

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	72MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	20
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25К х 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 12x14b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	24-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8lb11f16e-a-qfn24r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Ordering Information

Figure 2.1. EFM8LB1 Part Numbering

All EFM8LB1 family members have the following features:

- CIP-51 Core running up to 72 MHz
- Three Internal Oscillators (72 MHz, 24.5 MHz and 80 kHz)
- SMBus
- I2C Slave
- SPI
- 2 UARTs
- · 6-Channel Programmable Counter Array (PWM, Clock Generation, Capture/Compare)
- · Six 16-bit Timers
- Four Configurable Logic Units
- 14-bit Analog-to-Digital Converter with integrated multiplexer, voltage reference, temperature sensor, channel sequencer, and directto-XRAM data transfer
- Two Analog Comparators
- 16-bit CRC Unit
- AEC-Q100 qualified (pending)

In addition to these features, each part number in the EFM8LB1 family has a set of features that vary across the product line. The product selection guide shows the features available on each family member.

Table 2.1. Product Selection Guide

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC0 Channels	Voltage DACs	Comparator 0 Inputs	Comparator 1 Inputs	Pb-free (RoHS Compliant)	Temperature Range	Package
EFM8LB12F64E-A-QFN32	64	4352	29	20	4	10	9	Yes	-40 to +105 °C	QFN32
EFM8LB12F64E-A-QFP32	64	4352	28	20	4	10	9	Yes	-40 to +105 °C	QFP32
EFM8LB12F64E-A-QFN24	64	4352	20	12	4	6	6	Yes	-40 to +105 °C	QFN24
EFM8LB12F64E-A-QSOP24	64	4352	21	13	4	6	7	Yes	-40 to +105 °C	QSOP24

3.8 Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- The core halts program execution.
- · Module registers are initialized to their defined reset values unless the bits reset only with a power-on reset.
- · External port pins are forced to a known state.
- · Interrupts and timers are disabled.

All registers are reset to the predefined values noted in the register descriptions unless the bits only reset with a power-on reset. The contents of RAM are unaffected during a reset; any previously stored data is preserved as long as power is not lost. By default, the Port I/O latches are reset to 1 in open-drain mode, with weak pullups enabled during and after the reset. Optionally, firmware may configure the port I/O, DAC outputs, and precision reference to maintain state through system resets other than power-on resets. For Supply Monitor and power-on resets, the RSTb pin is driven low until the device exits the reset state. On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to an internal oscillator. The Watchdog Timer is enabled, and program execution begins at location 0x0000.

Reset sources on the device include the following:

- Power-on reset
- External reset pin
- Comparator reset
- · Software-triggered reset
- Supply monitor reset (monitors VDD supply)
- · Watchdog timer reset
- · Missing clock detector reset
- · Flash error reset

3.9 Debugging

The EFM8LB1 devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Temperature Sensor	I _{TSENSE}		_	75	120	μA
Digital-to-Analog Converters (DAC0, DAC1, DAC2, DAC3) ⁶	I _{DAC}		_	125	_	μA
Comparators (CMP0, CMP1)	I _{CMP}	CPMD = 11	—	0.5	—	μA
		CPMD = 10	—	3	_	μA
		CPMD = 01	—	10	—	μA
		CPMD = 00	—	25	—	μA
Comparator Reference	I _{CPREF}		_	TBD	_	μA
Voltage Supply Monitor (VMON0)	I _{VMON}		—	15	20	μA

Note:

1. Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

2. Includes supply current from internal LDO regulator, supply monitor, and High Frequency Oscillator.

3. Includes supply current from internal LDO regulator, supply monitor, and Low Frequency Oscillator.

- 4. ADC0 power excludes internal reference supply current.
- 5. The internal reference is enabled as-needed when operating the ADC in low power mode. Total ADC + Reference current will depend on sampling rate.

6. DAC supply current for each enabled DA and not including external load on pin.

4.1.3 Reset and Supply Monitor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
VDD Supply Monitor Threshold	V _{VDDM}		1.85	1.95	2.1	V
Power-On Reset (POR) Threshold	V _{POR}	Rising Voltage on VDD	—	1.4	—	V
		Falling Voltage on VDD	0.75	_	1.36	V
VDD Ramp Time	t _{RMP}	Time to V _{DD} > 2.2 V	10		_	μs
Reset Delay from POR	t _{POR}	Relative to V _{DD} > V _{POR}	3	10	31	ms
Reset Delay from non-POR source	t _{RST}	Time between release of reset source and code execution	_	50	_	μs
RST Low Time to Generate Reset	t _{RSTL}		15	_	_	μs
Missing Clock Detector Response Time (final rising edge to reset)	t _{MCD}	F _{SYSCLK} >1 MHz	_	0.625	1.2	ms
Missing Clock Detector Trigger Frequency	F _{MCD}		_	7.5	13.5	kHz
VDD Supply Monitor Turn-On Time	t _{MON}		—	2	_	μs

Table 4.3. Reset and Supply Monitor

4.1.6 Internal Oscillators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
High Frequency Oscillator 0 (24.5 M	1Hz)					
Oscillator Frequency	f _{HFOSC0}	Full Temperature and Supply Range	24	24.5	25	MHz
Power Supply Sensitivity	PSS _{HFOS} C0	T _A = 25 °C	_	0.5	_	%/V
Temperature Sensitivity	TS _{HFOSC0}	V _{DD} = 3.0 V	_	40	_	ppm/°C
High Frequency Oscillator 1 (72 MH	z)					
Oscillator Frequency	f _{HFOSC1}	Full Temperature and Supply Range	70.5	72	73.5	MHz
Power Supply Sensitivity	PSS _{HFOS} C1	T _A = 25 °C	_	TBD	_	%/V
Temperature Sensitivity	TS _{HFOSC1}	V _{DD} = 3.0 V	_	TBD		ppm/°C
Low Frequency Oscillator (80 kHz)						
Oscillator Frequency	f _{LFOSC}	Full Temperature and Supply Range	75	80	85	kHz
Power Supply Sensitivity	PSS _{LFOSC}	T _A = 25 °C	—	0.05	_	%/V
Temperature Sensitivity	TS _{LFOSC}	V _{DD} = 3.0 V	—	65	_	ppm/°C

Table 4.6. Internal Oscillators

4.1.7 External Clock Input

Table 4.7. External Clock Input

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
External Input CMOS Clock	f _{CMOS}		0	—	50	MHz
Frequency (at EXTCLK pin)						
External Input CMOS Clock High Time	t _{СМОЅН}		9	—	—	ns
External Input CMOS Clock Low Time	t _{CMOSL}		9	_	_	ns

Table 4.9. ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	N _{bits}	14 Bit Mode		14		Bits
		12 Bit Mode		12		Bits
		10 Bit Mode		10		Bits
Throughput Rate	f _S	14 Bit Mode	—	_	900	ksps
(High Speed Mode)		12 Bit Mode	—	_	1	Msps
		10 Bit Mode	_	_	1.125	Msps
Throughput Rate	f _S	14 Bit Mode	—	_	TBD	ksps
(Low Power Mode)		12 Bit Mode	—	_	TBD	ksps
		10 Bit Mode	—	_	TBD	ksps
Tracking Time	t _{TRK}	High Speed Mode	217.8 ¹	_	_	ns
		Low Power Mode	450	_	_	ns
Power-On Time	t _{PWR}		1.2	_	_	μs
SAR Clock Frequency	f _{SAR}	High Speed Mode	_	_	18.36	MHz
		Low Power Mode	_	_	TBD	MHz
Conversion Time ²	t _{CNV}	14-Bit Conversion,		0.81	μs	
		SAR Clock =18 MHz,				
		System Clock = 72 MHz.				
		12-Bit Conversion,		0.7		μs
		SAR Clock =18 MHz,				
		System Clock = 72 MHz.				
		10-Bit Conversion,		0.59		μs
		SAR Clock =18 MHz,				
		System Clock = 72 MHz.				
Sample/Hold Capacitor	C _{SAR}	Gain = 1	_	5.2	_	pF
		Gain = 0.75	_	3.9	_	pF
		Gain = 0.5	_	2.6	_	pF
		Gain = 0.25	_	1.3	_	pF
Input Pin Capacitance	C _{IN}	High Quality Input	_	TBD	_	pF
		Normal Input	—	20	_	pF
Input Mux Impedance	R _{MUX}	High Quality Input	_	TBD	_	Ω
		Normal Input	_	550	_	Ω
Voltage Reference Range	V _{REF}		1	_	V _{IO}	V
Input Voltage Range ³	V _{IN}	Gain = 1	0	_	V _{REF} / Gain	V

4.1.11 Temperature Sensor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Uncalibrated Offset	V _{OFF}	T _A = 0 °C	_	TBD	_	mV
Uncalibrated Offset Error ¹	E _{OFF}	T _A = 0 °C	_	TBD	_	mV
Slope	М		—	2.83	—	mV/°C
Slope Error ¹	E _M		_	TBD	_	μV/°C
Linearity			_	TBD	_	°C
Turn-on Time			—	TBD	—	μs
Temp Sensor Error Using Typical		T = 0 °C to 70 °C	TBD		TBD	°C
set ^{2, 3}		T = -20 °C to 85 °C	-3	—	3	°C
		T = -40 °C to 105 °C	TBD		TBD	°C

Table 4.11. Temperature Sensor

Note:

1. Represents one standard deviation from the mean.

2. The factory-calibrated offset value is stored in the read-only area of flash in locations 0xFFD4 (low byte) and 0xFFD5 (high byte). The 14-bit result represents the output of the ADC when sampling the temp sensor using the 1.65 V internal voltage reference.

3. Temp sensor error is based upon characterization and is not tested across temperature in production. The values represent three standard deviations above and below the mean.

4.1.12 DACs

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	N _{bits}			12	1	Bits
Throughput Rate	f _S		_		200	ksps
Integral Nonlinearity	INL		TBD	±0.5	TBD	LSB
Differential Nonlinearity	DNL		TBD	±5	TBD	LSB
Output Noise	VREF = 2.4 V f _S = 0.1 Hz to 300 kHz		_	110	_	μV _{RMS}
Slew Rate	SLEW		—	±1	_	V/µs
Output Settling Time to 1 LSB	t SETTLE	V _{OUT} change between 25% and 75% Full Scale	_	2.6	5	μs
Power-on Time	t _{PWR}		_	_	10	μs
Voltage Reference Range	V _{REF}		1.15	_	V _{DD}	V
Power Supply Rejection Ratio	PSRR	DC, V _{OUT} = 50% Full Scale	—	110	_	dB
		1 kHz, V _{OUT} = 50% Full Scale	_	60	_	dB
Total Harmonic Distortion	THD	V _{OUT} = 10 kHz sine wave, 10% to 90%	60			dB
Offset Error	E _{OFF}	VREF = 2.4 V	TBD	±0.5	TBD	LSB
Offset Temperature Coefficient	TC _{OFF}		—	TBD	_	ppm/°C
Full-Scale Error	E _{FS}	VREF = 2.4 V	TBD	±5	TBD	LSB
Full-Scale Error Tempco	TC _{FS}		—	TBD	—	ppm/°C
External Load Impedance	R _{LOAD}		2	_	_	kΩ
External Load Capacitance	C _{LOAD}		TBD	_	100	pF
Load Regulation		V _{OUT} = 50% Full Scale	—	100	TBD	μV/mA
		I _{OUT} = -2 to 2 mA				

4.1.13 Comparators

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Response Time, CPMD = 00	t _{RESP0}	+100 mV Differential		100	_	ns
(Highest Speed)		-100 mV Differential	_	150	_	ns
Response Time, CPMD = 11 (Low-	t _{RESP3}	+100 mV Differential		1.5	_	μs
est Power)		-100 mV Differential		3.5	_	μs
Positive Hysteresis	HYS _{CP+}	CPHYP = 00		0.4	_	mV
Mode 0 (CPMD = 00)		CPHYP = 01		8		mV
		CPHYP = 10		16		mV
		CPHYP = 11		32	_	mV
Negative Hysteresis	HYS _{CP-}	CPHYN = 00		-0.4		mV
Mode 0 (CPMD = 00)		CPHYN = 01		-8	_	mV
		CPHYN = 10		-16	_	mV
		CPHYN = 11		-32	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00		0.5	_	mV
Mode 1 (CPMD = 01)		CPHYP = 01		6	_	mV
		CPHYP = 10	_	12	_	mV
		CPHYP = 11	_	24		mV
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	_	-0.5	_	mV
Mode 1 (CPMD = 01)		CPHYN = 01	_	-6	_	mV
		CPHYN = 10	_	-12	_	mV
		CPHYN = 11	_	-24	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	0.7	_	mV
Mode 2 (CPMD = 10)		CPHYP = 01	_	4.5	_	mV
		CPHYP = 10	_	9	_	mV
		CPHYP = 11	_	18	_	mV
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	_	-0.6	_	mV
Mode 2 (CPMD = 10)		CPHYN = 01	_	-4.5	_	mV
		CPHYN = 10	_	-9	_	mV
		CPHYN = 11		-18	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	1.5	_	mV
Mode 3 (CPMD = 11)		CPHYP = 01	_	4	_	mV
		CPHYP = 10	_	8	_	mV
		CPHYP = 11		16	_	mV

Table 4.13. Comparators

4.2 Thermal Conditions

Table 4.16. Thermal Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal Resistance	θ _{JA}	QFN24 Packages	—	TBD	_	°C/W
		QFN32 Packages	—	TBD	_	°C/W
		QFP32 Packages	—	80	_	°C/W
		QSOP24 Packages	—	65	—	°C/W
Note: 1. Thermal resistance assumes a	multi-layer F	PCB with any exposed pad soldered to	a PCB pad.			

4.3 Absolute Maximum Ratings

Stresses above those listed in Table 4.17 Absolute Maximum Ratings on page 27 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Table 4.17.	Absolute	Maximum	Ratings
-------------	----------	---------	---------

Parameter	Symbol	Test Condition	Min	Max	Unit
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C
Storage Temperature	T _{STG}		-65	150	°C
Voltage on VDD	V _{DD}		GND-0.3	4.2	V
Voltage on VIO ²	V _{IO}		GND-0.3	V _{DD} +0.3	V
Voltage on I/O pins or RSTb, excluding P2.0-P2.3 (QFN24 and QSOP24) or P3.0-P3.3 (QFN32 and QFP32)	V _{IN}	V _{IO} > TBD V	GND-0.3	TBD	V
		V _{IO} < TBD V	GND-0.3	TBD	V
Voltage on P2.0-P2.3 (QFN24 and QSOP24) or P3.0-P3.3 (QFN32 and QFP32)	V _{IN}		GND-0.3	V _{DD} +0.3	V
Total Current Sunk into Supply Pin	I _{VDD}		—	400	mA
Total Current Sourced out of Ground Pin	I _{GND}		400	—	mA
Current Sourced or Sunk by any I/O Pin or RSTb	I _{IO}		-100	100	mA

Note:

1. Exposure to maximum rating conditions for extended periods may affect device reliability.

2. In certain package configurations, the VIO and VDD supplies are bonded to the same pin.

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
28	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.3
				INT0.5	CMP0P.3
				INT1.5	CMP0N.3
				UART0_RX	
				CLU0B.10	
				CLU1A.9	
29	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.2
				INT0.4	CMP0P.2
				INT1.4	CMP0N.2
				UART0_TX	
				CLU0A.10	
				CLU1A.8	
30	P0.3	Multifunction I/O	Yes	P0MAT.3	XTAL2
				EXTCLK	
				INT0.3	
				INT1.3	
				CLU0B.9	
				CLU2B.10	
				CLU3A.9	
31	P0.2	Multifunction I/O	Yes	P0MAT.2	XTAL1
				INT0.2	ADC0.1
				INT1.2	CMP0P.1
				CLUOOUT	CMP0N.1
				CLU0A.9	
				CLU2B.8	
				CLU3A.8	
32	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.0
				INT0.1	CMP0P.0
				INT1.1	CMP0N.0
				CLU0B.8	AGND
				CLU2A.9	
				CLU3B.9	
Center	GND	Ground			

Pin	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
2	P0.0	Multifunction I/O	Vos		
2	1 0.0		163		
				CLUUA.8	
				CLUZA.8	
-		Oneveral		CLU3B.8	
3		Ground			
4		Supply Power Input			
5	RSID/	Active-low Reset /			
	C2CK	C2 Debug Clock			
6	P3.0 /	Multifunction I/O /			
	C2D	C2 Debug Data			
7	P2.3	Multifunction I/O	Yes	P2MAT.3	DAC3
				CLU1B.15	
				CLU2B.15	
				CLU3A.15	
8	P2.2	Multifunction I/O	Yes	P2MAT.2	DAC2
				CLU1A.15	
				CLU2B.14	
				CLU3A.14	
9	P2.1	Multifunction I/O	Yes	P2MAT.1	DAC1
				CLU1B.14	
				CLU2A.15	
				CLU3B.15	
10	P2.0	Multifunction I/O	Yes	P2MAT.0	DAC0
				CLU1A.14	
				CLU2A.14	
				CLU3B.14	
11	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.11
				CLU3OUT	CMP1P.5
				CLU0A.15	CMP1N.5
				CLU1B.12	
				CLU2A.12	

Pin	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
Number	D2.4	Multifunction 1/0	Vec		DAC1
	P2.1	Multifunction I/O	res		DACT
				CLU2A.15	
10	D 2 0	Multifunction I/O	Vaa		DACO
12	P2.0		res		DACU
				CLU2A.14	
12	D1 7	Multifunction I/O	Vaa	CLU3B.14	ADC0 12
13	P1.7		res		
				CLUUB. 13	
				CLUIB. 13	CMP IN.6
14	D1 6	Multifunction I/O	Vaa	CLUZA. 13	ADC0 11
14	P1.0		res		
				CLU3OUT	CMP1P.5
				CLUUA.15	CMP1N.5
				CLU1B.12	
4.5	D 4.5			CLU2A.12	
15	P1.5		Yes	P1MAT.5	ADC0.10
				CLU2OUT	CMP1P.4
				CLU0B.14	CMP1N.4
				CLU1A.13	
				CLU2B.13	
				CLU3B.11	
16	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.9
				I2C0_SCL	CMP1P.3
				CLU0A.14	CMP1N.3
				CLU1A.12	
				CLU2B.12	
				CLU3B.10	
17	P1.3	Multifunction I/O	Yes	P1MAT.3	CMP1P.2
				I2C0_SDA	CMP1N.2
				CLU0B.13	
				CLU1B.11	
				CLU2B.11	
				CLU3A.13	

Dimension	Min	Тур	Мах		
Note:					
1. All dimensions shown are in	1. All dimensions shown are in millimeters (mm) unless otherwise noted.				
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.					
3. This drawing conforms to JEDEC Solid State Outline MO-220.					
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.					

Dimension	Min	Тур	Мах		
ааа	0.20				
bbb	0.20				
ссс	0.10				
ddd		0.20			
theta	0°	3.5°	7 °		
Note:	•	•	•		

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MS-026.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8.2 QFP32 PCB Land Pattern

Figure 8.2. QFP32 PCB Land Pattern Drawing

Table 8.2.	QFP32 PCB	Land Pattern	Dimensions
------------	-----------	--------------	------------

Dimension	Min	Мах	
C1	8.40	8.50	
C2	8.40	8.50	
E	0.80 BSC		
X1	0.55		
Y1	1.5		

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

7. A No-Clean, Type-3 solder paste is recommended.

8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

Dimension	Min	Мах			
Note:					
1. All dimensions shown are in millimeters	(mm) unless otherwise noted.				
2. Dimensioning and Tolerancing is per the	ANSI Y14.5M-1994 specification.				
3. This Land Pattern Design is based on th	3. This Land Pattern Design is based on the IPC-SM-782 guidelines.				
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.					
5. A stainless steel, laser-cut and electro-p	olished stencil with trapezoidal walls should b	be used to assure good solder paste release.			
6. The stencil thickness should be 0.125 mm (5 mils).					
7. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.					
8. A 2 x 1 array of 1.20 mm x 0.95 mm ope	enings on a 1.15 mm pitch should be used for	the center pad.			
9. A No-Clean, Type-3 solder paste is reco	mmended.				

10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.3 QFN24 Package Marking

Figure 9.3. QFN24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

10.2 QSOP24 PCB Land Pattern

Figure 10.2. QSOP24 PCB Land Pattern Drawing

Table 10.2.	QSOP24 PCB Land Pattern Dimension	ns

Dimension	Min	Мах	
С	5.20	5.30	
E	0.635 BSC		
x	0.30	0.40	
Y	1.50	1.60	

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This land pattern design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

7. A No-Clean, Type-3 solder paste is recommended.

8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

	6.3 EFM8LB1x-QFN24 Pin Definitions												.40
	6.4 EFM8LB1x-QSOP24 Pin Definitions .									•			.45
7.	QFN32 Package Specifications.												50
	7.1 QFN32 Package Dimensions												.50
	7.2 QFN32 PCB Land Pattern												.52
	7.3 QFN32 Package Marking									•			.53
8.	QFP32 Package Specifications.												54
	8.1 QFP32 Package Dimensions												.54
	8.2 QFP32 PCB Land Pattern									•			.56
	8.3 QFP32 Package Marking		•	•		•							.57
9.	QFN24 Package Specifications.												58
	9.1 QFN24 Package Dimensions												.58
	9.2 QFN24 PCB Land Pattern									•			.60
	9.3 QFN24 Package Marking												.61
10	0. QSOP24 Package Specifications												62
	10.1 QSOP24 Package Dimensions												.62
	10.2 QSOP24 PCB Land Pattern												.64
	10.3 QSOP24 Package Marking									•			.65
11	1. Revision History												66
	11.1 Revision 0.1												.66
	11.2 Revision 0.2												.66
Та	able of Contents												67

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific to result in significant personal injury or death. Silicon Laboratories products are generally not intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com