

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f387spmt-gs-9003

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

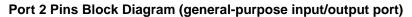
1. Product Lineup

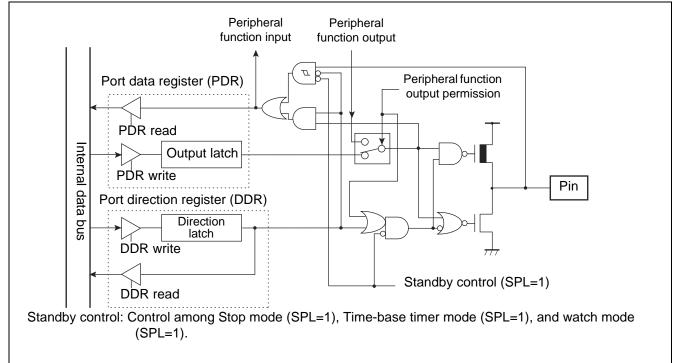
Parameter	Part Number	MB90F387 MB90F387S	MB90387 MB90387S	MB90V495G			
Classification		Flash ROM	Mask ROM	Evaluation product			
ROM capacity		64 Kby	64 Kbytes				
RAM capacity		2 Kbyt	es	6 Kbytes			
Process			CMOS	1			
Package		LQFP-48 (pin pit	ch 0.50 mm)	PGA-256			
Operating power	supply voltage	3.5 V to 5	5.5 V	4.5 V to 5.5 V			
Special power su emulator*1	ipply for	-		None			
CPU functions		Number of basic instructions Instruction bit length Instruction length Data bit length	: 351 instructions : 8 bits and 16 bits : 1 byte to 7 bytes : 1 bit, 8 bits, 16 bits				
		Minimum instruction execution ti					
		Interrupt processing time: 1.5 µs					
Low power const (standby) mode	umption	Sleep mode / Watch mode / Time	e-base timer mode / Stop mo	ode / CPU intermittent			
I/O port		General-purpose input/output ports (CMOS output): 34 ports (36 ports*2) including 4 high-current output ports (P14 to P17)					
Time-base timer		18-bit free-run counter Interrupt cycle: 1.024 ms, 4.096 ms, 16.834 ms, 131.072 ms (with oscillation clock frequency at 4 MHz)					
Watchdog timer		Reset generation cycle: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (with oscillation clock frequency at 4 MHz)					
16-bit input/ output timer	16-bit free-run timer	Number of channels: 1 Interrupt upon occurrence of overflow					
	Input capture	Number of channels: 4 Retaining free-run timer value set by pin input (rising edge, falling edge, and both edges)					
16-bit reload time	P.	Number of channels: 2 16-bit reload timer operation Count clock cycle: 0.25 μs, 0.5 μs, 2.0 μs (at 16-MHz machine clock frequency) External event count is allowed.					
Watch timer		15-bit free-run counter Interrupt cycle: 31.25 ms, 62.5 ms, 12 ms, 250 ms, 500 ms, 1.0 s, 2.0 s (with 8.192 kHz sub clock)					
8/16-bit PPG timer		Number of channels: 2 (four 8-bi PPG operation is allowed with fo Outputting pulse wave of arbitrar Count clock: 62.5 ns to 1 μ s (with 16 MHz machine clock)	ur 8-bit channels or two 16-b	ut channels.			
Delay interrupt g	enerator module	Interrupt generator module for task switching. Used for realtime OS.					
DTP/External inte	errupt	Number of inputs: 4 Activated by rising edge, falling edge, "H" level or "L" level input. External interrupt or expanded intelligent I/O service (EI ² OS) is available.					

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
000038н		(Reserve	ed area) *		
to 00003Fн					
000040н	PPGC0	PPG0 operation mode control register	R/W, W	8/16-bit PPG timer 0/	0Х000ХХ1в
000041н	PPGC1	PPG1 operation mode control register	R/W, W		0Х00001в
000042н	PPG01	PPG0/1 count clock selection register	R/W		000000XXB
000043н		(Reserve	ed area) *		
000044н	PPGC2	PPG2 operation mode control register	R/W, W	8/16-bit PPG timer 2/	0X000XX1в
000045н	PPGC3	PPG3 operation mode control register	R/W, W	3	0Х00001в
000046н	PPG23	PPG2/3 count clock selection register	R/W	1 [00000XXв
000047н to 00004Fн		(Reserve	ed area) *	· ·	
000050н	IPCP0	Input capture data register 0	R	16-bit input/output	XXXXXXXXB
000051н				timer	XXXXXXXXB
000052н	IPCP1	Input capture data register 1	R	1 [XXXXXXXXB
000053н					XXXXXXXXB
000054н	ICS01	Input capture control status register	R/W	1 [0000000в
000055н	ICS23				0000000в
000056н	TCDT	Timer counter data register	R/W	1 [0000000в
000057н					0000000в
000058н	TCCS	Timer counter control status register	R/W	1 [0000000в
000059н		(Reserve	ed area) *		
00005Ан	IPCP2	Input capture data register 2	R	16-bit input/output	XXXXXXXXB
00005Вн				timer	XXXXXXXXB
00005Сн	IPCP3	Input capture data register 3	R	1 [XXXXXXXXB
00005Dн					XXXXXXXXB
00005Eнto 000065н		(Reserve	ed area) *		
000066н	TMCSR0	Timer control status register	R/W	16-bit reload timer 0	0000000в
000067н			R/W		XXXX0000 _B
000068н	TMCSR1		R/W	16-bit reload timer 1	0000000в
000069н			R/W] Γ	XXXX0000b
00006Анto 00006Ен		(Reserve	ed area) *		
00006Fн	ROMM	ROM mirroring function selection register	W	ROM mirroring function selection module	XXXXXXX1B
000070н to 00007Fн		(Reserve	ed area) *		
000080н	BVALR	Message buffer enabling register	R/W	CAN controller	0000000в
000081н			ed area) *		
000082н	TREQR	Send request register	R/W	CAN controller	0000000в

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
003С38н, 003С39н	DLCR4	DLC register 4	R/W	CAN controller	XXXXXXXXB, XXXXXXXB
003С3Ан, 003С3Вн	DLCR5	DLC register 5	R/W		XXXXXXXXB, XXXXXXXB
003C3Cн, 003C3Dн	DLCR6	DLC register 6	R/W		XXXXXXXXB, XXXXXXXB
003C3Eн, 003C3Fн	DLCR7	DLC register 7	R/W		XXXXXXXXB, XXXXXXXB
003C40н to 003C47н	DTR0	Data register 0	R/W		XXXXXXXXB to XXXXXXXXB
003C48н to 003C4Fн	DTR1	Data register 1	R/W		XXXXXXXXB to XXXXXXXXB
003C50н to 003C57н	DTR2	Data register 2	R/W	-	XXXXXXXXB to XXXXXXXB
003C58н to 003C5Fн	DTR3	Data register 3	R/W		XXXXXXXXB to XXXXXXXXB
003C60н to 003C67н	DTR4	Data register 4	R/W		XXXXXXXXB to XXXXXXXXB
003C68н to 003C6Fн	DTR5	Data register 5	R/W		XXXXXXXXB to XXXXXXXXB
003C70н to 003C77н	DTR6	Data register 6	R/W		XXXXXXXXB to XXXXXXXXB
003C78н to 003C7Fн	DTR7	Data register 7	R/W		XXXXXXXXB to XXXXXXXXB
003C80н to 003CFFн		(Rese	rved area) *		
003D00н, 003D01н	CSR	Control status register	R/W, R	CAN controller	0XXXX001в, 00XXX000в
003D02н	LEIR	Last event display register	R/W		000XX000 _B
003D03н		(Rese	rved area) *		
003D04н, 003D05н	RTEC	Send/receive error counter	R	CAN controller	0000000в, 0000000в
003D06н, 003D07н	BTR	Bit timing register	R/W		11111111 _в , Х1111111 _в
003D08н	IDER	IDE register	R/W		XXXXXXXXB
003D09н		(Rese	rved area) *		
003D0Aн	TRTRR	Send RTR register	R/W	CAN controller	0000000в
003D0Bн		(Rese	rved area) *		
003D0CH	RFWTR	Remote frame receive wait register	R/W	CAN controller	XXXXXXXXB

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value					
003D0Dн		(Reserved area) *								
003D0Eн	TIER	Send completion interrupt permission register	R/W	CAN controller	0000000в					
003D0Fн		(Reserv	ed area) *	·						
003D10н, 003D11н	AMSR	Acceptance mask selection register	R/W	CAN controller	XXXXXXXXB, XXXXXXXB					
003D12н, 003D13н		(Reserv	ed area) *		·					
003D14н to 003D17н	AMR0	Acceptance mask register 0	R/W	CAN controller	XXXXXXXXB to XXXXXXXXB					
003D18н to 003D1Bн	AMR1	Acceptance mask register 1	R/W		XXXXXXXXB to XXXXXXXXB					
003D1Cн to 003DFFн		(Reserv	ed area) *							
003E00н to 003EFFн	(Reserved area) *									
003FF0н to 003FFFн	(Reserved area) *									

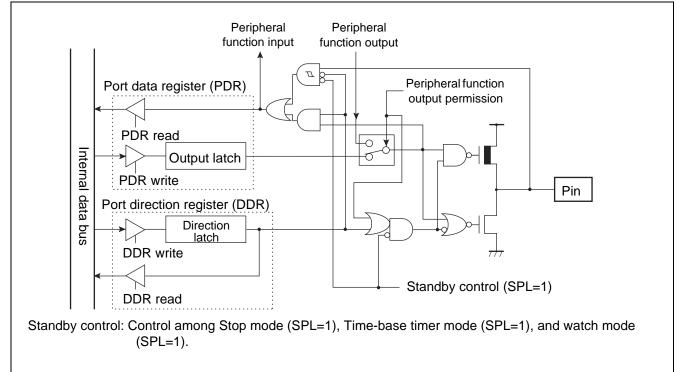

Initial values:


0: Initial value of this bit is "0."

1: Initial value of this bit is "1."

X: Initial value of this bit is undefined.

*: "Reserved area" should not be written anything. Result of reading from "Reserved area" is undefined.

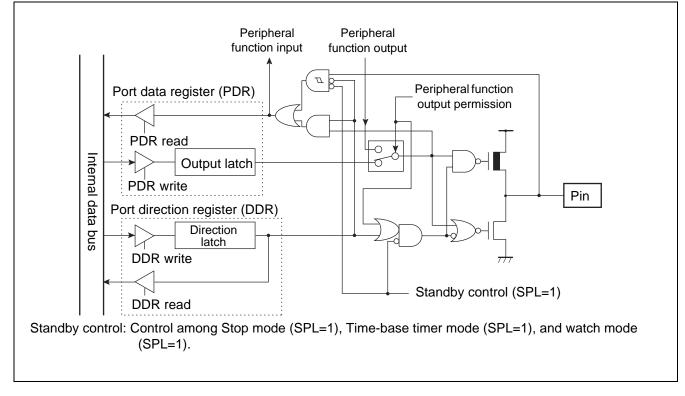

Port 2 Registers

- Port 2 registers include port 2 data register (PDR2) and port 2 direction register (DDR2).
- The bits configuring the register correspond to port 2 pins on a one-to-one basis.

Relation between Port 2 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 2	PDR2,DDR2	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	P27	P26	P25	P24	P23	P22	P21	P20

Port 3 Registers


- Port 3 registers include port 3 data register (PDR3) and port 3 direction register (DDR3).
- The bits configuring the register correspond to port 3 pins on a one-to-one basis.

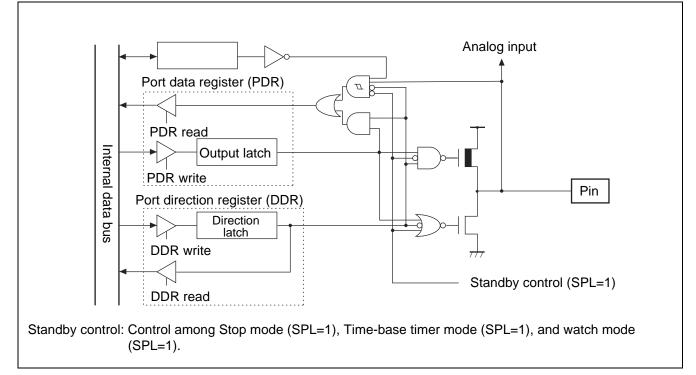
Relation between Port 3 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 3	PDR3, DDR3	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	P37	P36*	P35*	_	P33	P32	P31	P30

*: P35 and P36 do not exist on MB90387and MB90F387.

Port 4 Pins Block Diagram

Port 4 Registers


- Port 4 registers include port 4 data register (PDR4) and port 4 direction register (DDR4).
- The bits configuring the register correspond to port 4 pins on a one-to-one basis.

Relation between Port 4 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 4	PDR4, DDR4 – – – bit4 bit3 bit2 bit1						bit1	bit0	
	Corresponding pins	-	-	-	P44	P43	P42	P41	P40

MB90387/387S/F387/F387S MB90V495G

Port 5 Pins Block Diagram

Port 5 Registers

- Port 5 registers include port 5 data register (PDR5), port 5 direction register (DDR5), and analog input permission register (ADER).
- Analog input permission register (ADER) allows or disallows input of analog signal to the analog input pin.
- The bits configuring the register correspond to port 5 pins on a one-to-one basis.

Relation between Port 5 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 5	PDR5, DDR5	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	ADER	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0
	Corresponding pins	P57	P56	P55	P54	P53	P52	P51	P50

12.4 16-bit Input/Output Timer

The 16-bit input/output timer is a compound module composed of 16-bit free-run timer, (1 unit) and input capture (2 units, 4 input pins). The timer, using the 16-bit free-run timer as a basis, enables measurement of clock cycle of an input signal and its pulse width.

Configuration of 16-bit Input/Output Timer

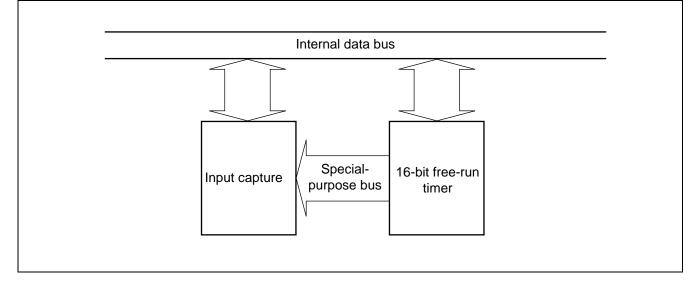
The 16-bit input/output timer is composed of the following modules:

- 16-bit free-run timer (1 unit)
- Input capture (2 units, 2 input pins per unit)

Functions of 16-bit Input/Output Timer

Functions of 16-bit Free-run Timer

The 16-bit free-run timer is composed of 16-bit up counter, timer counter control status register, and prescaler. The 16-bit up counter increments in synchronization with dividing ratio of machine clock.


- Count clock is set among four types of machine clock dividing rates.
- Generation of interrupt is allowed by counter value overflow.
- Activation of expanded intelligent I/O service (EI²OS) is allowed by interrupt generation.
- Counter value of 16-bit free-run timer is cleared to "0000^H" by either resetting or software-clearing with timer count clear bit (TCCS: CLR).
- Counter value of 16-bit free-run timer is output to input capture, which is available as base time for capture operation.

Functions of Input Capture

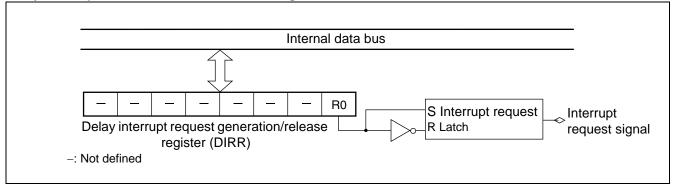
The input capture, upon detecting an edge of a signal input to the input pin from external device, stores a counter value of 16-bit freerun timer at the time of detection into the input capture data register. The function includes the input capture data registers corresponding to four input pins, input capture control status register, and edge detection circuit.

- Rising edge, falling edge, and both edges are selectable for detection.
- Generating interrupt on CPU is allowed by detecting an edge of input signal.
- Expanded intelligent I/O service (EI²OS) is activated by interrupt generation.
- The four input capture input pins and input capture data registers allows monitoring of a maximum of four events.

16-bit Input/Output Timer Block Diagram

12.8 Delay Interrupt Generation Module Outline

The delay interrupt generation module is a module that generates interrupts for switching tasks. Generation of a hardware interrupt request is performed by software.


Delay Interrupt Generation Module Outline

Using the delay interrupt generation module, hardware interrupt request is generated and released by software.

Table 12-1. Delay Interrupt Generation Module Outline

	Function and Control
Cause of interrupt	Set "1" in R0 bit of delay interrupt request generation/release register (DIRR: R0=1), generating an interrupt request. Set "0" in R0 bit of delay interrupt request generation/release register (DIRR: R0=0), releasing an interrupt request.
Interrupt number	#42 (2Ан)
Interrupt control	No setting of permission register is provided.
Interrupt flag	Retained in DIRR: R0 bit
El ² OS	Not ready for expanded intelligent I/O service.

Delay Interrupt Generation Module Block Diagram

Interrupt Request Latch

A latch that retains settings on delay interrupt request generation/release register (generation or release of delay interrupt request).

Delay Interrupt Request Generation/Release Register (DIRR)

Generates or releases delay interrupt request.

Interrupt Number

An interrupt number used in delay interrupt generation module is as follows: Interrupt number: #42 $(2A_{H})$

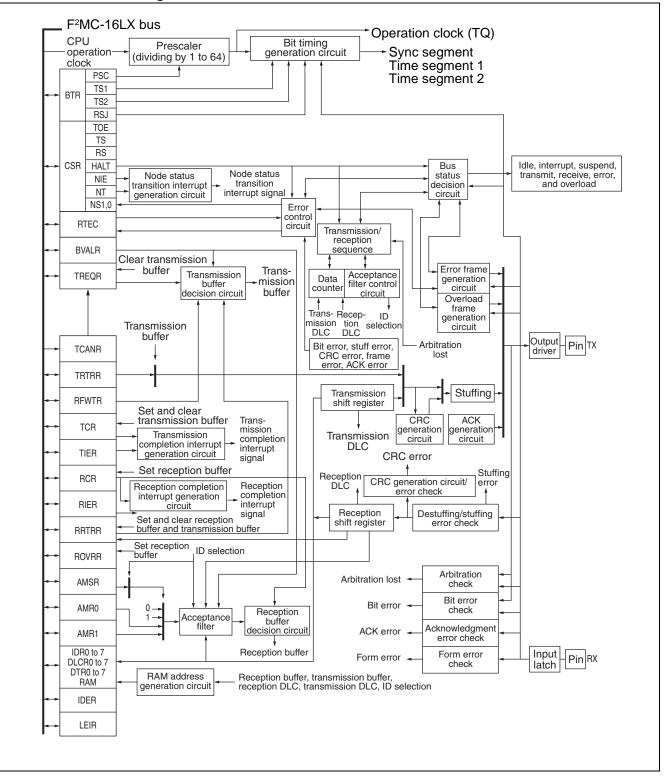
12.10 8/10-bit A/D Converter

The 8/10-bit A/D converter converts an analog input voltage into 8-bit or 10/bit digital value, using the RC-type successive approximation conversion method.

- Input signal is selected among 8 channels of analog input pins.
- Activation trigger is selected among software trigger, internal timer output, and external trigger.

Functions of 8/10-bit A/D Converter

The 8/10-bit A/D converter converts an analog voltage (input voltage) input to analog input pin into an 8-bit or 10-bit digital value (A/D conversion).


The 8/10-bit A/D converter has the following functions:

- A/D conversion takes a minimum of 6.12 µs* for 1 channel, including sampling time. (A/D conversion)
- Sampling of one channel takes a minimum of 2.0 µs*.
- RC-type successive approximation conversion method, with sample & hold circuit is used for conversion.
- Resolution of either 8 bits or 10 bits is specifiable.
- A maximum of 8 channels of analog input pins are allowed for use.
- Generation of interrupt request is allowed, by storing A/D conversion result in A/D data register.
- Activation of EI²OS is allowed upon occurrence of an interrupt request. With use of EI²OS, data loss is avoided even if A/D conversion is performed successively.
- An activation trigger is selectable among software trigger, internal timer output, and external trigger (fall edge).
- : When operating with 16 MHz machine clock

8/10-bit A/D Converter Conversion Mode

Conversion Mode	Description
Singular conversion mode	The A/D conversion is performed form a start channel to an end channel sequentially. Upon completion of A/D conversion on an end channel, A/D conversion function stops.
Sequential conversion mode	The A/D conversion is performed form a start channel to an end channel sequentially. Upon completion of A/D conversion on an end channel, A/D conversion function resumes from the start channel.
Pausing conversion mode	The A/D conversion is performed by pausing at each channel. Upon completion of A/D conversion on an end channel, A/D conversion and pause functions resume from the start channel.

CAN Controller Block Diagram

13. Electrical Characteristics

13.1 Absolute Maximum Rating

Parameter	Symbol	Rat	ting	Unit	Remarks
Parameter	Symbol	Min	Max	Unit	Remarks
Power supply voltage*1	Vcc	Vss - 0.3	Vss + 6.0	V	
	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc*2
	AVR	Vss - 0.3	Vss + 6.0	V	$AVcc \ge AVR^{*2}$
Input voltage*1	Vi	Vss - 0.3	Vss + 6.0	V	*3
Output voltage*1	Vo	Vss - 0.3	Vss + 6.0	V	*3
Maximum clamp current		- 2.0	+ 2.0	mA	*7
Total maximum clamp current	Σ Iclamp	-	20	mA	*7
"L" level maximum output current	IOL1	-	15	mA	Normal output*4
	IOL2	-	40	mA	High-current output*4
"L" level average output current	IOLAV1	-	4	mA	Normal output*5
	IOLAV2	-	30	mA	High-current output*5
"L" level maximum total output current	Σlol1	-	125	mA	Normal output
	ΣΙοι2	-	160	mA	High-current output
"L" level average total output current	Σ lolav1	-	40	mA	Normal output*6
	Σ Iolav2	-	40	mA	High-current output*6
"H" level maximum output current	Іон1	-	-15	mA	Normal output*4
	Іон2	-	-40	mA	High-current output*4
"H" level average output current	IOHAV1	-	-4	mA	Normal output*5
	IOHAV2	-	-30	mA	High-current output*5
"H" level maximum total output current	ΣІон1	-	-125	mA	Normal output
	ΣІон2	-	-160	mA	High-current output
"H" level average total output current	ΣΙομαν1	-	-40	mA	Normal output*6
	ΣΙομαν2	-	-40	mA	High-current output*6
Power consumption	PD	-	245	mW	
Operating temperature	TA	-40	+105	°C	
Storage temperature	Tstg	-55	+150	°C	

*1: The parameter is based on $V_{SS} = AV_{SS} = 0.0 V$.

*2: AVcc and AVR should not exceed Vcc.

*3: VI and Vo should not exceed Vcc + 0.3 V. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating.

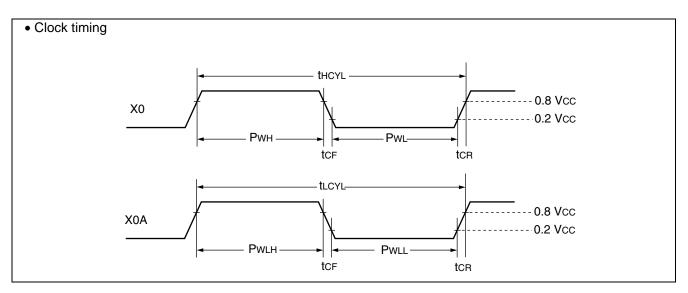
*4: A peak value of an applicable one pin is specified as a maximum output current.

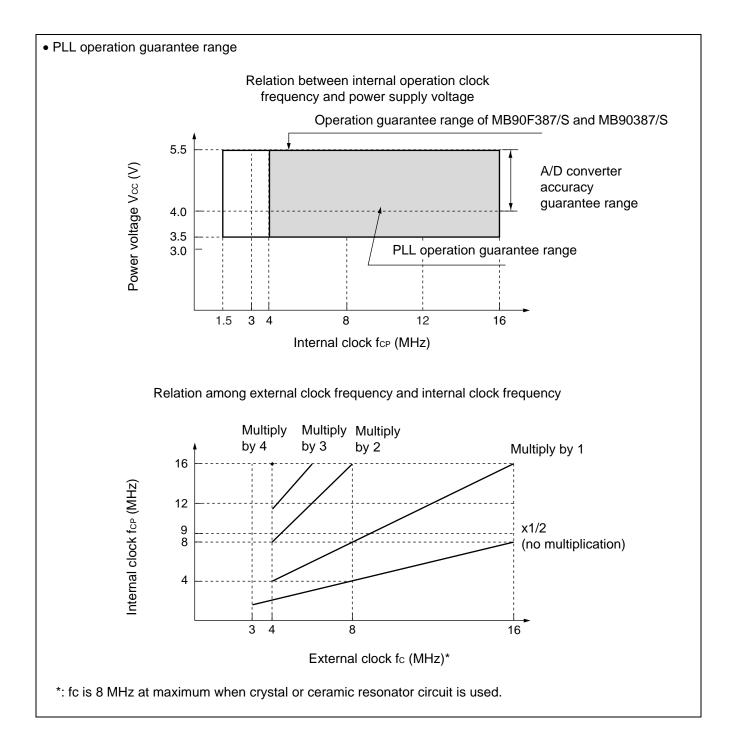
- *5: An average current value of an applicable one pin within 100 ms is specified as an average output current. (Average value is found by multiplying operating current by operating rate.)
- *6: An average current value of all pins within 100 ms is specified as an average total output current. (Average value is found by multiplying operating current by operating rate.)

*7:

Applicable to pins: P10 to P17, P20 to P27, P30 to P33, P35*, P36*, P37, P40 to P44, P50 to P57
*: P35 and P36 are MB90387S and MB90F387S only.

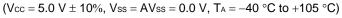
13.4 AC Characteristics

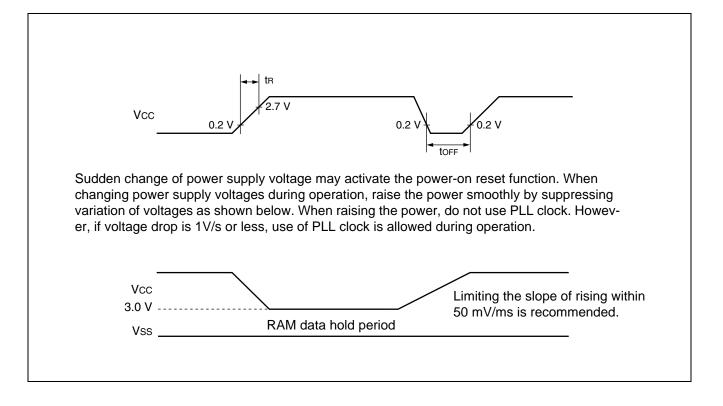

13.4.1 Clock Timing


Parameter	Symbol	Pin Name	Value			Unit	Remarks	
Farameter	Symbol		Min	Тур	Max	Unit	Remarks	
Clock frequency	fc	X0, X1	3	—	8	MHz	When crystal or ceramic resonator is used*2	
			3	—	16	MHz	External clock input*1, *2	
			4	—	16	MHz	PLL Multiply by 1 *2	
			4	—	8	MHz	PLL Multiply by 2 *2	
			4	—	5.33	MHz	PLL Multiply by 3 *2	
			4	—	4	MHz	PLL Multiply by 4 *2	
	fc∟	X0A, X1A	_	32.768	_	kHz		
Clock cycle time	t HCYL	X0, X1	125	—	333	ns		
	t LCYL	X0A, X1A		30.5		μS		
Input clock pulse width	Pwh, Pwl	X0	10	—		ns	Set duty factor at 30% to 70% as a guideline.	
	Pwlh,Pwll	X0A		15.2		μS		
Input clock rise time and fall time	tcr, tcr	X0		—	5	ns	When external clock is used	
Internal operation clock frequency	fср	_	1.5	—	16	MHz	When main clock is used	
	f LCP	_		8.192		kHz	When sub clock is used	
Internal operation clock cycle time	tcp	_	62.5	—	666	ns	When main clock is used	
	t LCP	_	_	122.1		μS	When sub clock is used	

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 \circ C to +105 \circ C)$

*1: Internal operation clock frequency should not exceed 16 MHz.


*2: When selecting the PLL clock, the range of clock frequency is limited. Use this product within range as mentioned in "Relation among external clock frequency and internal clock frequency".

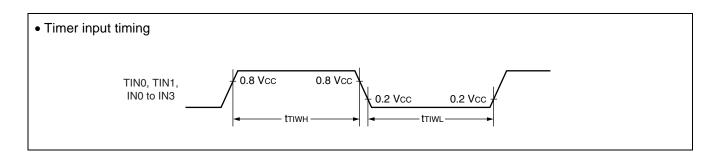


13.4.3 Power-on Reset

Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit	Remarks	
Falameter	Symbol		Conditions	Min Max		Onit	Nemarks	
Power supply rise time	t ℝ	Vcc	-	0.05	30	ms		
Power supply shutdown time	toff	Vcc		1	-	ms	Waiting time until power-on	

13.4.4 UART Timing

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
Falailletei			Conditions	Min	Max	Unit	Remarks
Serial clock cycle time	tscyc	SCK1	Internal shift clock	4 tcp *	-	ns	
$SCK \downarrow \to SOT$ delay time	t slov	SCK1, SOT1	mode output pin is: CL = 80 pF+1TTL.	-80	+80	ns	
Valid SIN \rightarrow SCK \uparrow	t ivsh	SCK1, SIN1		100	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнix	SCK1, SIN1		60	-	ns	
Serial clock "H" pulse width	t shsl	SCK1	External shift clock	2 tcp *	-	ns	
Serial clock "L" pulse width	tslsh	SCK1	mode output pin is: CL = 80 pF+1TTL.	2 tcp *	-	ns	
$SCK \downarrow \to SOT$ delay time	tslov	SCK1, SOT1		-	150	ns	
Valid SIN \rightarrow SCK \uparrow	t ivsh	SCK1, SIN1		60	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнix	SCK1, SIN1		60	_	ns	

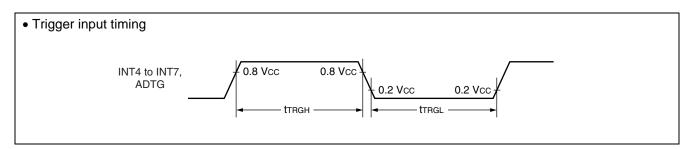

(Vcc = 4.5 V to 5.5 V, Vss = 0.0 V, T_A = -40 °C to +105 °C)

*: Refer to Clock Timing ratings for $t_{\mbox{\tiny CP}}$ (internal operation clock cycle time).

Notes:

■ AC Characteristics in CLK synchronous mode.

 \blacksquare C_L is a load capacitance value on pins for testing.

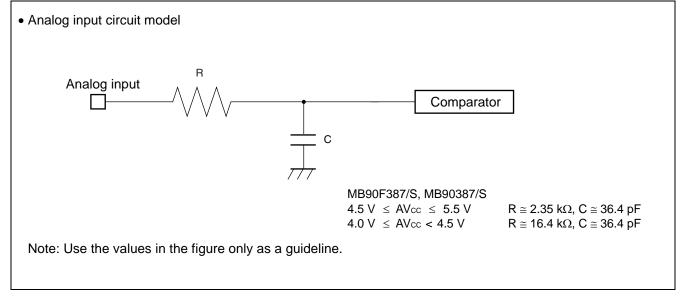


13.4.6 Trigger Input Timing

(Vcc = 4.5 V to 5.5 V, Vss = 0.0 V, $T_A = -40 \text{ °C to } +105 \text{ °C}$)

Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit	Remarks
Farameter				Min	Max		
Input pulse width	ttrgh ttrgl	INT4 to INT7, ADTG	_	5 tcթ *	_	ns	

*: Refer to Clock Timing ratings for tcp (internal operation clock cycle time).


13.7 Notes on A/D Converter Section

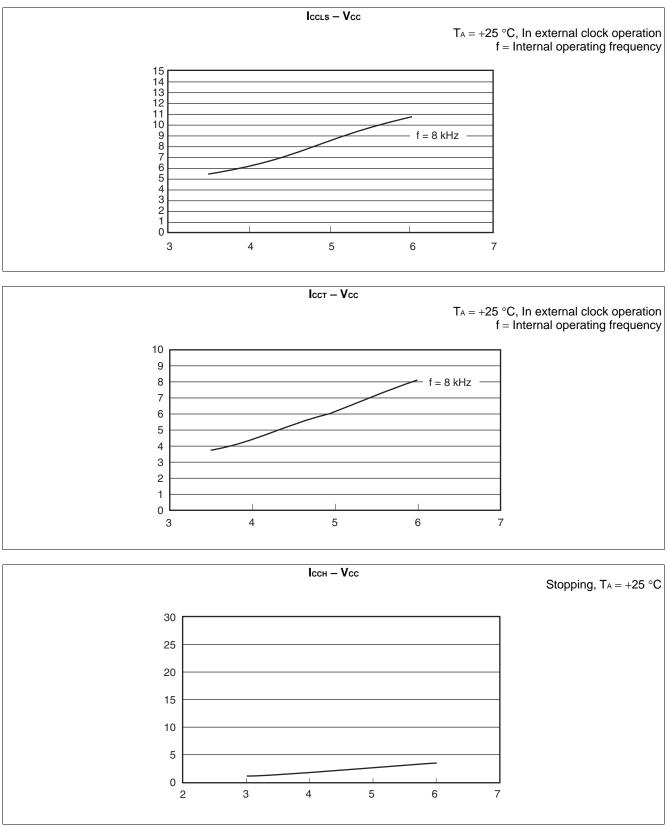
Use the device with external circuits of the following output impedance for analog inputs:

Recommended output impedance of external circuits are: Approx. 3.9 k Ω or lower (4.5 V \leq AVcc \leq 5.5 V) (sampling period=2.00 μ s at 16 MHz machine clock), Approx. 11 k Ω or lower (4.0 V \leq AVcc < 4.5 V) (sampling period=8.0 μ s at 16 MHz machine clock).

If an external capacitor is used, in consideration of the effect by tap capacitance caused by external capacitors and on-chip capacitors, capacitance of the external one is recommended to be several thousand times as high as internal capacitor.

If output impedance of an external circuit is too high, a sampling period for an analog voltage may be insufficient.

About errors


As [AVR-AVss] become smaller, values of relative errors grow larger.

13.8 Flash Memory Program/Erase Characteristics

Parameter	Conditions		Value		Unit	Remarks		
Falameter	Conditions	Min	Тур	Max	Onit	Remarks		
Sector erase time	$\begin{array}{l} T_{\text{A}}=+~25~^{\circ}C\\ V_{\text{CC}}=5.0~V \end{array}$	-	1	15	S	Excludes 00H programming prior to erasure		
Chip erase time		-	4	-	S	Excludes 00H programming prior to erasure		
Word (16-bit width) programming time		-	16	3,600	μS	Except for the over head time of the system		
Program/Erase cycle	_	10,000	-	-	cycle			
Flash Data Retention Time	Average T _A = + 85 °C	20	-	-	Year	*		

*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C).

MB90387/387S/F387/F387S MB90V495G

(Continued)