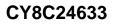


Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

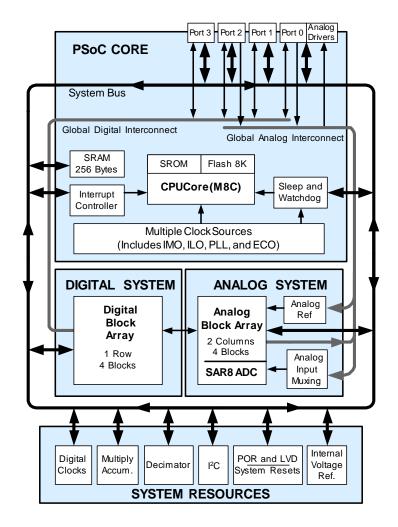
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


#### Details

E·XFI

| Details                    |                                                                             |
|----------------------------|-----------------------------------------------------------------------------|
| Product Status             | Active                                                                      |
| Core Processor             | M8C                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 24MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                           |
| Peripherals                | POR, PWM, WDT                                                               |
| Number of I/O              | 25                                                                          |
| Program Memory Size        | 8KB (8K x 8)                                                                |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                |                                                                             |
| RAM Size                   | 256 x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.25V                                                                  |
| Data Converters            | A/D 2x14b; D/A 2x9b                                                         |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 28-SSOP (0.209", 5.30mm Width)                                              |
| Supplier Device Package    | 28-SSOP                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24633-24pvxi |
|                            |                                                                             |


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





# **Block Diagram**







#### Additional System Resources

System resources, some of which have been previously listed, provide additional capability useful to complete systems. Additional resources include a multiplier, decimator, low voltage detection, and power on reset. Brief statements describing the merits of each system resource are presented below.

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- A multiply accumulate (MAC) provides a fast 8-bit multiplier with 32-bit accumulate, to assist in both general math as well as digital filters.

- The decimator provides a custom hardware filter for digital signal processing applications including the creation of Delta Sigma ADCs.
- The I<sup>2</sup>C module provides 100 and 400 kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- Low-voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced power-on reset (POR) circuit eliminates the need for a system supervisor.
- An internal 1.3 V reference provides an absolute reference for the analog system, including ADCs and DACs.

#### **PSoC Device Characteristics**

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 3 analog blocks. The following table lists the resources available for specific PSoC device groups.

| PSoC Part<br>Number | Digital<br>I/O | Digital<br>Rows | Digital<br>Blocks | Analog<br>Inputs | Analog<br>Outputs | Analog<br>Columns | Analog<br>Blocks               | SRAM<br>Size | Flash<br>Size | SAR<br>ADC |
|---------------------|----------------|-----------------|-------------------|------------------|-------------------|-------------------|--------------------------------|--------------|---------------|------------|
| CY8C29x66           | up to 64       | 4               | 16                | up to 12         | 4                 | 4                 | 12                             | 2 K          | 32 K          | No         |
| CY8C28xxx           | up to 44       | up to 3         | up to 12          | up to 44         | up to 4           | up to 6           | up to<br>12 + 4 <sup>[1]</sup> | 1 K          | 16 K          | Yes        |
| CY8C27x43           | up to 44       | 2               | 8                 | up to 12         | 4                 | 4                 | 12                             | 256          | 16 K          | No         |
| CY8C24x94           | up to 56       | 1               | 4                 | up to 48         | 2                 | 2                 | 6                              | 1 K          | 16 K          | No         |
| CY8C24x23A          | up to 24       | 1               | 4                 | up to 12         | 2                 | 2                 | 6                              | 256          | 4 K           | No         |
| CY8C23x33           | up to 26       | 1               | 4                 | up to 12         | 2                 | 2                 | 4                              | 256          | 8 K           | Yes        |
| CY8C22x45           | up to 38       | 2               | 8                 | up to 38         | 0                 | 4                 | 6 <sup>[1]</sup>               | 1 K          | 16 K          | No         |
| CY8C21x45           | up to 24       | 1               | 4                 | up to 24         | 0                 | 4                 | 6 <sup>[1]</sup>               | 512          | 8 K           | Yes        |
| CY8C21x34           | up to 28       | 1               | 4                 | up to 28         | 0                 | 2                 | 4 <sup>[1]</sup>               | 512          | 8 K           | No         |
| CY8C21x23           | up to 16       | 1               | 4                 | up to 8          | 0                 | 2                 | 4 <sup>[1]</sup>               | 256          | 4 K           | No         |
| CY8C20x34           | up to 28       | 0               | 0                 | up to 28         | 0                 | 0                 | 3 <sup>[1,2]</sup>             | 512          | 8 K           | No         |
| CY8C20xx6           | up to 36       | 0               | 0                 | up to 36         | 0                 | 0                 | 3 <sup>[1,2]</sup>             | up to<br>2 K | up to<br>32 K | No         |

#### Table 1. PSoC Device Characteristics

Notes

Limited analog functionality.
 Two analog blocks and one CapSense<sup>®</sup>.



# **Development Tools**

PSoC Designer<sup>™</sup> is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
- Hardware and software I<sup>2</sup>C slaves and masters
- □ Full-speed USB 2.0
- Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

## **PSoC Designer Software Subsystems**

#### Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this lets you to use more than 100 percent of PSoC's resources for an application.

#### Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

**Assemblers**. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

**C Language Compilers.** C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

#### Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also lets you to create a trace buffer of registers and memory locations of interest.

#### Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer.

#### In-Circuit Emulator

A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices.

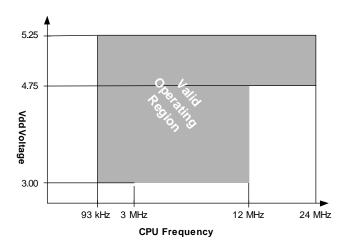
The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation.



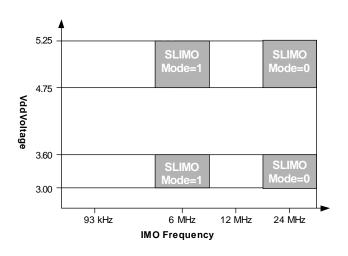
### Table 4. Register Map Bank 0 Table: User Space

|          |              |    | Table: User |              |        |            |              |        |                                              |              |          |
|----------|--------------|----|-------------|--------------|--------|------------|--------------|--------|----------------------------------------------|--------------|----------|
| Name     | Addr (0,Hex) |    | Name        | Addr (0,Hex) | Access | Name       | Addr (0,Hex) | Access | Name                                         | Addr (0,Hex) | Access   |
| PRTODR   | 00           | RW |             | 40           |        |            | 80           |        |                                              | C0           | <b></b>  |
| PRTOIE   | 01           | RW |             | 41           |        |            | 81           |        | l                                            | C1           |          |
| PRT0GS   | 02           | RW |             | 42           |        |            | 82           |        | <b></b>                                      | C2           |          |
| PRT0DM2  | 03           | RW |             | 43           |        |            | 83           |        |                                              | C3           |          |
| PRT1DR   | 04           | RW |             | 44           |        | ASD11CR0   | 84           | RW     | <b></b>                                      | C4           |          |
| PRT1IE   | 05           | RW |             | 45           |        | ASD11CR1   | 85           | RW     | L                                            | C5           |          |
| PRT1GS   | 06           | RW |             | 46           |        | ASD11CR2   | 86           | RW     |                                              | C6           |          |
| PRT1DM2  | 07           | RW |             | 47           |        | ASD11CR3   | 87           | RW     |                                              | C7           |          |
| PRT2DR   | 08           | RW |             | 48           |        |            | 88           |        |                                              | C8           |          |
| PRT2IE   | 09           | RW |             | 49           |        |            | 89           |        |                                              | C9           |          |
| PRT2GS   | 0A           | RW |             | 4A           |        |            | 8A           |        |                                              | CA           |          |
| PRT2DM2  | 0B           | RW |             | 4B           |        |            | 8B           |        |                                              | CB           |          |
| PRT3DR   | 0C           | RW |             | 4C           |        |            | 8C           |        |                                              | CC           |          |
| PRT3IE   | 0D           | RW |             | 4D           |        |            | 8D           |        |                                              | CD           |          |
| PRT3GS   | 0E           | RW |             | 4E           |        |            | 8E           |        |                                              | CE           |          |
| PRT3DM2  | 0F           | RW |             | 4F           |        |            | 8F           |        |                                              | CF           |          |
|          | 10           |    |             | 50           |        |            | 90           |        |                                              | D0           |          |
|          | 11           |    |             | 51           |        |            | 91           |        |                                              | D1           |          |
|          | 12           |    |             | 52           |        |            | 92           |        | 1                                            | D2           | <u> </u> |
|          | 13           |    |             | 53           |        |            | 93           |        | 1                                            | D3           | <u> </u> |
|          | 14           |    |             | 54           |        | ASC21CR0   | 94           | RW     | ł                                            | D4           | <u> </u> |
|          | 15           |    |             | 55           |        | ASC21CR1   | 95           | RW     | 1                                            | D5           | <u> </u> |
|          | 16           |    |             | 56           |        | ASC21CR2   | 96           | RW     | I <sup>2</sup> C_CFG                         | D6           | RW       |
|          | 17           |    |             | 57           |        | ASC21CR3   | 97           | RW     | I <sup>2</sup> C_SCR                         | D7           | #        |
|          | 18           |    | -           | 58           |        | /1002/0110 | 98           |        | I <sup>2</sup> C_DR                          | D8           | RW       |
|          | 19           |    |             | 59           |        |            | 99           |        | I <sup>2</sup> C_MSCR                        | D9           | #        |
|          | 19<br>1A     |    |             | 59<br>5A     |        |            | 99<br>9A     |        | INT_CLR0                                     | D9           | #<br>RW  |
|          | 1A<br>1B     |    |             | 5A<br>5B     |        |            | 9A<br>9B     |        | INT_CLR0                                     | DA           | RW       |
|          |              |    |             |              |        |            |              |        | INI_CLRI                                     |              | RW       |
|          | 1C           |    | -           | 5C           |        |            | 9C           |        |                                              | DC           | DW       |
|          | 1D           |    |             | 5D           |        |            | 9D           |        | INT_CLR3                                     | DD           | RW       |
|          | 1E           |    |             | 5E           |        |            | 9E           |        | INT_MSK3                                     | DE           | RW       |
|          | 1F           |    |             | 5F           | 514    |            | 9F           |        |                                              | DF           |          |
| DBB00DR0 | 20           | #  | AMX_IN      | 60           | RW     |            | A0           |        | INT_MSK0                                     | E0           | RW       |
| DBB00DR1 | 21           | W  |             | 61           |        |            | A1           |        | INT_MSK1                                     | E1           | RW       |
| DBB00DR2 | 22           | RW |             | 62           |        |            | A2           |        | INT_VC                                       | E2           | RC       |
| DBB00CR0 | 23           | #  | ARF_CR      | 63           | RW     |            | A3           |        | RES_WDT                                      | E3           | W        |
| DBB01DR0 | 24           | #  | CMP_CR0     | 64           | #      |            | A4           |        | DEC_DH                                       | E4           | RC       |
| DBB01DR1 | 25           | W  | ASY_CR      | 65           | #      |            | A5           |        | DEC_DL                                       | E5           | RC       |
| DBB01DR2 | 26           | RW | CMP_CR1     | 66           | RW     |            | A6           |        | DEC_CR0                                      | E6           | RW       |
| DBB01CR0 | 27           | #  | SARADC_DL   | 67           | RW     |            | A7           |        | DEC_CR1                                      | E7           | RW       |
| DCB02DR0 | 28           | #  |             | 68           |        |            | A8           |        | MUL0_X                                       | E8           | W        |
| DCB02DR1 | 29           | W  | SARADC_C0   | 69           | #      |            | A9           |        | MUL0_Y                                       | E9           | W        |
| DCB02DR2 | 2A           | RW | SARADC_C1   | 6A           | RW     |            | AA           |        | MUL0_DH                                      | EA           | R        |
| DCB02CR0 | 2B           | #  |             | 6B           |        |            | AB           |        | MUL0_DL                                      | EB           | R        |
| DCB03DR0 | 2C           | #  | TMP_DR0     | 6C           | RW     |            | AC           |        | ACC0_DR1                                     | EC           | RW       |
| DCB03DR1 | 2D           | W  | TMP_DR1     | 6D           | RW     |            | AD           |        | ACC0_DR0                                     | ED           | RW       |
| DCB03DR2 | 2E           | RW | TMP_DR2     | 6E           | RW     |            | AE           |        | ACC0_DR3                                     | EE           | RW       |
| DCB03CR0 | 2F           | #  | TMP_DR3     | 6F           | RW     |            | AF           |        | ACC0_DR2                                     | EF           | RW       |
|          | 30           |    | ACB00CR3    | 70           | RW     | RDIORI     | B0           | RW     | i i                                          | F0           |          |
|          | 31           |    | ACB00CR0    | 71           | RW     | RDI0SYN    | B1           | RW     | 1                                            | F1           | <b></b>  |
|          | 32           |    | ACB00CR1    | 72           | RW     | RDI0IS     | B2           | RW     | 1                                            | F2           |          |
|          | 33           |    | ACB00CR2    | 73           | RW     | RDI0LT0    | B3           | RW     | 1                                            | F3           | <u> </u> |
|          | 34           |    | ACB01CR3    | 74           | RW     | RDI0LT1    | B4           | RW     | 1                                            | F4           | <u> </u> |
|          | 35           |    | ACB01CR0    | 75           | RW     | RDI0RO0    | B5           | RW     | 1                                            | F5           | <u> </u> |
|          | 36           |    | ACB01CR1 *  | 76           | RW     | RDI0RO1    | B6           | RW     | l                                            | F6           | <u> </u> |
|          | 37           |    | ACB01CR2 *  | 77           | RW     |            | B7           |        | CPU_F                                        | F7           | RL       |
|          | 38           |    |             | 78           |        |            | B8           |        | <u>                                     </u> | F8           |          |
|          | 39           |    |             | 79           |        |            | B9           |        | <b> </b>                                     | F9           | <u> </u> |
|          | 39<br>3A     |    |             | 79<br>7A     |        | ł          | BA           |        | <b> </b>                                     | FA           | <u> </u> |
|          | 3B           |    |             | 7B           |        | 1          | BB           |        | <b> </b>                                     | FB           | <u> </u> |
|          | 3D<br>3C     |    |             | 7B<br>7C     |        | ł          | BC           |        | <b> </b>                                     | FD           | <u> </u> |
|          | 3C<br>3D     |    |             | 7C<br>7D     |        |            | BD           |        | <b> </b>                                     | FC           |          |
|          | 3D<br>3E     |    |             | 7D<br>7E     |        |            |              |        |                                              | FD           | #        |
|          | 0E           |    |             | / 🗆          |        |            | BE           | 1 1    | CPU_SCR1                                     |              | #        |
|          | 3F           |    |             | 7F           |        |            | BF           | i      | CPU SCR0                                     | FF           | #        |




# **Electrical Specifications**

This section presents the DC and AC electrical specifications of the CY8C24633 PSoC device. For the most up to date electrical specifications, confirm that you have the most recent data sheet by going to the web at <a href="http://www.cypress.com/psoc">http://www.cypress.com/psoc</a>.


Specifications are valid for –40 °C  $\leq$   $T_A$   $\leq$  85 °C and  $T_J$   $\leq$  100 °C, except where noted.

Refer to Table 22 for the electrical specifications on the IMO using SLIMO mode.

## Figure 6. Voltage versus CPU Frequency



## Figure 5a. IMO Frequency Trim Options





## **Absolute Maximum Ratings**

## Table 6. Absolute Maximum Ratings

| Symbol                | Description                                                   | Min                     | Тур | Max                     | Units | Notes                                                                                                                                                                                                |
|-----------------------|---------------------------------------------------------------|-------------------------|-----|-------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Τ <sub>STG</sub>      | Storage temperature                                           | -55                     | 25  | +100                    | °C    | Higher storage temperatures<br>reduce data retention time.<br>Recommended storage<br>temperature is +25 °C ± 25 °C.<br>Extended duration storage<br>temperatures above 65 °C<br>degrade reliability. |
| T <sub>BAKETEMP</sub> | Bake temperature                                              | -                       | 125 | See<br>package<br>label | °C    |                                                                                                                                                                                                      |
| T <sub>BAKETIME</sub> | Bake time                                                     | See<br>package<br>label | -   | 72                      | hours |                                                                                                                                                                                                      |
| T <sub>A</sub>        | Ambient temperature with power applied                        | -40                     | -   | +85                     | °C    |                                                                                                                                                                                                      |
| Vdd                   | Supply voltage on V <sub>dd</sub> Relative to V <sub>ss</sub> | -0.5                    | _   | +6.0                    | V     |                                                                                                                                                                                                      |
| V <sub>IO</sub>       | DC input voltage                                              | V <sub>ss</sub> - 0.5   | -   | V <sub>dd</sub> + 0.5   | V     |                                                                                                                                                                                                      |
| V <sub>IOZ</sub>      | DC voltage applied to Tri-state                               | V <sub>ss</sub> - 0.5   | -   | V <sub>dd</sub> + 0.5   | V     |                                                                                                                                                                                                      |
| I <sub>MIO</sub>      | Maximum current into any port pin                             | -25                     | -   | +50                     | mA    |                                                                                                                                                                                                      |
| ESD                   | Electro static discharge voltage                              | 2000                    | -   | -                       | V     | Human Body Model ESD.                                                                                                                                                                                |
| LU                    | Latch up current                                              | -                       | -   | 200                     | mA    |                                                                                                                                                                                                      |

# **Operating Temperature**

# Table 7. Operating Temperature

| Symbol         | Description          | Min | Тур | Мах  | Units | Notes                                                                                                                                                                                                           |
|----------------|----------------------|-----|-----|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T <sub>A</sub> | Ambient temperature  | -40 | 1   | +85  | °C    |                                                                                                                                                                                                                 |
| Tj             | Junction temperature | -40 | _   | +100 | ℃     | The temperature rise from<br>ambient to junction is package<br>specific. See Thermal Imped-<br>ances by Package on page 41.<br>The user must limit the power<br>consumption to comply with this<br>requirement. |



## Table 11. 3.3 V DC Operational Amplifier Specifications

| Symbol               | Description                                                                                                                                                                                                                                                           | Min                                                | Тур                                    | Max                                    | Units                      | Notes                                                                                                                                                                                                     |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>OSOA</sub>    | Input offset voltage (absolute value)<br>Power = low, opamp bias = high<br>Power = medium, opamp bias = high<br>Power = high, opamp bias = high                                                                                                                       | _<br>_<br>_                                        | 1.65<br>1.32<br>-                      | 10<br>8<br>-                           | mV<br>mV<br>mV             | Power = high, opamp bias = high setting is not allowed for $3.3 \text{ V} \text{ V}_{\text{DD}}$ operation.                                                                                               |
| TCV <sub>OSOA</sub>  | Average input offset voltage drift                                                                                                                                                                                                                                    | -                                                  | 7.0                                    | 35.0                                   | µV/°C                      |                                                                                                                                                                                                           |
| I <sub>EBOA</sub>    | Input leakage current (port 0 analog pins)                                                                                                                                                                                                                            | -                                                  | 20                                     | Ι                                      | pА                         | Gross tested to 1 µA                                                                                                                                                                                      |
| C <sub>INOA</sub>    | Input capacitance (port 0 analog pins)                                                                                                                                                                                                                                | -                                                  | 4.5                                    | 9.5                                    | pF                         | Package and pin dependent.<br>Temp = 25 °C                                                                                                                                                                |
| V <sub>CMOA</sub>    | Common mode voltage range                                                                                                                                                                                                                                             | 0.2                                                | -                                      | V <sub>DD</sub> – 0.2                  | V                          | The common-mode input voltage<br>range is measured through an<br>analog output buffer. The<br>specification includes the<br>limitations imposed by the<br>characteristics of the analog<br>output buffer. |
| G <sub>OLOA</sub>    | Open loop gain<br>power = low, ppamp, Opamp bias = low<br>Power = medium, opamp bias = low<br>Power = high, opamp bias = low                                                                                                                                          | 60<br>60<br>80                                     |                                        |                                        | dB<br>dB<br>dB             | Specification is applicable at low<br>Opamp bias. For high opamp bias<br>mode (except high power, high<br>opamp bias), minimum is 60 dB.                                                                  |
| V <sub>OHIGHOA</sub> | High output voltage swing (internal signals)<br>Power = low, opamp bias = low<br>Power = medium, opamp bias = low<br>Power = high, opamp bias = low                                                                                                                   | $V_{DD} - 0.2$<br>$V_{DD} - 0.2$<br>$V_{DD} - 0.2$ |                                        |                                        | V<br>V<br>V                | Power = high, opamp bias = high setting is not allowed for $3.3 \text{ V} \text{ V}_{\text{DD}}$ operation.                                                                                               |
| V <sub>OLOWOA</sub>  | Low output voltage swing (internal signals)<br>Power = low, opamp bias = low<br>Power = medium, opamp bias = low<br>Power = high, opamp bias = low                                                                                                                    | _<br>_<br>_                                        |                                        | 0.2<br>0.2<br>0.2                      | V<br>V<br>V                | Power = high, opamp bias = high setting is not allowed for $3.3 \text{ V} \text{ V}_{\text{DD}}$ operation.                                                                                               |
| I <sub>SOA</sub>     | Supply current (including associated AGND<br>buffer)<br>Power = low, opamp bias = low<br>Power = low, opamp bias = high<br>Power = medium, opamp bias = low<br>Power = medium, opamp bias = high<br>Power = high, opamp bias = low<br>Power = high, opamp bias = high | -<br>-<br>-<br>-<br>-                              | 150<br>300<br>600<br>1200<br>2400<br>- | 200<br>400<br>800<br>1600<br>3200<br>- | μΑ<br>μΑ<br>μΑ<br>μΑ<br>μΑ | Power = high, opamp bias = high setting is not allowed for $3.3 \text{ V} \text{ V}_{\text{DD}}$ operation.                                                                                               |
| PSRR <sub>OA</sub>   | Supply voltage rejection ratio                                                                                                                                                                                                                                        | 64                                                 | 80                                     | -                                      | dB                         | $V_{SS} \le V_{IN} \le (V_{DD} - 2.25) \text{ or } \\ (V_{DD} - 1.25 \text{ V}) \le V_{IN} \le V_{DD}$                                                                                                    |

### DC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, or 3.0 V to 3.6 V and –40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

| Symbol              | Description                                        | Min | Тур | Max                 | Units | Notes |
|---------------------|----------------------------------------------------|-----|-----|---------------------|-------|-------|
| V <sub>REFLPC</sub> | Low power comparator (LPC) reference voltage range | 0.2 | -   | V <sub>dd</sub> - 1 | V     |       |
| I <sub>SLPC</sub>   | LPC supply current                                 | -   | 10  | 40                  | μA    |       |
| VOSLPC              | LPC voltage offset                                 | -   | 2.5 | 30                  | mV    |       |



## DC Analog Reference Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  $-40 \degree C \le T_A \le 85 \degree C$ , or 3.0 V to 3.6 V and  $-40 \degree C \le T_A \le 85 \degree C$ , respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

The guaranteed specifications are measured through the analog continuous time PSoC blocks. The power levels for AGND refer to the power of the analog continuous Time PSoC block. The power levels for RefHi and RefLo refer to the analog reference control register. The limits stated for AGND include the offset error of the AGND buffer local to the analog continuous time PSoC block. reference control power is high.

| Reference<br>ARF_CR<br>[5:3] | Reference Power<br>Settings            | Symbol             | Reference | Description                                                | Min                        | Тур                        | Мах                        | Units |
|------------------------------|----------------------------------------|--------------------|-----------|------------------------------------------------------------|----------------------------|----------------------------|----------------------------|-------|
| 0b000                        | RefPower = high                        | V <sub>REFHI</sub> | Ref High  | V <sub>DD</sub> /2 + Bandgap                               | V <sub>DD</sub> /2 + 1.136 | V <sub>DD</sub> /2 + 1.288 | V <sub>DD</sub> /2 + 1.409 | V     |
|                              | Opamp bias = high                      | V <sub>AGND</sub>  | AGND      | V <sub>DD</sub> /2                                         | V <sub>DD</sub> /2-0.138   | $V_{DD}/2 + 0.003$         | $V_{DD}/2 + 0.132$         | V     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | V <sub>DD</sub> /2 – Bandgap                               | V <sub>DD</sub> /2-1.417   | V <sub>DD</sub> /2 - 1.289 | V <sub>DD</sub> /2 - 1.154 | V     |
|                              | RefPower = high<br>Opamp bias = low    | V <sub>REFHI</sub> | Ref High  | V <sub>DD</sub> /2 + Bandgap                               | V <sub>DD</sub> /2 + 1.202 | V <sub>DD</sub> /2 + 1.290 | V <sub>DD</sub> /2 + 1.358 | V     |
|                              |                                        | V <sub>AGND</sub>  | AGND      | V <sub>DD</sub> /2                                         | $V_{DD}/2 - 0.055$         | V <sub>DD</sub> /2 + 0.001 | $V_{DD}/2 + 0.055$         | V     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | V <sub>DD</sub> /2 – Bandgap                               | V <sub>DD</sub> /2-1.369   | V <sub>DD</sub> /2 - 1.295 | V <sub>DD</sub> /2 – 1.218 | V     |
|                              | RefPower = medium                      | V <sub>REFHI</sub> | Ref High  | V <sub>DD</sub> /2 + Bandgap                               | V <sub>DD</sub> /2 + 1.211 | V <sub>DD</sub> /2 + 1.292 | V <sub>DD</sub> /2 + 1.357 | V     |
|                              | Opamp bias = high                      | V <sub>AGND</sub>  | AGND      | V <sub>DD</sub> /2                                         | $V_{DD}/2 - 0.055$         | V <sub>DD</sub> /2         | $V_{DD}/2 + 0.052$         | V     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | V <sub>DD</sub> /2 – Bandgap                               | V <sub>DD</sub> /2-1.368   | V <sub>DD</sub> /2 - 1.298 | V <sub>DD</sub> /2 – 1.224 | V     |
|                              | RefPower = medium<br>Opamp bias = low  | V <sub>REFHI</sub> | Ref High  | V <sub>DD</sub> /2 + Bandgap                               | V <sub>DD</sub> /2 + 1.215 | V <sub>DD</sub> /2 + 1.292 | V <sub>DD</sub> /2 + 1.353 | V     |
|                              |                                        | V <sub>AGND</sub>  | AGND      | V <sub>DD</sub> /2                                         | $V_{DD}/2 - 0.040$         | $V_{DD}/2 - 0.001$         | $V_{DD}/2 + 0.033$         | V     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | V <sub>DD</sub> /2 – Bandgap                               | V <sub>DD</sub> /2-1.368   | V <sub>DD</sub> /2 - 1.299 | V <sub>DD</sub> /2 – 1.225 | V     |
| 0b001                        | RefPower = high<br>Opamp bias = high   | V <sub>REFHI</sub> | Ref High  | P2[4]+P2[6] (P2[4] =<br>V <sub>DD</sub> /2, P2[6] = 1.3 V) | P2[4] + P2[6]<br>- 0.076   | P2[4]+P2[6]-<br>0.021      | P2[4]+P2[6]+<br>0.041      | V     |
|                              |                                        | V <sub>AGND</sub>  | AGND      | P2[4]                                                      | P2[4]                      | P2[4]                      | P2[4]                      | -     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | P2[4]–P2[6] (P2[4] =<br>V <sub>DD</sub> /2, P2[6] = 1.3 V) | P2[4] – P2[6]<br>– 0.025   | P2[4]-P2[6]+<br>0.011      | P2[4]-P2[6]+<br>0.085      | V     |
|                              | RefPower = high<br>Opamp bias = low    | V <sub>REFHI</sub> | Ref High  | P2[4]+P2[6] (P2[4] =<br>V <sub>DD</sub> /2, P2[6] = 1.3 V) | P2[4] + P2[6]<br>- 0.069   | P2[4]+P2[6]-<br>0.014      | P2[4]+P2[6]+<br>0.043      | V     |
|                              |                                        | V <sub>AGND</sub>  | AGND      | P2[4]                                                      | P2[4]                      | P2[4]                      | P2[4]                      | -     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | P2[4]–P2[6] (P2[4] =<br>V <sub>DD</sub> /2, P2[6] = 1.3 V) | P2[4] – P2[6]<br>– 0.029   | P2[4]-P2[6]+<br>0.005      | P2[4]-P2[6]+<br>0.052      | V     |
|                              | RefPower = medium<br>Opamp bias = high | V <sub>REFHI</sub> | Ref High  | P2[4]+P2[6] (P2[4] =<br>V <sub>DD</sub> /2, P2[6] = 1.3 V) | P2[4] + P2[6]<br>- 0.072   | P2[4]+P2[6]-<br>0.011      | P2[4]+P2[6]+<br>0.048      | V     |
|                              |                                        | V <sub>AGND</sub>  | AGND      | P2[4]                                                      | P2[4]                      | P2[4]                      | P2[4]                      | -     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | P2[4]–P2[6] (P2[4] =<br>V <sub>DD</sub> /2, P2[6] = 1.3 V) | P2[4] – P2[6]<br>– 0.031   | P2[4]-P2[6]+<br>0.002      | P2[4]-P2[6]+<br>0.057      | V     |
|                              | RefPower = medium<br>Opamp bias = low  | V <sub>REFHI</sub> | Ref High  | P2[4]+P2[6] (P2[4] =<br>V <sub>DD</sub> /2, P2[6] = 1.3 V) | P2[4] + P2[6]<br>- 0.070   | P2[4]+P2[6]-<br>0.009      | P2[4]+P2[6]+<br>0.047      | V     |
|                              |                                        | V <sub>AGND</sub>  | AGND      | P2[4]                                                      | P2[4]                      | P2[4]                      | P2[4]                      | -     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | P2[4]–P2[6] (P2[4] =<br>V <sub>DD</sub> /2, P2[6] = 1.3 V) | P2[4] – P2[6]<br>– 0.033   | P2[4]-P2[6]+<br>0.001      | P2[4]-P2[6]+<br>0.039      | V     |

 Table 15.
 5-V DC Analog Reference Specifications



## Table 15. 5-V DC Analog Reference Specifications (continued)

| Reference<br>ARF_CR<br>[5:3] | Reference Power<br>Settings            | Symbol             | Reference | Description                                     | Min             | Тур                     | Мах                     | Units |
|------------------------------|----------------------------------------|--------------------|-----------|-------------------------------------------------|-----------------|-------------------------|-------------------------|-------|
| 0b101                        | RefPower = high<br>Opamp bias = high   | V <sub>REFHI</sub> | Ref High  | P2[4] + Bandgap<br>(P2[4] = V <sub>DD</sub> /2) | P2[4] + 1.228   | P2[4] + 1.284           | P2[4] + 1.332           | V     |
|                              |                                        | V <sub>AGND</sub>  | AGND      | P2[4]                                           | P2[4]           | P2[4]                   | P2[4]                   | -     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | P2[4] – Bandgap<br>(P2[4] = V <sub>DD</sub> /2) | P2[4] – 1.358   | P2[4] – 1.293           | P2[4] – 1.226           | V     |
|                              | RefPower = high<br>Opamp bias = low    | V <sub>REFHI</sub> | Ref High  | P2[4] + Bandgap<br>(P2[4] = V <sub>DD</sub> /2) | P2[4] + 1.236   | P2[4] + 1.289           | P2[4] + 1.332           | V     |
|                              |                                        | V <sub>AGND</sub>  | AGND      | P2[4]                                           | P2[4]           | P2[4]                   | P2[4]                   | -     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | P2[4] – Bandgap<br>(P2[4] = V <sub>DD</sub> /2) | P2[4] – 1.357   | P2[4] – 1.297           | P2[4] – 1.229           | V     |
|                              | RefPower = medium<br>Opamp bias = high | V <sub>REFHI</sub> | Ref High  | P2[4] + Bandgap<br>(P2[4] = V <sub>DD</sub> /2) | P2[4] + 1.237   | P2[4] + 1.291           | P2[4] + 1.337           | V     |
|                              |                                        | V <sub>AGND</sub>  | AGND      | P2[4]                                           | P2[4]           | P2[4]                   | P2[4]                   | -     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | P2[4] – Bandgap<br>(P2[4] = V <sub>DD</sub> /2) | P2[4] – 1.356   | P2[4] – 1.299           | P2[4] – 1.232           | V     |
|                              | RefPower = medium<br>Opamp bias = low  | V <sub>REFHI</sub> | Ref High  | P2[4] + Bandgap<br>(P2[4] = V <sub>DD</sub> /2) | P2[4] + 1.237   | P2[4] + 1.292           | P2[4] + 1.337           | V     |
|                              |                                        | V <sub>AGND</sub>  | AGND      | P2[4]                                           | P2[4]           | P2[4]                   | P2[4]                   | -     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | P2[4] – Bandgap<br>(P2[4] = V <sub>DD</sub> /2) | P2[4] – 1.357   | P2[4] – 1.300           | P2[4] – 1.233           | V     |
| 0b110                        | RefPower = high                        | V <sub>REFHI</sub> | Ref High  | 2 × Bandgap                                     | 2.512           | 2.594                   | 2.654                   | V     |
|                              | Opamp bias = high                      | V <sub>AGND</sub>  | AGND      | Bandgap                                         | 1.250           | 1.303                   | 1.346                   | V     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | V <sub>SS</sub>                                 | V <sub>SS</sub> | V <sub>SS</sub> + 0.011 | V <sub>SS</sub> + 0.027 | V     |
|                              | RefPower = high<br>Opamp bias = low    | V <sub>REFHI</sub> | Ref High  | 2 × Bandgap                                     | 2.515           | 2.592                   | 2.654                   | V     |
|                              |                                        | V <sub>AGND</sub>  | AGND      | Bandgap                                         | 1.253           | 1.301                   | 1.340                   | V     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | V <sub>SS</sub>                                 | V <sub>SS</sub> | V <sub>SS</sub> + 0.006 | V <sub>SS</sub> + 0.02  | V     |
|                              | RefPower = medium                      | V <sub>REFHI</sub> | Ref High  | 2 × Bandgap                                     | 2.518           | 2.593                   | 2.651                   | V     |
|                              | Opamp bias = high                      | V <sub>AGND</sub>  | AGND      | Bandgap                                         | 1.254           | 1.301                   | 1.338                   | V     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | V <sub>SS</sub>                                 | V <sub>SS</sub> | V <sub>SS</sub> + 0.004 | V <sub>SS</sub> + 0.017 | V     |
|                              | RefPower = medium                      | V <sub>REFHI</sub> | Ref High  | 2 × Bandgap                                     | 2.517           | 2.594                   | 2.650                   | V     |
|                              | Opamp bias = low                       | V <sub>AGND</sub>  | AGND      | Bandgap                                         | 1.255           | 1.300                   | 1.337                   | V     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | V <sub>SS</sub>                                 | V <sub>SS</sub> | V <sub>SS</sub> + 0.003 | V <sub>SS</sub> + 0.015 | V     |
| 0b111                        | RefPower = high                        | V <sub>REFHI</sub> | Ref High  | 3.2 × Bandgap                                   | 4.011           | 4.143                   | 4.203                   | V     |
|                              | Opamp bias = high                      | V <sub>AGND</sub>  | AGND      | 1.6 × Bandgap                                   | 2.020           | 2.075                   | 2.118                   | V     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | V <sub>SS</sub>                                 | V <sub>SS</sub> | V <sub>SS</sub> + 0.011 | V <sub>SS</sub> + 0.026 | V     |
|                              | RefPower = high                        | V <sub>REFHI</sub> | Ref High  | 3.2 × Bandgap                                   | 4.022           | 4.138                   | 4.203                   | V     |
|                              | Opamp bias = low                       | V <sub>AGND</sub>  | AGND      | 1.6 × Bandgap                                   | 2.023           | 2.075                   | 2.114                   | V     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | V <sub>SS</sub>                                 | V <sub>SS</sub> | $V_{SS} + 0.006$        | V <sub>SS</sub> + 0.017 | V     |
|                              | RefPower = medium                      | V <sub>REFHI</sub> | Ref High  | 3.2 × Bandgap                                   | 4.026           | 4.141                   | 4.207                   | V     |
|                              | Opamp bias = high                      | V <sub>AGND</sub>  | AGND      | 1.6 × Bandgap                                   | 2.024           | 2.075                   | 2.114                   | V     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | V <sub>SS</sub>                                 | V <sub>SS</sub> | V <sub>SS</sub> + 0.004 | V <sub>SS</sub> + 0.015 | V     |
|                              | RefPower = medium                      | V <sub>REFHI</sub> | Ref High  | 3.2 × Bandgap                                   | 4.030           | 4.143                   | 4.206                   | V     |
|                              | Opamp bias = low                       | V <sub>AGND</sub>  | AGND      | 1.6 × Bandgap                                   | 2.024           | 2.076                   | 2.112                   | V     |
|                              |                                        | V <sub>REFLO</sub> | Ref Low   | V <sub>SS</sub>                                 | V <sub>SS</sub> | V <sub>SS</sub> + 0.003 | V <sub>SS</sub> + 0.013 | V     |



## Table 16. 3.3-V DC Analog Reference Specifications (continued)

| Reference<br>ARF_CR<br>[5:3] | Reference Power<br>Settings                | Symbol             | Reference | Description                                                          | Min             | Тур                     | Max                     | Units |
|------------------------------|--------------------------------------------|--------------------|-----------|----------------------------------------------------------------------|-----------------|-------------------------|-------------------------|-------|
| 0b100                        | All power settings<br>Not allowed at 3.3 V | -                  | _         | -                                                                    | -               | -                       | _                       | -     |
| 0b101                        | RefPower = high<br>opamp bias = high       |                    | Ref High  | P2[4] + Bandgap<br>(P2[4] = V <sub>DD</sub> /2)                      | P2[4] + 1.211   | P2[4] + 1.285           | P2[4] + 1.348           | V     |
|                              | -                                          | V <sub>AGND</sub>  | AGND      | P2[4]                                                                | P2[4]           | P2[4]                   | P2[4]                   | -     |
| -                            |                                            | V <sub>REFLO</sub> | Ref Low   | $\begin{array}{l} P2[4]-Bandgap\\ (P2[4]=V_{DD}/2) \end{array}$      | P2[4] – 1.354   | P2[4] – 1.290           | P2[4] – 1.197           | V     |
|                              | RefPower = high<br>opamp bias = low        | V <sub>REFHI</sub> | Ref High  | $\begin{array}{l} P2[4] + Bandgap \\ (P2[4] = V_{DD}/2) \end{array}$ | P2[4] + 1.209   | P2[4] + 1.289           | P2[4] + 1.353           | V     |
|                              |                                            | V <sub>AGND</sub>  | AGND      | P2[4]                                                                | P2[4]           | P2[4]                   | P2[4]                   | -     |
|                              |                                            | V <sub>REFLO</sub> | Ref Low   | P2[4] – Bandgap<br>(P2[4] = V <sub>DD</sub> /2)                      | P2[4] – 1.352   | P2[4] – 1.294           | P2[4] – 1.222           | V     |
|                              | RefPower = medium<br>opamp bias = high     | V <sub>REFHI</sub> | Ref High  | P2[4] + Bandgap<br>(P2[4] = V <sub>DD</sub> /2)                      | P2[4] + 1.218   | P2[4] + 1.291           | P2[4] + 1.351           | V     |
|                              |                                            | V <sub>AGND</sub>  | AGND      | P2[4]                                                                | P2[4]           | P2[4]                   | P2[4]                   | -     |
|                              |                                            | V <sub>REFLO</sub> | Ref Low   | P2[4] – Bandgap<br>(P2[4] = V <sub>DD</sub> /2)                      | P2[4] – 1.351   | P2[4] – 1.296           | P2[4] – 1.224           | V     |
|                              | RefPower = medium<br>opamp bias = low      | V <sub>REFHI</sub> | Ref High  | P2[4] + Bandgap<br>(P2[4] = V <sub>DD</sub> /2)                      | P2[4] + 1.215   | P2[4] + 1.292           | P2[4] + 1.354           | V     |
|                              |                                            | V <sub>AGND</sub>  | AGND      | P2[4]                                                                | P2[4]           | P2[4]                   | P2[4]                   | -     |
|                              |                                            | V <sub>REFLO</sub> | Ref Low   | P2[4] – Bandgap<br>(P2[4] = V <sub>DD</sub> /2)                      | P2[4] – 1.352   | P2[4] – 1.297           | P2[4] – 1.227           | V     |
| 0b110                        | RefPower = high                            | V <sub>REFHI</sub> | Ref High  | 2 × Bandgap                                                          | 2.460           | 2.594                   | 2.695                   | V     |
|                              | opamp bias = high                          | V <sub>AGND</sub>  | AGND      | Bandgap                                                              | 1.257           | 1.302                   | 1.335                   | V     |
|                              |                                            | V <sub>REFLO</sub> | Ref Low   | V <sub>SS</sub>                                                      | V <sub>SS</sub> | V <sub>SS</sub> + 0.01  | V <sub>SS</sub> + 0.029 | V     |
|                              | RefPower = high<br>opamp bias = low        | V <sub>REFHI</sub> | Ref High  | 2 × Bandgap                                                          | 2.462           | 2.592                   | 2.692                   | V     |
|                              | opattip bias = 10w                         | V <sub>AGND</sub>  | AGND      | Bandgap                                                              | 1.256           | 1.301                   | 1.332                   | V     |
|                              |                                            | V <sub>REFLO</sub> | Ref Low   | V <sub>SS</sub>                                                      | V <sub>SS</sub> | V <sub>SS</sub> + 0.005 | V <sub>SS</sub> + 0.017 | V     |
|                              | RefPower = medium                          | V <sub>REFHI</sub> | Ref High  | 2 × Bandgap                                                          | 2.473           | 2.593                   | 2.682                   | V     |
|                              | opamp bias = high                          | V <sub>AGND</sub>  | AGND      | Bandgap                                                              | 1.257           | 1.301                   | 1.330                   | V     |
|                              |                                            | V <sub>REFLO</sub> | Ref Low   | V <sub>SS</sub>                                                      | V <sub>SS</sub> | $V_{SS} + 0.003$        | V <sub>SS</sub> + 0.014 | V     |
|                              | RefPower = medium                          | V <sub>REFHI</sub> | Ref High  | 2 × Bandgap                                                          | 2.470           | 2.594                   | 2.685                   | V     |
|                              | opamp bias = low                           | V <sub>AGND</sub>  | AGND      | Bandgap                                                              | 1.256           | 1.300                   | 1.332                   | V     |
|                              |                                            | V <sub>REFLO</sub> | Ref Low   | V <sub>SS</sub>                                                      | V <sub>SS</sub> | V <sub>SS</sub> + 0.002 | V <sub>SS</sub> + 0.012 | V     |
| 0b111                        | All power settings<br>Not allowed at 3.3 V | _                  | _         | -                                                                    | -               | _                       | _                       | -     |



## DC I<sup>2</sup>C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, or 3.0 V to 3.6 V and -40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

## Table 20. DC I<sup>2</sup>C Specifications<sup>[11]</sup>

| Symbol             | Description      | Min                 | Тур | Max                  | Units | Notes                                                |
|--------------------|------------------|---------------------|-----|----------------------|-------|------------------------------------------------------|
| V <sub>ILI2C</sub> | Input low level  | -                   | 1   | $0.3 \times V_{DD}$  | V     | $3.0~V \leq V_{DD} \leq 3.6~V$                       |
|                    |                  | -                   | -   | $0.25 \times V_{DD}$ | V     | $4.75~V \leq V_{DD} \leq 5.25~V$                     |
| V <sub>IHI2C</sub> | Input high level | $0.7 \times V_{DD}$ | 1   | -                    | V     | $3.0~\text{V} \leq \text{V}_{DD} \leq 5.25~\text{V}$ |

#### SAR8 ADC DC Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, or 3.0 V to 3.6 V and -40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

#### Table 21. SAR8 ADC DC Specifications

| Symbol               | Description                                                                | Min  | Тур | Max  | Units | Notes                                                                                                                                                                                             |
|----------------------|----------------------------------------------------------------------------|------|-----|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>ADCVREF</sub> | Reference voltage at pin P3[0] when<br>configured as ADC reference voltage | 3.0  | _   | 5.25 | V     | The voltage level at P3[0] (when<br>configured as ADC reference voltage)<br>should always be maintained to be less<br>than chip supply voltage level on $V_{dd}$<br>pin. $V_{ADCVREF} < V_{dd}$ . |
| IADCVREF             | Current when P3[0] is configured as ADC $V_{REF}$                          | 3    | -   | -    | mA    |                                                                                                                                                                                                   |
| INL                  | R-2R integral non-linearity <sup>[12]</sup>                                | -1.2 | -   | +1.2 | LSB   | The maximum LSB is over a sub-range not exceeding 1/16 of the full-scale range.                                                                                                                   |
| DNL                  | R-2R differential non-linearity <sup>[13]</sup>                            | -1   | -   | +1   | LSB   | Output is monatonic.                                                                                                                                                                              |

Notes

11. All GPIOs meet the DC GPIO V<sub>IL</sub> and V<sub>IH</sub> specifications found in the DC GPIO Specifications sections. The  $I^2$ C GPIO pins also meet the above specs. 12. At the 7F and 80 points, the maximum INL is 1.5 LSB. 13. For the 7F to 80 transition, the DNL specification is waived.



## **AC Electrical Characteristics**

## AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, or 3.0 V to 3.6 V and –40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 22. 5V and 3.3V AC Chip-Level Specifications

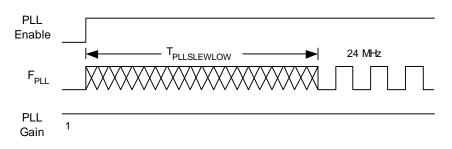
| Symbol                               | Description                                             | Min   | Тур    | Max                        | Units | Notes                                                                                                                                                                                                                                                                                             |
|--------------------------------------|---------------------------------------------------------|-------|--------|----------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F <sub>IMO24</sub>                   | Internal main oscillator frequency for 24 MHz           | 22.8  | 24     | 25.2 <sup>[14,15,16]</sup> | MHz   | Trimmed for 5 V or 3.3 V operation<br>using factory trim values. See Figure<br>5b on page 15. SLIMO mode = 0.                                                                                                                                                                                     |
| F <sub>IMO6</sub>                    | Internal main oscillator frequency for 6 MHz            | 5.5   | 6      | 6.5 <sup>[14,15,16]</sup>  | MHz   | Trimmed for 5 V or 3.3 V operation<br>using factory trim values. See Figure<br>5b on page 15. SLIMO mode = 1.                                                                                                                                                                                     |
| F <sub>CPU1</sub>                    | CPU frequency (5 V nominal)                             | 0.093 | 24     | 24.6 <sup>[14,15]</sup>    | MHz   | SLIMO mode = 0.                                                                                                                                                                                                                                                                                   |
| F <sub>CPU2</sub>                    | CPU frequency (3.3 V nominal)                           | 0.093 | 12     | 12.3 <sup>[15,16]</sup>    | MHz   | SLIMO mode = 0.                                                                                                                                                                                                                                                                                   |
| F <sub>48M</sub>                     | digital psoc block frequency                            | 0     | 48     | 49.2 <sup>[14,15,17]</sup> | MHz   | Refer to the Table 27 on page 36.                                                                                                                                                                                                                                                                 |
| F <sub>24M</sub>                     | Digital PSoC block frequency                            | 0     | 24     | 24.6 <sup>[15,17]</sup>    | MHz   |                                                                                                                                                                                                                                                                                                   |
| F <sub>32K1</sub>                    | Internal low speed oscillator frequency                 | 15    | 32     | 75                         | kHz   |                                                                                                                                                                                                                                                                                                   |
| F <sub>32K2</sub>                    | External crystal oscillator                             | -     | 32.768 | -                          | kHz   | Accuracy is capacitor and crystal dependent. 50% duty cycle.                                                                                                                                                                                                                                      |
| F <sub>32K_U</sub>                   | Internal low speed oscillator untrimmed<br>frequency    | 5     | -      | 100                        | kHz   |                                                                                                                                                                                                                                                                                                   |
| F <sub>PLL</sub>                     | PLL frequency                                           | -     | 23.986 | -                          | MHz   | Is a multiple (x732) of crystal frequency.                                                                                                                                                                                                                                                        |
| DC <sub>ILO</sub>                    | Internal low speed oscillator duty cycle                | 20    | 50     | 80                         | %     |                                                                                                                                                                                                                                                                                                   |
| T <sub>PLLSLEW</sub>                 | PLL Lock time                                           | 0.5   | -      | 10                         | ms    |                                                                                                                                                                                                                                                                                                   |
| T <sub>PLLSLEWSLOW</sub>             | PLL Lock time for low gain setting                      | 0.5   | -      | 50                         | ms    |                                                                                                                                                                                                                                                                                                   |
| T <sub>OS</sub>                      | External crystal oscillator startup to 1%               | -     | 1700   | 2620                       | ms    |                                                                                                                                                                                                                                                                                                   |
| T <sub>osacc</sub>                   | External crystal oscillator startup to 100 ppm          | -     | 2800   | 3800                       | ms    | The crystal oscillator frequency is within 100 ppm of its final value by the end of the T <sub>osacc</sub> period. Correct operation assumes a properly loaded 1 uW maximum drive level 32.768 kHz crystal. 3.0 V $\leq$ V <sub>dd</sub> $\leq$ 5.5 V, -40 °C $\leq$ T <sub>A</sub> $\leq$ 85 °C. |
| T <sub>XRST</sub>                    | External reset pulse width                              | 10    | -      | -                          | μS    |                                                                                                                                                                                                                                                                                                   |
| DC24M                                | 24 MHz duty cycle                                       | 40    | 50     | 60                         | %     |                                                                                                                                                                                                                                                                                                   |
| Step24M                              | 24 MHz trim step size                                   | -     | 50     | -                          | kHz   |                                                                                                                                                                                                                                                                                                   |
| Fout48M                              | 48 MHz output frequency                                 | 46.8  | 48.0   | 49.2 <sup>[14,16]</sup>    | MHz   | Trimmed. Utilizing factory trim values.                                                                                                                                                                                                                                                           |
| F <sub>MAX</sub>                     | Maximum frequency of signal on row input or row output. | _     | -      | 12.3                       | MHz   |                                                                                                                                                                                                                                                                                                   |
| T <sub>RAMP</sub>                    | Supply ramp time                                        | NA    | -      | -                          | μs    |                                                                                                                                                                                                                                                                                                   |
| SR <sub>POWER_UP</sub>               | Power supply slew rate                                  | -     | -      | 250                        | V/ms  |                                                                                                                                                                                                                                                                                                   |
| T <sub>POWERUP</sub>                 | Time from End of POR to CPU Executing Code              | -     | 16     | 100                        | ms    |                                                                                                                                                                                                                                                                                                   |
| t <sub>jit_IMO</sub> <sup>[18]</sup> | 24 MHz IMO cycle-to-cycle jitter (RMS)                  | -     | 200    | 700                        | ps    |                                                                                                                                                                                                                                                                                                   |
|                                      | 24 MHz IMO long term N cycle-to-cycle jitter (RMS)      | _     | 300    | 900                        | ps    | N = 32                                                                                                                                                                                                                                                                                            |
|                                      | 24 MHz IMO period jitter (RMS)                          | -     | 100    | 400                        | ps    |                                                                                                                                                                                                                                                                                                   |
| t <sub>jit_PLL</sub> <sup>[18]</sup> | 24 MHz IMO cycle-to-cycle jitter (RMS)                  | I     | 200    | 800                        | ps    |                                                                                                                                                                                                                                                                                                   |
|                                      | 24 MHz IMO long term N cycle-to-cycle jitter (RMS)      | -     | 300    | 1200                       | ps    | N = 32                                                                                                                                                                                                                                                                                            |
|                                      | 24 MHz IMO period jitter (RMS)                          | _     | 100    | 700                        | ps    |                                                                                                                                                                                                                                                                                                   |

#### Notes

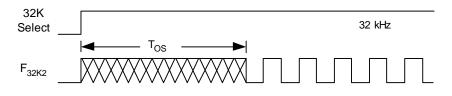
<sup>14. 4.75</sup>V < Vdd < 5.25V.

<sup>15.</sup> Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.

Accuracy derived from internal Main Oscillator with appropriate unit of voci range.
 Accuracy derived from internal Main Oscillator with appropriate unit of voci range.
 See the individual user module data sheets for information on maximum frequencies for user modules.
 Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.


















# Table 25. 3.3 V DC Operational Amplifier Specifications

| Symbol               | Description                                                                                                                                                                                                                                                           | Min                                                                     | Тур                                    | Max                                    | Units                      | Notes                                                                                                                                                                                                  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>OSOA</sub>    | Input offset voltage (absolute value)<br>Power = low, opamp bias = high<br>Power = medium, opamp bias = high<br>Power = high, opamp bias = high                                                                                                                       | -<br>-<br>-                                                             | 1.65<br>1.32<br>–                      | 10<br>8<br>-                           | mV<br>mV<br>mV             | Power = high, opamp bias = high setting is not allowed for $3.3 \text{ V} \text{V}_{\text{DD}}$ operation.                                                                                             |
| TCV <sub>OSOA</sub>  | Average input offset voltage drift                                                                                                                                                                                                                                    | -                                                                       | 7.0                                    | 35.0                                   | µV/°C                      |                                                                                                                                                                                                        |
| I <sub>EBOA</sub>    | Input leakage current (port 0 analog pins)                                                                                                                                                                                                                            | -                                                                       | 20                                     | -                                      | pА                         | Gross tested to 1 µA                                                                                                                                                                                   |
| C <sub>INOA</sub>    | Input capacitance (port 0 analog pins)                                                                                                                                                                                                                                | -                                                                       | 4.5                                    | 9.5                                    | pF                         | Package and pin dependent.<br>Temp = 25 °C                                                                                                                                                             |
| V <sub>CMOA</sub>    | Common mode voltage range                                                                                                                                                                                                                                             | 0.2                                                                     | _                                      | V <sub>DD</sub> – 0.2                  | V                          | The common-mode input voltage<br>range is measured through an<br>analog output buffer. The<br>specification includes the limitations<br>imposed by the characteristics of the<br>analog output buffer. |
| G <sub>OLOA</sub>    | Open loop gain<br>Power = low, opamp bias = low<br>Power = medium, opamp bias = low<br>Power = high, opamp bias = low                                                                                                                                                 | 60<br>60<br>80                                                          |                                        |                                        | dB<br>dB<br>dB             | Specification is applicable at low<br>opamp bias. For high opamp bias<br>mode (except high power, high<br>Opamp bias), minimum is 60 dB.                                                               |
| V <sub>OHIGHOA</sub> | High output voltage swing (internal signals)<br>Power = low, opamp bias = low<br>Power = medium, opamp bias = low<br>Power = high, opamp bias = low                                                                                                                   | V <sub>DD</sub> - 0.2<br>V <sub>DD</sub> - 0.2<br>V <sub>DD</sub> - 0.2 |                                        |                                        | V<br>V<br>V                | Power = high, opamp bias = high setting is not allowed for $3.3 \text{ V} \text{V}_{\text{DD}}$ operation.                                                                                             |
| V <sub>OLOWOA</sub>  | Low output voltage swing (internal signals)<br>Power = low, ppamp opamp bias = low<br>Power = medium, opamp bias = low<br>Power = high, opamp bias = low                                                                                                              | -<br>-<br>-                                                             |                                        | 0.2<br>0.2<br>0.2                      | V<br>V<br>V                | Power = high, opamp bias = high setting is not allowed for $3.3 \text{ V} \text{V}_{\text{DD}}$ operation.                                                                                             |
| I <sub>SOA</sub>     | Supply current (including associated AGND<br>buffer)<br>Power = low, opamp bias = low<br>Power = low, opamp bias = high<br>Power = medium, opamp bias = low<br>Power = medium, opamp bias = high<br>Power = high, opamp bias = low<br>Power = high, opamp bias = high | -<br>-<br>-<br>-<br>-                                                   | 150<br>300<br>600<br>1200<br>2400<br>- | 200<br>400<br>800<br>1600<br>3200<br>- | μΑ<br>μΑ<br>μΑ<br>μΑ<br>μΑ | Power = high, opamp bias = high<br>setting is not allowed for 3.3 V V <sub>DD</sub><br>operation.                                                                                                      |
| PSRR <sub>OA</sub>   | Supply voltage rejection ratio                                                                                                                                                                                                                                        | 64                                                                      | 80                                     | -                                      | dB                         | $V_{SS} \leq V_{IN} \leq (V_{DD} - 2.25) \text{ or } \\ (V_{DD} - 1.25 \text{ V}) \leq V_{IN} \leq V_{DD}$                                                                                             |



When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1k resistance and the external capacitor.

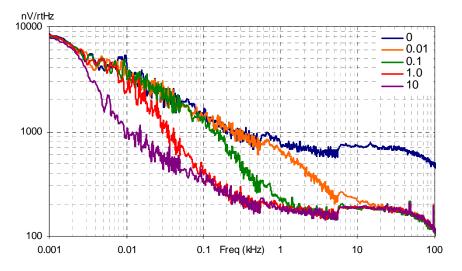



Figure 11. Typical AGND Noise with P2[4] Bypass

At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequencies, increased power level reduces the noise spectrum level.

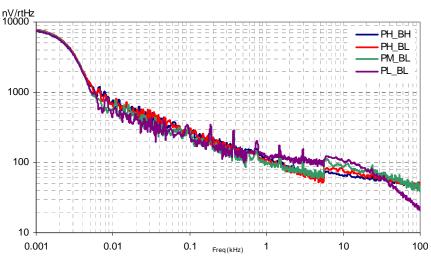



Figure 12. Typical Opamp Noise

#### AC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C  $\leq T_A \leq 85$  °C, or 3.0 V to 3.6 V and -40 °C  $\leq T_A \leq 85$  °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 26. AC Low Power Comparator Specifications

| Symbol            | Description       | Min | Тур | Max | Units | Notes                                                                      |
|-------------------|-------------------|-----|-----|-----|-------|----------------------------------------------------------------------------|
| T <sub>RLPC</sub> | LPC response time | -   | _   | 50  | μS    | ≥ 50 mV overdrive comparator<br>reference set within V <sub>REFLPC</sub> . |



## AC Analog Output Buffer Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, or 3.0 V to 3.6 V and –40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 28. 5 V AC Analog Output Buffer Specifications

| Symbol            | Description                                                                                         | Min          | Тур    | Max        | Units        | Notes |
|-------------------|-----------------------------------------------------------------------------------------------------|--------------|--------|------------|--------------|-------|
| T <sub>ROB</sub>  | Rising settling time to 0.1%, 1 V step, 100 pF load<br>Power = low<br>Power = high                  |              |        | 2.5<br>2.5 | μs<br>μs     |       |
| T <sub>SOB</sub>  | Falling settling time to 0.1%, 1 V step, 100 pf load<br>Power = low<br>Power = high                 |              |        | 2.2<br>2.2 | μs<br>μs     |       |
| SR <sub>ROB</sub> | Rising slew rate (20% to 80%), 1V step, 100 pf load<br>Power = low<br>power = High                  | 0.65<br>0.65 |        |            | V/μs<br>V/μs |       |
| SR <sub>FOB</sub> | Falling slew rate (80% to 20%), 1V step, 100 pf<br>load<br>Power = low<br>Power = high              | 0.65<br>0.65 |        |            | V/μs<br>V/μs |       |
| BW <sub>OB</sub>  | Small signal bandwidth, 20 mv <sub>pp</sub> , 3db bw, 100 pf<br>load<br>Power = low<br>Power = high | 0.8<br>0.8   |        |            | MHz<br>MHz   |       |
| BW <sub>OB</sub>  | Large signal bandwidth, 1V <sub>pp</sub> , 3db bw, 100 pf load<br>Power = low<br>Power = high       | 300<br>300   | _<br>_ |            | kHz<br>kHz   |       |

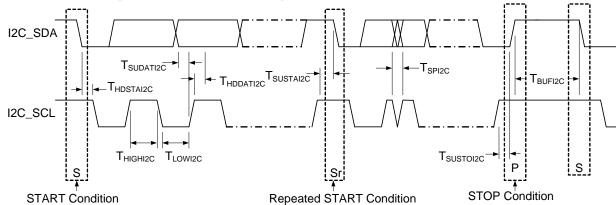
#### Table 29. 3.3 V AC Analog Output Buffer Specifications

| Symbol            | Description                                                                                         | Min        | Тур | Max        | Units        | Notes |
|-------------------|-----------------------------------------------------------------------------------------------------|------------|-----|------------|--------------|-------|
| T <sub>ROB</sub>  | Rising settling time to 0.1%, 1 V step, 100 pF load<br>Power = low<br>Power = high                  | -          |     | 3.8<br>3.8 | μs<br>μs     |       |
| T <sub>SOB</sub>  | Falling settling time to 0.1%, 1V Step, 100 pF load<br>Power = low<br>power = High                  | _          | -   | 2.6<br>2.6 | μs<br>μs     |       |
| SR <sub>ROB</sub> | Rising slew rate (20% to 80%), 1V step, 100 pF<br>load<br>Power = Low<br>Power = High               | 0.5<br>0.5 | -   |            | V/μs<br>V/μs |       |
| SR <sub>FOB</sub> | falling slew rate (80% to 20%), 1V step, 100 pF<br>load<br>Power = low<br>Power = high              | 0.5<br>0.5 |     |            | V/μs<br>V/μs |       |
| BW <sub>OB</sub>  | Small signal bandwidth, 20 mV <sub>pp</sub> , 3dB BW, 100 pF<br>load<br>Power = low<br>Power = high | 0.7<br>0.7 |     | _<br>_     | MHz<br>MHz   |       |
| BW <sub>OB</sub>  | Large signal bandwidth, 1V <sub>pp</sub> , 3dB BW, 100 pF<br>load<br>Power = low<br>Power = high    | 200<br>200 | -   |            | kHz<br>kHz   |       |



## AC I<sup>2</sup>C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, or 3.0 V to 3.6 V and –40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.


| Symbol                | Description                                                                                  | Standar | d-Mode | Fast-               | Mode | Units | Notes |  |  |
|-----------------------|----------------------------------------------------------------------------------------------|---------|--------|---------------------|------|-------|-------|--|--|
| Symbol                | Description                                                                                  | Min     | Max    | Min                 | Max  | Units | Notes |  |  |
| F <sub>SCLI2C</sub>   | SCL clock frequency                                                                          | 0       | 100    | 0                   | 400  | kHz   |       |  |  |
| T <sub>HDSTAI2C</sub> | Hold time (repeated) START condition. After this period, the first clock pulse is generated. | 4.0     | -      | 0.6                 | -    | μS    |       |  |  |
| T <sub>LOWI2C</sub>   | LOW period of the SCL Clock                                                                  | 4.7     | -      | 1.3                 | _    | μS    |       |  |  |
| T <sub>HIGHI2C</sub>  | HIGH period of the SCL Clock                                                                 | 4.0     | -      | 0.6                 | _    | μS    |       |  |  |
| T <sub>SUSTAI2C</sub> | Set-up time for a repeated START Condition                                                   | 4.7     | -      | 0.6                 | _    | μS    |       |  |  |
| T <sub>HDDATI2C</sub> | Data hold time                                                                               | 0       | -      | 0                   | _    | μS    |       |  |  |
| T <sub>SUDATI2C</sub> | Data set-up time                                                                             | 250     | -      | 100 <sup>[22]</sup> | -    | ns    |       |  |  |
| T <sub>SUSTOI2C</sub> | Set-up time for STOP Condition                                                               | 4.0     | -      | 0.6                 | _    | μS    |       |  |  |
| T <sub>BUFI2C</sub>   | Bus free time between a stop and start condition                                             | 4.7     | -      | 1.3                 | _    | μS    |       |  |  |
| T <sub>SPI2C</sub>    | Pulse width of spikes are suppressed by the input filter.                                    | _       | _      | 0                   | 50   | ns    |       |  |  |

# Table 34. AC Characteristics of the I<sup>2</sup>C SDA and SCL Pins for V<sub>dd ></sub> 3.0 V

## Table 35. AC Characteristics of the I<sup>2</sup>C SDA and SCL Pins for $V_{dd}$ < 3.0 V (Fast-Mode Not Supported)

|                       |                                                                                              | Standar | rd-Mode | Fast- | Fast-Mode |       |       |
|-----------------------|----------------------------------------------------------------------------------------------|---------|---------|-------|-----------|-------|-------|
| Symbol                | Description                                                                                  | Min     | Max     | Min   | Max       | Units | Notes |
| F <sub>SCLI2C</sub>   | SCL clock frequency                                                                          | 0       | 100     | _     | -         | kHz   |       |
| T <sub>HDSTAI2C</sub> | Hold time (repeated) START condition. After this period, the first clock pulse is generated. | 4.0     | -       | -     | -         | μS    |       |
| T <sub>LOWI2C</sub>   | LOW period of the SCL Clock                                                                  | 4.7     | -       | -     | -         | μS    |       |
| T <sub>HIGHI2C</sub>  | HIGH period of the SCL Clock                                                                 | 4.0     | -       | -     | -         | μS    |       |
| T <sub>SUSTAI2C</sub> | Set-up Time for a Repeated START Condition                                                   | 4.7     | -       | -     | -         | μS    |       |
| T <sub>HDDATI2C</sub> | Data hold time                                                                               | 0       | -       | -     | -         | μS    |       |
| T <sub>SUDATI2C</sub> | Data set-up time                                                                             | 250     | -       | -     | -         | ns    |       |
| T <sub>SUSTOI2C</sub> | Set-up time for STOP Condition                                                               | 4.0     | -       | -     | -         | μS    |       |
| T <sub>BUFI2C</sub>   | Bus free time between a STOP and START Condition                                             | 4.7     | -       | -     | -         | μS    |       |
| T <sub>SPI2C</sub>    | Pulse width of spikes are suppressed by the input filter.                                    | -       | -       | -     | -         | ns    |       |

## Figure 13. Definition for Timing for Fast-/Standard-Mode on the I<sup>2</sup>C Bus



#### Note

<sup>22.</sup> A Fast-Mode I2C-bus device can be used in a Standard-Mode I<sup>2</sup>C-bus system, but the requirement T<sub>SUDATI2C</sub> ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t<sub>rmax</sub> + T<sub>SUDATI2C</sub> = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.



## **Thermal Impedances**

## Table 36. Thermal Impedances by Package

| Package     | Typical θ <sub>JA</sub> <sup>[23]</sup> |
|-------------|-----------------------------------------|
| 28-pin SSOP | 95 °C/W                                 |
| 56-pin SSOP | 67 °C/W                                 |

## **Capacitance on Crystal Pins**

## Table 37. Typical Package Capacitance on Crystal Pins

| Package     | Package Capacitance           |  |  |  |  |
|-------------|-------------------------------|--|--|--|--|
| 28-pin SSOP | 2.8 pF                        |  |  |  |  |
| 56-pin SSOP | Pin 27 0.33 pF Pin 31 0.35 pF |  |  |  |  |

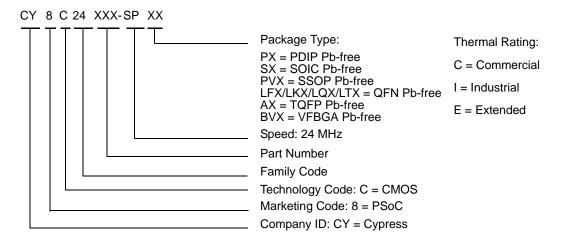
## Solder Reflow Peak Temperature

Following is the minimum solder reflow peak temperature to achieve good solderability.

## Table 38. Solder Reflow Peak Temperature

| Package     | Maximum Peak Temperature | Time at Maximum Peak Temperature |
|-------------|--------------------------|----------------------------------|
| 28-pin SSOP | 260 °C                   | 30 s                             |
| 56-pin SSOP | 260 °C                   | 30 s                             |




# **Ordering Information**

The following table lists the CY8C24633 PSoC device family key package features and ordering codes .

## Table 39. CY8C24x33 PSoC Device Family Key Features and Ordering Information

| Package                                  | Ordering Code                    | Flash<br>(Kbytes) | RAM<br>(Bytes) | Temperature<br>Range | Digital Blocks<br>(Rows of 4) | Analog Blocks<br>(Columns of 3) | Digital I/O Pins | Analog Inputs | Analog Outputs | XRES Pin |
|------------------------------------------|----------------------------------|-------------------|----------------|----------------------|-------------------------------|---------------------------------|------------------|---------------|----------------|----------|
| 28-Pin (210 Mil) SSOP                    | CY8C24633-24PVXI                 | 8                 | 256            | –40 °C to +85 °C     | 4                             | 4                               | 25               | 12            | 2              | Yes      |
| 28-Pin (210 Mil) SSOP<br>(Tape and Reel) | CY8C24633-24PVXIT                | 8                 | 256            | –40 °C to +85 °C     | 4                             | 4                               | 25               | 12            | 2              | Yes      |
| 56-Pin OCD SSOP                          | CY8C24033-24PVXI <sup>[24]</sup> | 8                 | 256            | –40 °C to +85 °C     | 4                             | 4                               | 24               | 12            | 2              | Yes      |

## Ordering Code Definitions





# Sales, Solutions, and Legal Information

### Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

| Products                 |                           |
|--------------------------|---------------------------|
| Automotive               | cypress.com/go/automotive |
| Clocks & Buffers         | cypress.com/go/clocks     |
| Interface                | cypress.com/go/interface  |
| Lighting & Power Control | cypress.com/go/powerpsoc  |
|                          | cypress.com/go/plc        |
| Memory                   | cypress.com/go/memory     |
| PSoC                     | cypress.com/go/psoc       |
| Touch Sensing            | cypress.com/go/touch      |
| USB Controllers          | cypress.com/go/USB        |
| Wireless/RF              | cypress.com/go/wireless   |

# **PSoC<sup>®</sup> Solutions**

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2007-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

#### Document Number: 001-20160 Rev. \*H

#### Revised September 15, 2014

Page 52 of 52

PSoC Designer<sup>™</sup> is a trademark and PSoC<sup>®</sup> is a registered trademark of Cypress Semiconductor Corporation.

Purchase of I<sup>2</sup>C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I<sup>2</sup>C Patent Rights to use these components in an I<sup>2</sup>C system, provided that the system conforms to the I<sup>2</sup>C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors. All products and company names mentioned in this document may be the trademarks of their respective holders.