

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Last Time Buy
Core Processor	R8C
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART, USB
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	30
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-WFQFN Exposed Pad
Supplier Device Package	40-HWQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f213m8knnp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 4.12 SFR Information (12) (1)

Address	Register	Symbol	After Reset
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h			XXh
2CF2h			XXh
2CF3h			XXh
2CF4h	1		XXh
2CF5h	-		XXh
2CF6h			XXh
2CF7h			XXh
2CF8h	DTC Control Data 23	DTCD23	XXh
2CF9h	B TO CONTION Balla 25	B10B20	XXh
2CFAh	-		XXh
2CFBh			XXh
2CFCh			XXh
2CFDh	4		XXh
2CFEh			XXh
2CFFh			XXh
2D00h			
:			
2DFFh			
2E00h	System Configuration Control Register	SYSCFG	00h
2E01h			00h
2E02h			
2E03h			
2E04h	System Configuration Status Register 0	SYSSTS0	00000X00b
2E05h			XX000000b
2E06h			70.000000
2E07h			
2E08h	Device State Control Register 0	DVSTCTR0	00h
	Device State Control Register 0	DVSTCTRU	
2E09h			00h
2E0Ah			
2E0Bh			
2E0Ch			
2E0Dh			
2E0Eh			
2E0Fh			
2E10h			
2E11h			
2E12h			
2E13h			
2E14h	CFIFO Port Register	CFIFO	00h
2E15h	Of it of the register	0.110	00h
2E16h			0011
2E16h			
2E18h			
2E19h			
2E1Ah			
2E1Bh			
2E1Ch			
2E1Dh			
2E1Eh			
2E1Fh			
2E20h	CFIFO Port Select Register	CFIFOSEL	00h
2E21h	1		00h
2E22h	CFIFO Port Control Register	CFIFOCTR	00h
	Of it O Fort Control Register	CHIOCIK	
2E23h			00h
2E24h			
2E25h			
2E26h			
2E27h			
2E28h			
2E29h			
		+	1
2E2Ah			

2E2Eh 2E2Fh X: Undefined

2E2Bh 2E2Ch 2E2Dh

Note:

^{1.} The blank areas are reserved and cannot be accessed by users.

5.1 Registers

5.1.1 Processor Mode Register 0 (PM0)

Address 0004h

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	_	_	_	_	PM03	_	_	_
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	_	Reserved bits	Set to 0.	R/W
b1	_			
b2	_			
b3	PM03	Software reset bit	The MCU is reset when this bit is set to 1. When read, the content is 0.	R/W
b4	_	Nothing is assigned. If necessary, set t	to 0. When read, the content is 0.	_
b5	_			
b6	_			
b7	_			

Set the PRC1 bit in the PRCR register to 1 (write enabled) before rewriting the PM0 register.

5.1.2 Reset Source Determination Register (RSTFR)

Address 000Bh

Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	_	_	_	_	WDR	SWR	HWR	CWR	
After Reset	0	Х	Х	Х	Х	Χ	Χ	Х	(Note 1)

Bit	Symbol	Bit Name	Function	R/W
b0	CWR	Cold start-up/warm start-up	0: Cold start-up	R/W
		determine flag (2, 3)	1: Warm start-up	
b1	HWR	Hardware reset detect flag	0: Not detected	R
			1: Detected	
b2	SWR	Software reset detect flag	0: Not detected	R
			1: Detected	
b3	WDR	Watchdog timer reset detect flag	0: Not detected	R
			1: Detected	
b4	_	Reserved bits	When read, the content is undefined.	R
b5	_			
b6	_			
b7	_	Reserved bit	Set to 0.	R/W

Notes:

- 1. The CWR bit is set to 0 (cold start-up) after power-on or voltage monitor 0 reset. This bit remains unchanged at a hardware reset, software reset, or watchdog timer reset.
- 2. If 1 is written to the CWR bit by a program, it is set to 1. (Writing 0 does not affect this bit.)
- 3. When the VW0C0 bit in the VW0C register is set to 0 (voltage monitor 0 reset disabled), the CWR bit value is undefined.

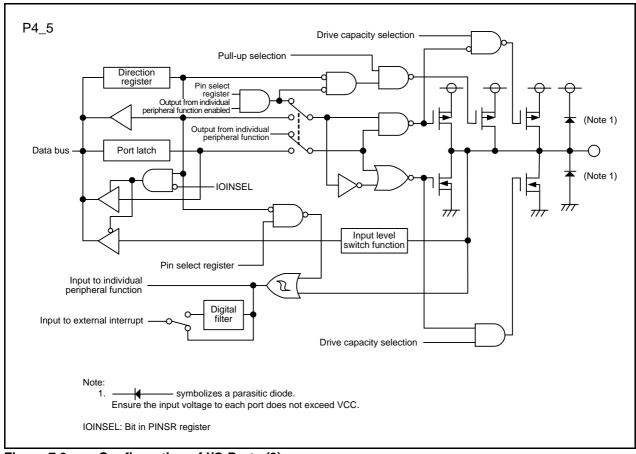


Figure 7.9 Configuration of I/O Ports (9)

b0

b1

7.4.25 USB Pin Select Register 0 (USBSR0)

Address 2F10h

Bit b7 b6 b5 b4 b3 b2

Symbol	USBVSENSEL	USBOVASEL	USBVBUSSEL	USBDMSEL	USBDPSEL	USBUPESEL	_	_
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	_	Reserved bits	Set to 0.	R/W
b1	_			
b2	USBUPESEL	USB_DPUPE pin select bit	0: USB_DPUPE pin not used 1: USB_DPUPE pin used	R/W
b3	USBDPSEL	USB_DP pin select bit	0: USB_DP pin not used 1: USB_DP pin used	R/W
b4	USBDMSEL	USB_DM pin select bit	0: USB_DM pin not used 1: USB_DM pin used	R/W
b5	USBVBUSSEL	USB_VBUS pin select bit	0: USB_VBUS pin not used 1: USB_VBUS pin used	R/W
b6		USB_OVRCURA pin select bit (1)	0: USB_OVRCURA pin not used 1: P7_6 assigned	R/W
b7	USBVSENSEL	USB_VBUSEN pin select bit (1)	0: USB_VBUSEN pin not used 1: P7_7 assigned	R/W

Note:

1. This bit is reserved and must be set to 0 in the R8C/3MU Group.

The USBSR0 register is used to select the pins for the USB.

Table 7.35 TRBO Pin Setting

Register	TRBIOC	TRE	BMR	Function
Bit	TOCNT	TMOD1	TMOD0	T unction
	0	0	1	Programmable waveform generation mode (pulse output)
Setting	1	0	1	Programmable waveform generation mode (programmable output)
Value	0	1	0	Programmable one-shot generation mode
	0	1	1	Programmable wait one-shot generation mode

Table 7.36 TRCIOA Pin Setting

Register	TRCOER	TRCMR		TRCIOR0		TRC	CR2	Function
Bit	EA	PWM2	IOA2	IOA1	IOA0	TCEG1	TCEG0	Function
	0	1	0	0	1	Х	Х	Timer waveform output (output compare
	U	'	U	1	Χ	^	^	function)
Setting	0	1	1	Х	Х	Х	Х	Timer mode (input capture function)
Value	1	'	ı	^	^	^	^	
	4	0	Х	Х	Х	0	1	PWM2 mode TRCTRG input
		U	^	^	^	1	Х	

X: 0 or 1

Table 7.37 TRCIOB Pin Setting

Register	TRCOER	TRCMR		TRCIOR0			Function
Bit	EB	PWM2	PWMB	IOB2	IOB1	IOB0	Function
	0	0	Х	Х	Х	Х	PWM2 mode waveform output
	0	1	1	Х	Х	Х	PWM mode waveform output
Setting	0	1	0	0	0	1	Timer waveform output (output compare function)
Value	U	'	0	U	1	Х	
	0	1	0	1	V	V	Timer mode (input capture function)
	1	'	U		^	^	

X: 0 or 1

Table 7.38 TRCIOC Pin Setting

Register	TRCOER	TRO	CMR		TRCIOR1		Function
Bit	EC	PWM2	PWMC	IOC2	IOC1	IOC0	Function
	0	1	1	Х	Х	Х	PWM mode waveform output
C = 445 = ==	0	1	0	0	0	1	Timer waveform output (output compare function)
Setting Value	U	'	0	U	1	Х	
Value	0	1	0	1	V	v	Timer mode (input capture function)
	1	'		'	^	^	

X: 0 or 1

Table 7.39 TRCIOD Pin Setting

Register	TRCOER	TRO	CMR	TRCIOR1			Function
Bit	ED	PWM2	PWMD	IOD2	IOD1	IOD0	Function
	0	1	1	Х	Х	Х	PWM mode waveform output
0 - 11'	0	1	0	0	0	1	Timer waveform output (output compare function)
Setting Value	U	'	0	U	1	Х	
Value	0	1	0	1	V	V	Timer mode (input capture function)
	1	ı	U	I	^	Х	

X: 0 or 1

As with other maskable interrupts, the timer RC interrupt, synchronous serial communication unit interrupt, I²C bus interface interrupt, and flash memory interrupt are controlled by the combination of the I flag, IR bit, bits ILVL0 to ILVL2, and IPL. However, since each interrupt source is generated by a combination of multiple interrupt request sources, the following differences from other maskable interrupts apply:

- When bits in the enable register are set to 1 and the corresponding bits in the status register are set to 1 (interrupt enabled), the IR bit in the interrupt control register is set to 1 (interrupt requested).
- When either bits in the status register or the corresponding bits in the enable register, or both are set to 0, the IR bit is set to 0 (no interrupt requested).
 - That is, even if the interrupt is not acknowledged after the IR bit is set to 1, the interrupt request will not be retained.
 - Also, the IR bit is not set to 0 even if 0 is written to this bit.
- Individual bits in the status register are not automatically set to 0 even if the interrupt is acknowledged. The IR bit is also not automatically set to 0 when the interrupt is acknowledged. Set individual bits in the status register to 0 in the interrupt routine. Refer to the status register figure for how to set individual bits in the status register to 0.
- When multiple bits in the enable register are set to 1 and other request sources are generated after the IR bit is set to 1, the IR bit remains 1.
- When multiple bits in the enable register are set to 1, use the status register to determine which request source causes an interrupt.

Refer to chapters of the individual peripheral functions (19. Timer RC, 23. Synchronous Serial Communication Unit (SSU), 24. I²C bus Interface, and 29. Flash Memory) for the status register and enable register. For the interrupt control register, refer to 11.3 Interrupt Control.

19.2.2 Timer RC Mode Register (TRCMR)

Address 0120h

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	TSTART	_	BFD	BFC	PWM2	PWMD	PWMC	PWMB
After Reset	0	1	0	0	1	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	PWMB	PWM mode of TRCIOB select bit (1)	0: Timer mode 1: PWM mode	R/W
b1	PWMC	PWM mode of TRCIOC select bit (1)	0: Timer mode 1: PWM mode	R/W
b2	PWMD	PWM mode of TRCIOD select bit (1)	0: Timer mode 1: PWM mode	R/W
b3	PWM2	PWM2 mode select bit	0: PWM 2 mode 1: Timer mode or PWM mode	R/W
b4	BFC	TRCGRC register function select bit (2)	General register Buffer register of TRCGRA register	R/W
b5	BFD	TRCGRD register function select bit	General register Buffer register of TRCGRB register	R/W
b6	_	Nothing is assigned. If necessary, set to	0. When read, the content is 1.	_
b7	TSTART	TRC count start bit	Count stops Count starts	R/W

Notes:

- 1. These bits are enabled when the PWM2 bit is set to 1 (timer mode or PWM mode).
- 2. Set the BFC bit to 0 (general register) in PWM2 mode.

For notes on PWM2 mode, refer to 19.9.6 TRCMR Register in PWM2 Mode.

19.2.14 Timer RC Pin Select Register (TRBRCSR)

Address (0181h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	_	_	TRCCLKSEL1	TRCCLKSEL0	_	1	1	_
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	_	Reserved bits	Set to 0.	R/W
b1	_			R/W
b2	_	Nothing is assigned. If necessary, set t	o 0. When read, the content is 0.	_
b3	_			
b4	TRCCLKSEL0	TRCCLK pin select bit	b5 b4 0 0: TRCCLK pin not used	R/W
b5	TRCCLKSEL1		0 1: P1_4 assigned	R/W
			1 0: P3_3 assigned	
			1 1: Do not set.	
b6	_	Reserved bit	Set to 0.	R/W
b7	_	Nothing is assigned. If necessary, set t	o 0. When read, the content is 0.	_

The TRBRCSR register selects which pin is assigned to the timer RC I/O. To use the I/O pin for timer RC, set this register.

Set bits TRCCLKSEL0 to TRCCLKSEL1 before setting the timer RC associated registers. Also, do not change the setting values. Do not change the setting values of bits TRCCLKSEL0 to TRCCLKSEL1 during timer RC operation.

19.2.15 Timer RC Pin Select Register 0 (TRCPSR0)

Address 0182h

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	_	_	TRCIOBSEL1	TRCIOBSEL0	_	TRCIOASEL2	TRCIOASEL1	TRCIOASEL0
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0 b1 b2	TRCIOASEL1 TRCIOASEL2	TRCIOA/TRCTRG pin select bit	b2 b1 b0 0 0 0: TRCIOA/TRCTRG pin not used 0 0 1: P1_1 assigned 0 1 0: P0_0 assigned 0 1 1: P0_1 assigned	R/W R/W R/W
b3	_	Nothing is assigned. If necessary, set to	1 0 0: P0_2 assigned Other than above: Do not set. to 0. When read, the content is 0.	_
b4 b5	TRCIOBSEL0 TRCIOBSEL1	TRCIOB pin select bit	0 0: TRCIOB pin not used 0 1: P1_2 assigned 1 0: P0_3 assigned 1 1: P0_4 assigned	R/W R/W
b6	_	Reserved bit	Set to 0.	R/W
b7	_	Nothing is assigned. If necessary, set t	o 0. When read, the content is 0.	_

The TRCPSR0 register selects which pin is assigned to the timer RC I/O. To use the I/O pin for timer RC, set this register.

Set the TRCPSR0 register before setting the timer RC associated registers. Also, do not change the setting value in this register during timer RC operation.

19.4.1 Timer RC I/O Control Register 0 (TRCIOR0) for Input Capture Function

Address	0124h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	_	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0
After Reset	1	0	0	0	1	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0 b1	IOA0 IOA1	TRCGRA control bit	0 0: Input capture to the TRCGRA register at the rising edge 1: Input capture to the TRCGRA register at the falling edge 1 0: Input capture to the TRCGRA register at both edges 1 1: Do not set.	R/W R/W
b2	IOA2	TRCGRA mode select bit (1)	Set to 1 (input capture) in the input capture function.	R/W
b3	IOA3	TRCGRA input capture input switch bit (3)	0: fOCO128 signal 1: TRCIOA pin input	R/W
b4 b5	IOB0 IOB1	TRCGRB control bit	 b5 b4 0 0: Input capture to the TRCGRB register at the rising edge 0 1: Input capture to the TRCGRB register at the falling edge 1 0: Input capture to the TRCGRB register at both edges 1 1: Do not set. 	R/W R/W
b6	IOB2	TRCGRB mode select bit (2)	Set to 1 (input capture) in the input capture function.	R/W
b7	_	Nothing is assigned. If necessary, se	t to 0. When read, the content is 1.	_

Notes:

- 1. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in the TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.
- 2. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.
- 3. The IOA3 bit is enabled when the IOA2 bit is set to 1 (input capture function).

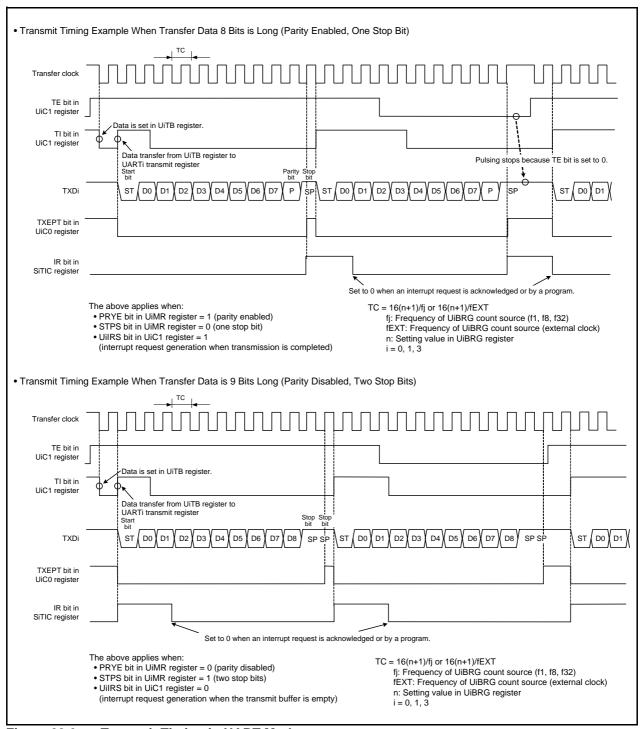


Figure 20.6 Transmit Timing in UART Mode

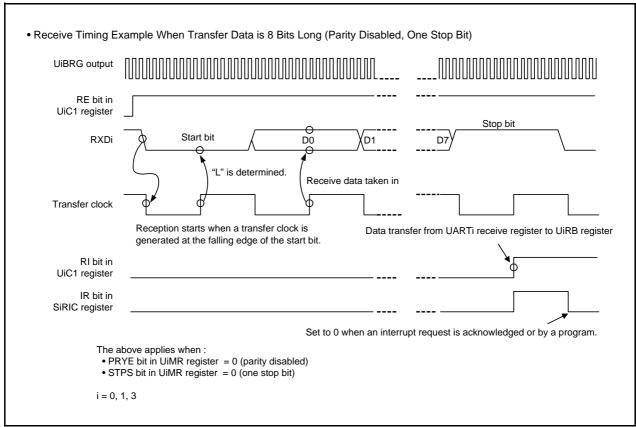


Figure 20.7 Receive Timing in UART Mode

24.2.6 IIC bus Control Register 1 (ICCR1)

Address ()198h								
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	ICE	RCVD	MST	TRS	CKS3	CKS2	CKS1	CKS0	ì
After Reset	0	0	0	0	0	0	0	0	

Bit	Symbol	Bit Name	Function	R/W
b0	CKS0	Transmit clock select bits 3 to 0 (1)	b3 b2 b1 b0 0 0 0 0; f1/28	R/W
b1	CKS1		0 0 0 1: f1/40	R/W
b2	CKS2		0 0 1 0: f1/48	R/W
b3	CKS3		0 0 1 1: f1/64	R/W
			0 1 0 0: f1/80	
			0 1 0 1: f1/100	
			0 1 1 0: f1/112	
			0 1 1 1: f1/128	
			1 0 0 0: f1/56	
			1 0 0 1: f1/80	
			1 0 1 0: f1/96	
			1 0 1 1: f1/128	
			1 1 0 0: f1/160	
			1 1 0 1: f1/200	
			1 1 1 0: f1/224	
			1 1 1 1: f1/256	
b4	TRS	Transfer/receive select bit (2, 3, 6)	b5 b4	R/W
b5	MST	Master/slave select bit (5, 6)	0 0: Slave Receive Mode (4)	R/W
			0 1: Slave Transmit Mode	
			1 0: Master Receive Mode 1 1: Master Transmit Mode	
b6	RCVD	Receive disable bit	After reading the ICDRR register while the TRS bit is	R/W
00	RCVD	Receive disable bit	Iset to 0	K/VV
			0: Next receive operation continues	
			1: Next receive operation disabled	
b7	ICE	I ² C bus interface enable bit ⁽⁷⁾	0: This module is halted	R/W
D7	ICE	Lec bus interface enable bit (*)	(Pins SCL and SDA are set to a port function)	17/ / /
			1: This module is enabled for transfer operations	
			(Pins SCL and SDA are in a bus drive state)	
			(1 mo ool and oblit are in a bas arive state)	

Notes

- 1. Set according to the necessary transfer rate in master mode. Refer to **Tables 24.4 and 24.5 Transfer Rate Examples** for the transfer rate. This bit is used for maintaining the setup time in transmit mode of slave mode.

 The time is 10Tcyc when the CKS3 bit is set to 0 and 20Tcyc when the CKS3 bit is set to 1. (1Tcyc = 1/f1(s))
- 2. Rewrite the TRS bit between transfer frames.
- 3. When the first 7 bits after the start condition in slave receive mode match the slave address set in the SAR register and the 8th bit is set to 1, the TRS bit is set to 1.
- 4. In master mode with the I²C bus format, if arbitration is lost, bits MST and TRS are set to 0 and the IIC enters slave receive mode.
- 5. When an overrun error occurs in master receive mode with the clock synchronous serial format, the MST bit is set to 0 and the I²C bus enters slave receive mode.
- 6. In multimaster operation, use the MOV instruction to set bits TRS and MST.
- 7. When writing 0 to the ICE bit or 1 to the IICRST bit in the ICCR2 register during an I²C bus interface operation, the BBSY bit in the ICCR2 register and the STOP bit in the ICSR register may become undefined. Refer to **24.9**Notes on I²C bus Interface.

26. USB 2.0 Host/Function Module (USB)

Note

The description offered in this chapter is based on the R8C/3MK Group. For R8C/3MU Group, refer to **1.1.2 Differences between Groups**.

26.1 Overview

R8C/3MK Group provides one port of USB2.0 host/function module (USB).

The USB is a USB controller which provides capabilities as a USB host controller and a USB function controller. The USB supports full-speed transfer defined by the USB (universal serial bus) Specifications 2.0 when used as the host controller, and supports control transfer, bulk transfer, and interrupt transfer when used as the function controller. Also, the USB has a USB transceiver and supports all of the transfer types defined by the USB Specifications.

The USB has buffer memory for data transfer, providing a maximum of five pipes. Any endpoint numbers can be assigned to PIPE4 to PIPE7, based on the peripheral devices or user system for communication. Table 26.1 shows the USB Specifications.

Table 26.1 USB Specifications

Item	Specifications
Features	 USB Device Controller (UDC) and transceiver for USB2.0 are incorporated. The USB host controller and USB function controller are incorporated (can be switched by software). Self-power mode or bus-power mode can be selected. (1) Features of the USB host controller Full-speed transfer (12 Mbps) is supported Automatic scheduling for SOF and packet transmissions Programmable intervals for interrupt transfers (2) Features of the USB function controller Full-speed transfer (12 Mbps) is supported Control transfer stage control function Device state control function Auto response function for SET_ADDRESS request SOF interpolation function
Communication data transfer type	Control transfer Bulk transfer Interrupt transfer
Pipe configuration	 Buffer memory for USB communications is provided. Up to five pipes can be selected (including the default control pipe). Usable pipe numbers are 0, 4, 5, 6, and 7. Endpoint numbers can be assigned flexibly to PIPE4 to PIPE7. Transfer conditions that can be set for each pipe: PIPE0: Control transfer only (default control pipe: DCP), 64 bytes (single buffer) PIPE4 and PIPE5: Bulk transfer only Buffer size: 64 bytes (double buffer can be specified) PIPE6 and PIPE7: Interrupt transfer only Buffer size: 64 bytes (single buffer)
Others	 Reception ending function using transaction count Function that changes the BRDY interrupt event notification timing (BFRE) NAK setting function for response PID generated by end of transfer (SHTNAK)

26.3.3.4 Device State Transition Interrupt

Figure 26.9 is a diagram of Device State Transitions in the USB module. The USB module controls device state and generates device state transition interrupts. However, recovery from the suspended state (resume signal detection) is detected by means of the resume interrupt. The device state transition interrupts can be enabled or disabled individually using INTENB0. The device state to which a transition was made can be confirmed using the DVSQ bits in INTSTS0.

When a transition is made to the default state, a device state transition interrupt is generated after a USB bus reset is detected.

Device state can be controlled only when the function controller function is selected. The device state transition interrupts can also be generated only when the function controller function is selected.

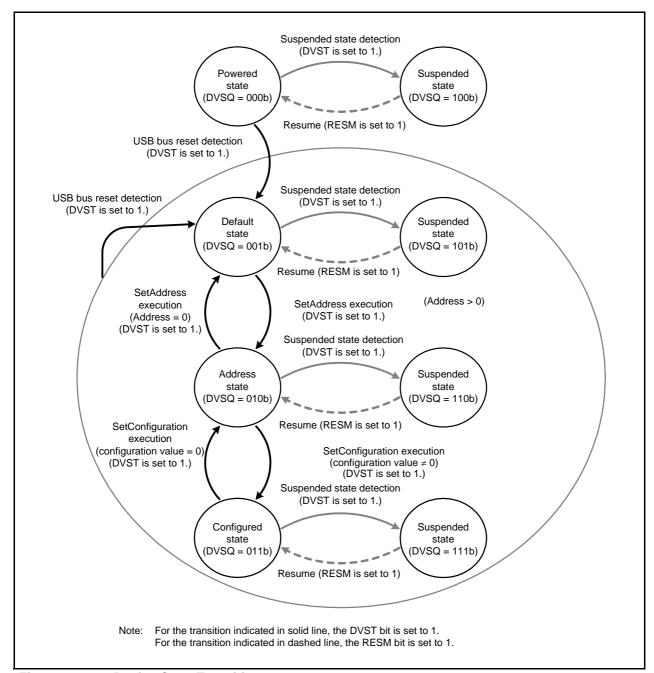


Figure 26.9 Device State Transitions

26.3.6.2 Control Transfers when Function Controller Function is Selected

(1) Setup Stage

The USB module always sends an ACK response for a correct setup packet targeted to the USB module. The operation of the USB module in the setup stage is described below.

When receiving a new setup packet, the USB module sets the following bits.

- Set the VALID bit in INTSTS0 to 1.
- Set the PID bits in DCPCTR to NAK.
- Set the CCPL bit in DCPCTR to 0.

When receiving a data packet right after the setup packet, the USB module stores the USB request parameters in USBREQ, USBVAL, USBINDX, and USBLENG.

Response processing with respect to the control transfer should always be carried out after setting VALID = 0. In the VALID = 1 state, PID = BUF cannot be set, and the data stage cannot be terminated.

Using the function of the VALID bit, the USB module can suspend the current request processing when receiving a new USB request during a control transfer, and can send a response to the newest request.

In addition, the USB module automatically detects the direction bit (bit 8 of bmRequestType) and the request data length (wLength) of the received USB request, distinguishes between control read transfer, control write transfer, and no-data control transfer, and controls stage transitions. For a wrong sequence, the sequence error of the control transfer stage transition interrupt is generated, and the software is notified of occurrence of the error. For the stage control of the USB module, refer to **Figure 26.10**.

(2) Data Stage

Data transfers corresponding to received USB requests should be done using the DCP. Before accessing the DCP buffer memory, the access direction should be specified using the ISEL bit in CFIFOSEL.

If the transfer data is larger than the size of the DCP buffer memory, the data transfer should be carried out using the BRDY interrupt for control write transfers and the BEMP interrupt for control read transfers.

(3) Status Stage

Control transfers are terminated by setting the CCPL bit to 1 while the PID bits in DCPCTR are set to BUF. After the above settings have been made, the USB module automatically executes the status stage in accordance with the data transfer direction determined at the setup stage. The specific procedure is as follows.

• For control read transfers

The USB module transmits a zero-length packet and receives an ACK response from the USB host.

• For control write transfers and no-data control transfers

The USB module receives a zero-length packet from the USB host and sends an ACK response.

(4) Control Transfer Auto Response Function

The USB module automatically responds to a correct SET_ADDRESS request. If any of the following errors occurs in the SET_ADDRESS request, a response from the software is necessary.

- Any transfer other than a control read transfer: bmRequestType ≠ 00h
- Request error: wIndex \neq 00h
- Any transfer other than a no-data control transfer: wLength ≠ 00h
- Request error: wValue > 7Fh
- Control transfer of a device state error: DVSQ = 011b (Configured)

For all requests other than the SET_ADDRESS request, a response is required from the corresponding software.

27.3.3 A/D Conversion Start Condition

A software trigger, trigger from timer RC, and external trigger are used as A/D conversion start triggers. Figure 27.4 shows the Block Diagram of A/D Conversion Start Control Unit.

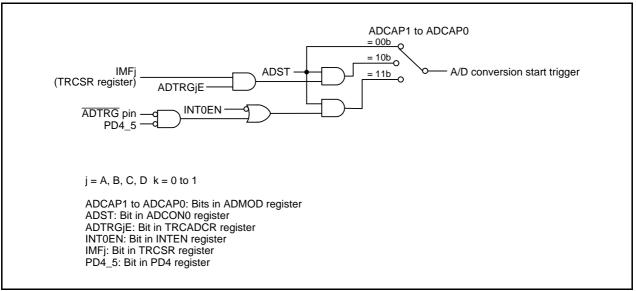


Figure 27.4 Block Diagram of A/D Conversion Start Control Unit

27.3.3.1 Software Trigger

A software trigger is selected when bits ADCAP1 to ADCAP0 in the ADMOD register are set to 00b (software trigger).

The A/D conversion starts when the ADST bit in the ADCON0 register is set to 1 (A/D conversion starts).

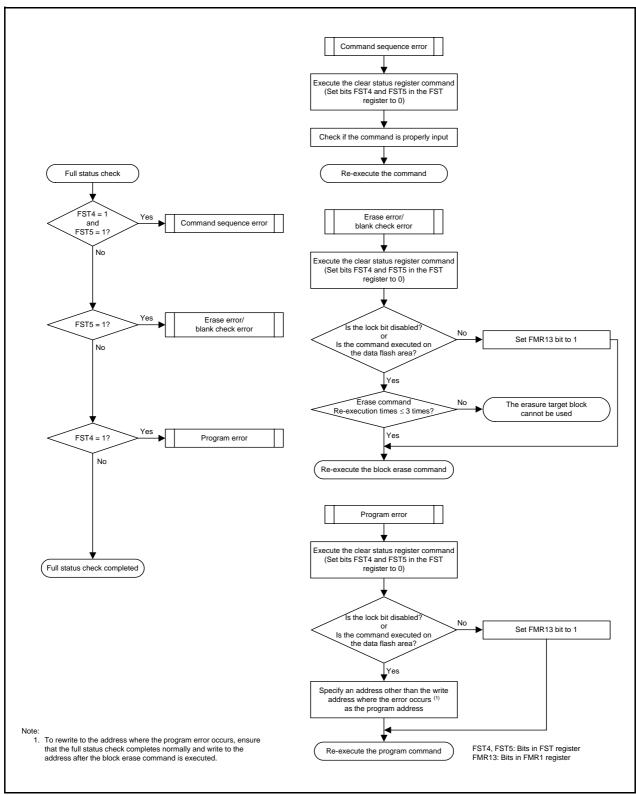


Figure 29.17 Full Status Check and Handling Procedure for Individual Errors

29.6 Parallel I/O Mode

Parallel I/O mode is used to input and output software commands, addresses and data necessary to control (read, program, and erase) the on-chip flash memory.

Use a parallel programmer which supports the MCU. Contact the parallel programmer manufacturer for more information. Refer to the user's manual included with your parallel programmer for instructions.

In parallel I/O mode, the user ROM areas shown in Figures 29.1 and 29.2 can be rewritten.

29.6.1 ROM Code Protect Function

The ROM code protect function prevents the flash memory from being read and rewritten (refer to **29.3.2 ROM Code Protect Function**).

Table 31.35 Recommended Operating Conditions (1)

Symbol	Parameter				Conditions	Standard			Unit
Syllibol					Conditions	Min.	Тур.	Max.	Offic
Vcc/AVcc	Supply voltage	When USB function is used				3.0	5.0	5.5	V
		When USB function is not used				1.8	5.0	5.5	V
UVcc	USB Supply	When USB function is used			Vcc/AVcc = 3.0 to	_	Vcc/	_	V
	Voltage (When				3.6 V		AVcc		
	UVCC pin is						(4)		
	input)	When USB function is not used			Vcc/AVcc = 1.8 to	_	Vcc/	_	V
					5.5 V		AVcc		
							(4)		
Vss/AVss	Supply voltage					_	0	_	V
VIH	Input "H" voltage	Other th	han CMOS input			0.8 Vcc		Vcc	V
	, ,		Inputlevel	Input level selection:	4.0 V ≤ Vcc ≤ 5.5 V	0.5 Vcc	_	Vcc	V
		input	switching	0.35 Vcc	2.7 V ≤ Vcc < 4.0 V	0.55 Vcc	_	Vcc	V
			function		1.8 V ≤ Vcc < 2.7 V	0.65 Vcc		Vcc	V
			(I/O port)	Input level selection:	4.0 V ≤ Vcc ≤ 5.5 V	0.65 Vcc	_	Vcc	V
			(0.5 Vcc	2.7 V ≤ Vcc < 4.0 V	0.7 Vcc		Vcc	V
					1.8 V ≤ Vcc < 2.7 V	0.8 Vcc	_	Vcc	V
				Input level selection:	4.0 V ≤ Vcc ≤ 5.5 V	0.85 Vcc	_	Vcc	V
				0.7 Vcc	2.7 V ≤ Vcc < 4.0 V	0.85 Vcc		Vcc	V
				0.7 VCC	$1.8 \text{ V} \le \text{VCC} < 4.0 \text{ V}$	0.85 VCC		Vcc	V
		Evtorno	l Il clock input	(YOUT)	1.0 V \(\text{V} \)	1.2		Vcc	V
Mu	Input "L" voltage		nan CMOS i						V
VIL	input L voltage	CMOS			4.0 V ≤ Vcc ≤ 5.5 V	0		0.2 Vcc	V
			Input level			0	_	0.2 Vcc	
		input	switching	0.35 Vcc	2.7 V ≤ Vcc < 4.0 V	0	_	0.2 Vcc	V
			function		1.8 V ≤ Vcc < 2.7 V	0	_	0.2 Vcc	V
			(I/O port)	Input level selection:	4.0 V ≤ Vcc ≤ 5.5 V	0		0.4 Vcc	V
				0.5 Vcc	2.7 V ≤ Vcc < 4.0 V	0	_	0.3 Vcc	V
					1.8 V ≤ Vcc < 2.7 V	0	_	0.2 Vcc	V
				Input level selection:	4.0 V ≤ Vcc ≤ 5.5 V	0	_	0.55 Vcc	V
				0.7 Vcc	$2.7 \text{ V} \le \text{Vcc} < 4.0 \text{ V}$	0	_	0.45 Vcc	V
					$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	0	_	0.35 Vcc	V
			I clock input	(XOUT)		0	_	0.4	V
IOH(sum)	Peak sum output	"H"	Sum of all	pins IOH(peak)		_	_	-160	mΑ
•	current								
IOH(sum)	Average sum output "H"		Sum of all pins IOH(avg)			_	_	-80	mΑ
	current								
IOH(peak)	Peak output "H" current		Drive capacity Low			_	_	-10	mΑ
			Drive capacity High			_	_	-40	mA
IOH(avg)	Average output "H" current Peak sum output "L"		Drive capacity Low			_	_	-5	mA
			Drive capacity High			_	_	-20	mA
			Sum of all pins IOL(peak)			_	_	160	mA
	current			F					
IOL(sum) IOL(peak) IOL(avg)			Sum of all pins IoL(avg) Drive capacity Low				_	80	mA
									, \
						_	_	10	mA
	. Jan Japan E 0		Drive capacity High			_	_	40	mA
	Average output "L"		Drive capacity Low				 _	5	mA
	current		Drive capacity Low Drive capacity High					20	mA
	XIN clock input oscillation frequency			2.7 V ≤ Vcc ≤ 5.5 V			20	MHz	
	Any Gook input oscillation nequency				$1.8 \text{ V} \le \text{VCC} \le 3.3 \text{ V}$	_		5	MHz
fOCO40M	When used as the count source for timer RC (3)					22		40	MHz
					2.7 V ≤ Vcc ≤ 5.5 V	32			
fOCO-F	fOCO-F frequency				2.7 V ≤ Vcc ≤ 5.5 V	_	_	20	MHz
	Out and of frame				1.8 V ≤ Vcc < 2.7 V	_	_	5	MHz
_	System clock frequency				2.7 V ≤ Vcc ≤ 5.5 V	_		20	MHz
_					1.8 V ≤ Vcc < 2.7 V			5	MHz
f(BCLK)	CPU clock frequency				2.7 V ≤ Vcc ≤ 5.5 V	_	_	20	MHz
					1.8 V ≤ Vcc < 2.7 V			5	MHz
	PLL frequency sy	mthesize	er stabilization	n wait time	4.0 V ≤ Vcc ≤ 5.5 V	_		2	ms
					2.7 V ≤ Vcc < 4.0 V	_	_	3	ms

Notes:

- 1. Vcc = 1.8 to 5.5 V and $T_{opr} = -20$ to 85 °C (N version), unless otherwise specified.
- 2. The average output current indicates the average value of current measured during 100 ms.
- 3. fOCO40M can be used as the count source for timer RC in the range of Vcc = 2.7 to 5.5 V.
- 4. Connect Vcc/AVcc for the UVcc pin input.

32.15.1.3 How to Access

To set one of the following bits to 1, first write 0 and then 1 immediately. Disable interrupts and DTC activation between writing 0 and writing 1.

- The FMR01 bit or FMR02 bit in the FMR0 register
- The FMR13 bit in the FMR1 register
- The FMR20 bit, FMR22 bit, or FMR 27 bit in the FMR2 register

To set one of the following bits to 0, first write 1 and then 0 immediately. Disable interrupts and DTC activation between writing 1 and writing 0.

• The FMR14 bit, FMR15 bit, FMR16 bit, or FMR17 bit in the FMR1 register

32.15.1.4 Rewriting User ROM Area

In EW0 mode, if the supply voltage drops while rewriting any block in which a rewrite control program is stored, it may not be possible to rewrite the flash memory because the rewrite control program cannot be rewritten correctly. In this case, use standard serial I/O mode.

32.15.1.5 Programming

Do not write additions to the already programmed address.

32.15.1.6 Entering Stop Mode or Wait Mode

Do not enter stop mode or wait mode during erase-suspend.

If the FST7 bit in the FST register is set to 0 (busy (during programming or erasure execution), do not enter to stop mode or wait mode.

Do not enter stop mode or wait mode while the FMR27 bit is 1 (low-current-consumption read mode enabled).

32.15.1.7 Programming and Erasure Voltage for Flash Memory

To perform programming and erasure, use VCC = 2.7 to 5.5 V as the supply voltage. Do not perform programming and erasure at less than 2.7 V.

32.15.1.8 Block Blank Check

Do not execute the block blank check command during erase-suspend.

32.15.1.9 Low-Current-Consumption Read Mode

In low-speed on-chip oscillator mode, the current consumption when reading the flash memory can be reduced by setting the FMR27 bit in the FMR2 register to 1 (low-current-consumption read mode enabled).

Low-current-consumption read mode can be used when the CPU clock is set to either of the following:

• The CPU clock is set to the low-speed on-chip oscillator clock divided by 4, 8, or 16.

However, do not use low-current-consumption read mode when the frequency of the selected CPU clock is 3 kHz or below. After setting the divide ratio of the CPU clock, set the FMR27 bit to 1 (low-current-consumption read mode enabled).

To reduce the power consumption, refer to **30. Reducing Power Consumption**.

Enter wait mode or stop mode after setting the FMR27 bit to 0 (low-current-consumption read mode disabled). Do not enter wait mode or stop mode while the FMR27 bit is 1 (low-current-consumption read mode enabled).

