 1 Clock-synchronous transfer: 62.5 kbps to 2 Mbps Clock-asynchronous transfer: 9,615 bps to 500 kbps Communication is allowed by bi-directional serial communication function and master slave type connection.					
CAN	Compliant with Ver 2.0A and Ver 2.0B CAN specifications. 8 built-in message buffers. Transmission rate of 10 kbps to 1 Mbps (by 16 MHz machine clock) CAN wake-up					

*1: Settings of DIP switch S2 for using emulation pod MB2145-507. For details, see MB2145-507 Hardware Manual (2.7 Power Pin solely for Emulator).

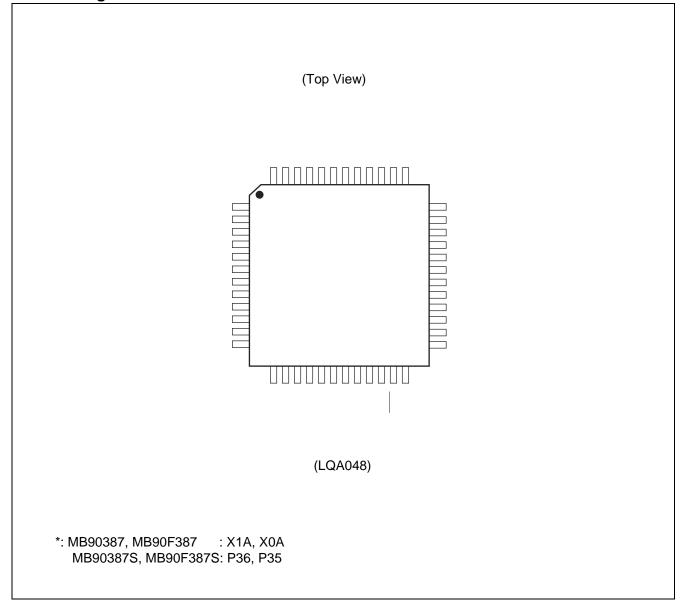
*2: MB90387S, MB90F387S

2. Packages And Product Models

Package	MB90F387, MB90F387S	MB90387, MB90387S
LQA048	\bigcirc	\bigcirc

 \bigcirc : Yes \times : No

Note: Refer to Package Dimension for details of the package.


3. Product Comparison

Memory Space

When testing with test product for evaluation, check the differences between the product and a product to be used actually. Pay attention to the following points:

- The MB90V495G has no built-in ROM. However, a special-purpose development tool allows the operations as those of one with built-in ROM. ROM capacity depends on settings on a development tool.
- On MB90V495G, an image from FF4000^H to FFFFFF^H is viewed on 00 bank and an image of FE0000^H to FF3FFF^H is viewed only on FE bank and FF bank. (Modified on settings of a development tool.)
- On MB90F387/F387S/387/387S, an image from FF4000H to FFFFFFH is viewed on 00 bank and an image of FE0000H to FF3FFFH is viewed only on FF bank.

4. Pin Assignment

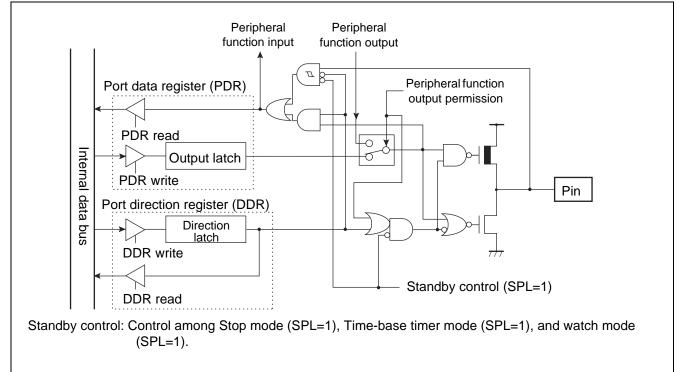
Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
000083н		(Reserve	ed area) *		
000084н	TCANR	Send cancel register	W	CAN controller	0000000в
000085н		(Reserve	ed area) *		
000086н	TCR	Send completion register	R/W	CAN controller	0000000в
000087н		(Reserve	ed area) *		
000088н	RCR	Receive completion register	R/W	CAN controller	0000000в
000089н		(Reserve	ed area) *		
00008Ан	RRTRR	Receive RTR register	R/W	CAN controller	0000000в
00008Вн		(Reserve	ed area) *		
00008Сн	ROVRR	Receive overrun register	R/W	CAN controller	0000000в
00008Dн		(Reserve	ed area) *		
00008Eн	RIER	Receive completion interrupt permission register	R/W	CAN controller	0000000в
00008Fн to 00009Dн		(Reserv	ed area) *		
00009Eн	PACSR	Address detection control register	R/W	Address matching detection function	0000000в
00009Fн	DIRR	Delay interrupt request generation/ release register	R/W	Delay interrupt generation module	XXXXXXX0B
0000А0н	LPMCR	Lower power consumption mode control register	W,R/W	Lower power consumption mode	00011000в
0000A1н	CKSCR	Clock selection register	R,R/W	Clock	11111100в
0000A2н to 0000A7н		(Reserv	ed area) *		
0000A8н	WDTC	Watchdog timer control register	R,W	Watchdog timer	XXXXX111 _B
0000A9н	TBTC	Time-base timer control register	R/W,W	Time-base timer	1XX00100в
0000ААн	WTC	Watch timer control register	R,R/W	Watch timer	1Х001000в
0000ABн to 0000ADн		(Reserv	ed area) *	·	
0000AEн	FMCS	Flash memory control status register	R,W,R/W	512k-bit Flash memory	000X0000 _B
0000AFн		(Reserv	ed area) *	. 1	

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
0000В0н	ICR00	Interrupt control register 00	R/W	Interrupt controller	00000111в
0000B1н	ICR01	Interrupt control register 01			00000111в
0000В2н	ICR02	Interrupt control register 02			00000111в
0000ВЗн	ICR03	Interrupt control register 03			00000111в
0000В4н	ICR04	Interrupt control register 04			00000111в
0000B5н	ICR05	Interrupt control register 05			00000111в
0000В6н	ICR06	Interrupt control register 06			00000111в
0000B7 н	ICR07	Interrupt control register 07			00000111в
0000B8н	ICR08	Interrupt control register 08			00000111в
0000B9н	ICR09	Interrupt control register 09			00000111в
0000ВАн	ICR10	Interrupt control register 10			00000111в
0000ВВн	ICR11	Interrupt control register 11			00000111в
0000ВСн	ICR12	Interrupt control register 12			00000111в
0000BDн	ICR13	Interrupt control register 13			00000111в
0000ВЕн	ICR14	Interrupt control register 14			00000111в
0000BFн	ICR15	Interrupt control register 15			00000111в
0000C0н to 0000FFн		(Reser	ved area) *		
001FF0⊦	PADR0	Detection address setting register 0 (low-order)	R/W	Address matching detection function	XXXXXXXXB
001FF1⊦		Detection address setting register 0 (middle-order)			XXXXXXXXB
001FF2⊦		Detection address setting register 0 (high-order)			XXXXXXXXB
001FF3⊦	PADR1	Detection address setting register 1 (low-order)	R/W] [XXXXXXXXB
001FF4⊦		Detection address setting register 1 (middle-order)			XXXXXXXXB
001FF5н	1	Detection address setting register 1 (high-order)	1		XXXXXXXXB
003900н	TMR0/	16-bit timer register 0/16-bit reload	R,W	16-bit reload timer 0	XXXXXXXXB
003901н	TMRLR0	register		F F	XXXXXXXXB
003902н	TMR1/	16-bit timer register 1/16-bit reload	R,W	16-bit reload timer 1	XXXXXXXXB
003903н	TMRLR1	register			XXXXXXXXB
003904н to 00390Fн		(Reser	ved area) *		

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
003С38н, 003С39н	DLCR4	DLC register 4	R/W	CAN controller	XXXXXXXXB, XXXXXXXB
003С3Ан, 003С3Вн	DLCR5				XXXXXXXXB, XXXXXXXB
003C3Cн, 003C3Dн	DLCR6	DLC register 6	R/W		XXXXXXXXB, XXXXXXXB
003C3Eн, 003C3Fн	DLCR7	DLC register 7	R/W		XXXXXXXXB, XXXXXXXB
003C40н to 003C47н	DTR0	Data register 0	R/W		XXXXXXXXB to XXXXXXXXB
003C48н to 003C4Fн	DTR1	Data register 1	R/W		XXXXXXXXB to XXXXXXXXB
003C50н to 003C57н	DTR2	Data register 2	R/W	-	XXXXXXXXB to XXXXXXXB
003C58н to 003C5Fн	DTR3	Data register 3	R/W		XXXXXXXXB to XXXXXXXXB
003C60н to 003C67н	DTR4	Data register 4	R/W		XXXXXXXXB to XXXXXXXXB
003C68н to 003C6Fн	DTR5	Data register 5	R/W		XXXXXXXXB to XXXXXXXXB
003C70н to 003C77н	DTR6	Data register 6	R/W		XXXXXXXXB to XXXXXXXXB
003C78н to 003C7Fн	DTR7	Data register 7	R/W		XXXXXXXXB to XXXXXXXXB
003C80н to 003CFFн		(Rese	rved area) *		
003D00н, 003D01н	CSR	Control status register	R/W, R	CAN controller	0XXXX001в, 00XXX000в
003D02н	LEIR	Last event display register	R/W		000XX000 _B
003D03н		(Rese	rved area) *		
003D04н, 003D05н	RTEC	Send/receive error counter	R	CAN controller	0000000в, 0000000в
003D06н, 003D07н	BTR	Bit timing register	R/W		11111111 _в , Х1111111 _в
003D08н	IDER	IDE register	R/W		XXXXXXXXB
003D09н		(Rese	rved area) *		
003D0Aн	TRTRR	Send RTR register	R/W	CAN controller	0000000в
003D0Bн		(Rese	rved area) *		
003D0CH	RFWTR	Remote frame receive wait register	R/W	CAN controller	XXXXXXXXB

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value		
003D0Dн		(Reserv	ed area) *				
003D0Eн	TIER	Send completion interrupt permission register	CAN controller	0000000в			
003D0Fн		(Reserv	ed area) *	·			
003D10н, 003D11н	AMSR	Acceptance mask selection register	CAN controller	XXXXXXXXB, XXXXXXXB			
003D12н, 003D13н	(Reserved area) *						
003D14н to 003D17н	AMR0	Acceptance mask register 0	R/W	CAN controller	XXXXXXXXB to XXXXXXXXB		
003D18н to 003D1Bн	AMR1	Acceptance mask register 1	R/W		XXXXXXXXB to XXXXXXXXB		
003D1Cн to 003DFFн		(Reserv	ed area) *				
003E00н to 003EFFн	(Reserved area) *						
003FF0н to 003FFFн		(Reserved area) *					

Initial values:

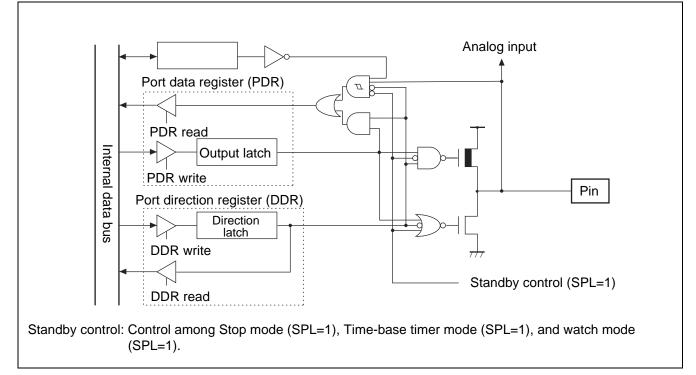

0: Initial value of this bit is "0."

1: Initial value of this bit is "1."

X: Initial value of this bit is undefined.

*: "Reserved area" should not be written anything. Result of reading from "Reserved area" is undefined.

Port 3 Registers


- Port 3 registers include port 3 data register (PDR3) and port 3 direction register (DDR3).
- The bits configuring the register correspond to port 3 pins on a one-to-one basis.

Relation between Port 3 Registers and Pins

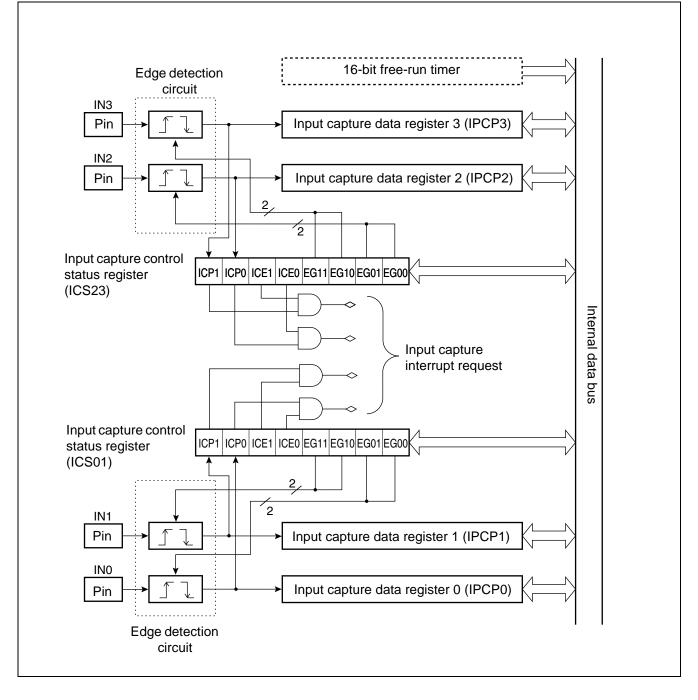
Port Name	Bits of Register and Corresponding Pins								
Port 3	PDR3, DDR3	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	P37	P36*	P35*	_	P33	P32	P31	P30

*: P35 and P36 do not exist on MB90387and MB90F387.

Port 5 Pins Block Diagram

Port 5 Registers

- Port 5 registers include port 5 data register (PDR5), port 5 direction register (DDR5), and analog input permission register (ADER).
- Analog input permission register (ADER) allows or disallows input of analog signal to the analog input pin.
- The bits configuring the register correspond to port 5 pins on a one-to-one basis.


Relation between Port 5 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 5	PDR5, DDR5	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	ADER	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0
	Corresponding pins	P57	P56	P55	P54	P53	P52	P51	P50

Watchdog timer control register(WDTC) Watch timer control register (WTC) WRST ERST SRST WTE WT1 WT0 PONR ____ WDCS Watchdog timer 2, Activate Reset occurs _ Counter Watchdog Shift to sleep mode ___ 2-bit Internal reset Count clock reset clear control Shift to time-base counter - 6 generation generation selector circuit timer mode circuit circuit Shift to watch mode Clear Shift to stop mode 4 4 Time-base timer counter Main clock $\times 2^2$ × 28 × 29 × 210 × 211 × 2¹² × 2¹³ × 2¹⁴ $\times 2^1$ × 215 × 216 × 2¹⁷ $\times 2^{18}$ (dividing HCLK by 2) Watch counter Sub clock $\times 2^2$ × 2⁵ $\times 2^{6}$ × 2⁸ × 2⁹ × 2¹⁰ × 2¹¹ × 2¹² × 2¹³ × 2¹⁴ × 2¹⁵ $\times 2^{1}$ $\times 2^7$. SCLK HCLK: Oscillation clock SCLK: Sub clock

Watchdog Timer Block Diagram

Input Capture Block Diagram

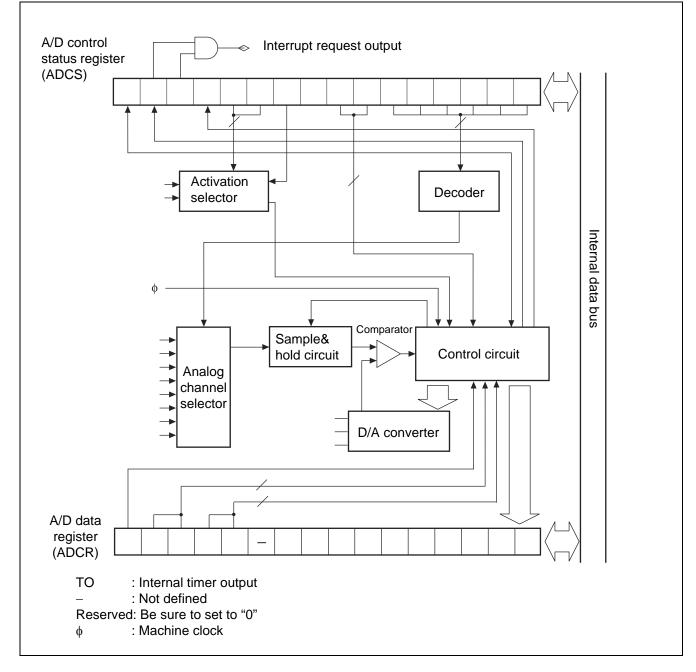
12.10 8/10-bit A/D Converter

The 8/10-bit A/D converter converts an analog input voltage into 8-bit or 10/bit digital value, using the RC-type successive approximation conversion method.

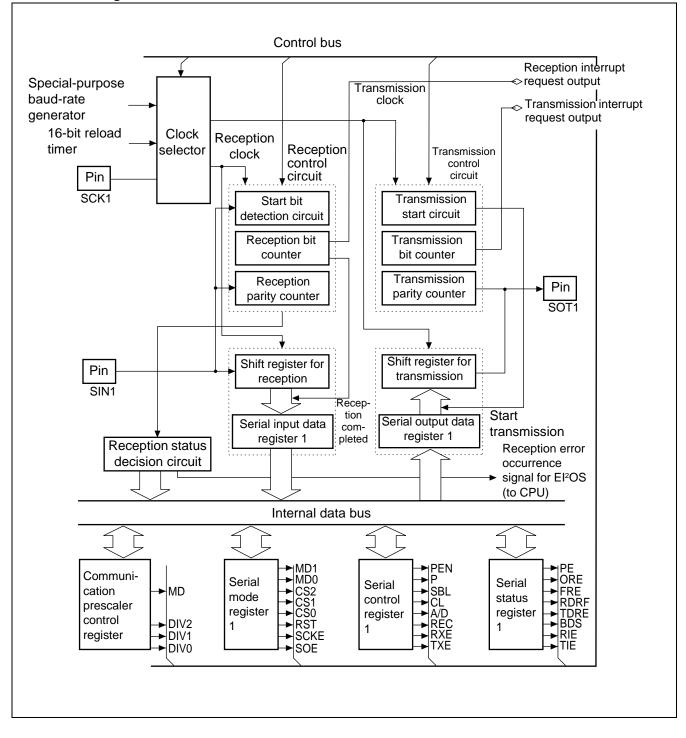
- Input signal is selected among 8 channels of analog input pins.
- Activation trigger is selected among software trigger, internal timer output, and external trigger.

Functions of 8/10-bit A/D Converter

The 8/10-bit A/D converter converts an analog voltage (input voltage) input to analog input pin into an 8-bit or 10-bit digital value (A/D conversion).


The 8/10-bit A/D converter has the following functions:

- A/D conversion takes a minimum of 6.12 µs* for 1 channel, including sampling time. (A/D conversion)
- Sampling of one channel takes a minimum of 2.0 µs*.
- RC-type successive approximation conversion method, with sample & hold circuit is used for conversion.
- Resolution of either 8 bits or 10 bits is specifiable.
- A maximum of 8 channels of analog input pins are allowed for use.
- Generation of interrupt request is allowed, by storing A/D conversion result in A/D data register.
- Activation of EI²OS is allowed upon occurrence of an interrupt request. With use of EI²OS, data loss is avoided even if A/D conversion is performed successively.
- An activation trigger is selectable among software trigger, internal timer output, and external trigger (fall edge).
- : When operating with 16 MHz machine clock


8/10-bit A/D Converter Conversion Mode

Conversion Mode	Description
Singular conversion mode	The A/D conversion is performed form a start channel to an end channel sequentially. Upon completion of A/D conversion on an end channel, A/D conversion function stops.
Sequential conversion mode	The A/D conversion is performed form a start channel to an end channel sequentially. Upon completion of A/D conversion on an end channel, A/D conversion function resumes from the start channel.
Pausing conversion mode	The A/D conversion is performed by pausing at each channel. Upon completion of A/D conversion on an end channel, A/D conversion and pause functions resume from the start channel.

8/10-bit A/D Converter Block Diagram

UART Block Diagram

12.12 CAN Controller

The Controller Area Network (CAN) is a serial communication protocol compliant with CANVer2.0A and Ver2.0B. The protocol allows data transmission and reception in both standard frame format and expanded frame format.

Features of CAN Controller

- CAN controller format is compliant with CANVer2.0A and Ver2.0B.
- The protocol allows data transmission and reception in standard frame format and expanded frame format.
- Automatic transmission of data frame by remote frame reception is allowed.
- Baud rate ranges from 10 kbps to 1 Mbps (with 16-MHz machine clock).

Table 12-5. Data Transmission Baud Rate

Machine Clock	Baud Rate (Max)
16 MHz	1 Mbps
12 MHz	1 Mbps
8 MHz	1 Mbps
4 MHz	500 kbps
2 MHz	250 kbps

- Provided with 8 transmission/reception message buffers.
- Transmission/reception is allowed at ID 11 bit in standard format, and at ID 29 bit in expanded frame format.
- Specifying 0 byte to 8 bytes is allowed in message data.
- Multi-level message buffer configuration is allowed.
- CAN controller has two built-in acceptance masks. Mask settings are independently allowed for the two acceptance masks on reception IDs.
- The two acceptance masks allow reception in standard frame format and expanded frame format.
- For types of masking, all-bit comparison, all-bit masking, and partial masking with acceptance mask register 0/1, are specifiable.

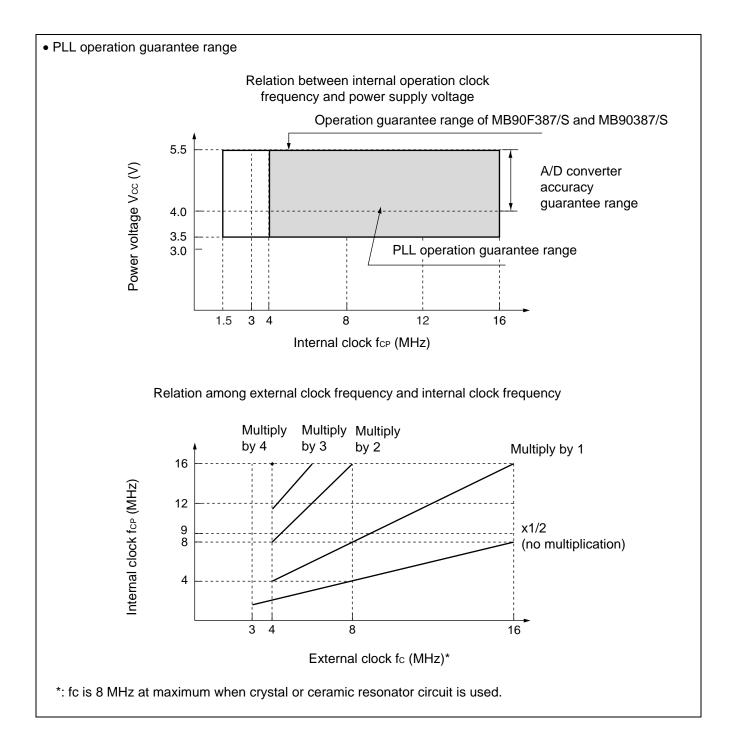
13. Electrical Characteristics

13.1 Absolute Maximum Rating

Parameter	Symbol	Rat	ting	Unit	Remarks
Parameter	Symbol	Min	Max	Unit	Remarks
Power supply voltage*1	Vcc	Vss - 0.3	Vss + 6.0	V	
	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc*2
	AVR	Vss - 0.3	Vss + 6.0	V	$AVcc \ge AVR^{*2}$
Input voltage*1	Vi	Vss - 0.3	Vss + 6.0	V	*3
Output voltage*1	Vo	Vss - 0.3	Vss + 6.0	V	*3
Maximum clamp current		- 2.0	+ 2.0	mA	*7
Total maximum clamp current	Σ Iclamp	-	20	mA	*7
"L" level maximum output current	IOL1	-	15	mA	Normal output*4
	IOL2	-	40	mA	High-current output*4
"L" level average output current	IOLAV1	-	4	mA	Normal output*5
	IOLAV2	-	30	mA	High-current output*5
"L" level maximum total output current	Σlol1	-	125	mA	Normal output
	ΣΙοι2	-	160	mA	High-current output
"L" level average total output current	Σ lolav1	-	40	mA	Normal output*6
	Σ Iolav2	-	40	mA	High-current output*6
"H" level maximum output current	Іон1	-	-15	mA	Normal output*4
	Іон2	-	-40	mA	High-current output*4
"H" level average output current	IOHAV1	-	-4	mA	Normal output*5
	IOHAV2	-	-30	mA	High-current output*5
"H" level maximum total output current	ΣІон1	-	-125	mA	Normal output
	ΣІон2	-	-160	mA	High-current output
"H" level average total output current	ΣΙομαν1	-	-40	mA	Normal output*6
	ΣΙομαν2	-	-40	mA	High-current output*6
Power consumption	PD	-	245	mW	
Operating temperature	TA	-40	+105	°C	
Storage temperature	Tstg	-55	+150	°C	

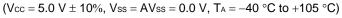
*1: The parameter is based on $V_{SS} = AV_{SS} = 0.0 V$.

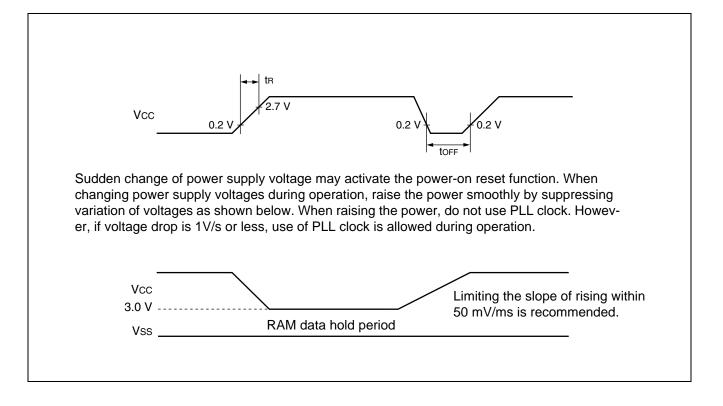
*2: AVcc and AVR should not exceed Vcc.

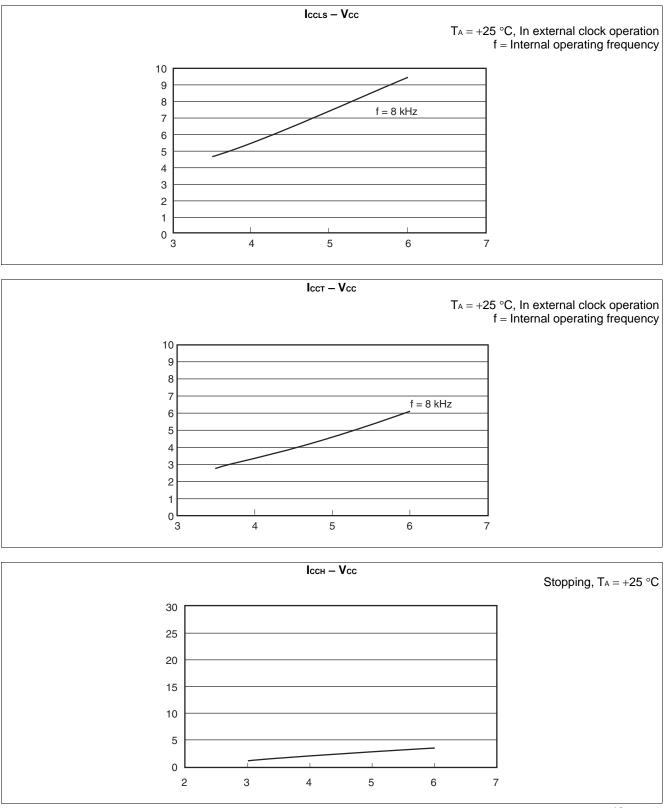

*3: VI and Vo should not exceed Vcc + 0.3 V. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating.

*4: A peak value of an applicable one pin is specified as a maximum output current.

- *5: An average current value of an applicable one pin within 100 ms is specified as an average output current. (Average value is found by multiplying operating current by operating rate.)
- *6: An average current value of all pins within 100 ms is specified as an average total output current. (Average value is found by multiplying operating current by operating rate.)

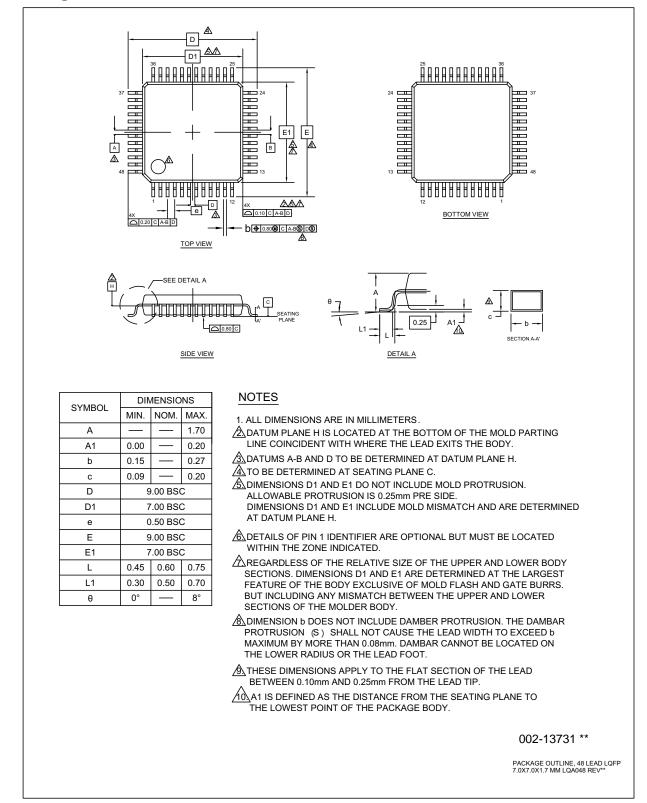

*7:


Applicable to pins: P10 to P17, P20 to P27, P30 to P33, P35*, P36*, P37, P40 to P44, P50 to P57
*: P35 and P36 are MB90387S and MB90F387S only.



13.4.3 Power-on Reset

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
Farameter				Min	Max	Onit	Remarks
Power supply rise time	t ℝ	Vcc	-	0.05	30	ms	
Power supply shutdown time	toff	Vcc		1	-	ms	Waiting time until power-on



15. Ordering Information

Part Number	Package	Remarks
MB90F387PMT MB90387PMT MB90F387SPMT MB90387SPMT	48-pin plastic LQFP (LQA048)	

16. Package Dimension

