

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	72MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	20
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 12x14b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	24-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8lb12f64e-a-qfn24r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

The EFM8LB1 device family are fully integrated, mixed-signal system-on-a-chip MCUs. Highlighted features are listed below.

- Core:
 - Pipelined CIP-51 Core
 - · Fully compatible with standard 8051 instruction set
 - 70% of instructions execute in 1-2 clock cycles
 - 72 MHz maximum operating frequency
- Memory:
 - Up to 64 kB flash memory (63 kB user-accessible), in-system re-programmable from firmware in 512-byte sectors
 - Up to 4352 bytes RAM (including 256 bytes standard 8051 RAM and 4096 bytes on-chip XRAM)
- · Power:
 - Internal LDO regulator for CPU core voltage
 - · Power-on reset circuit and brownout detectors
- I/O: Up to 29 total multifunction I/O pins:
 - Up to 25 pins 5 V tolerant under bias
 - Selectable state retention through reset events
 - · Flexible peripheral crossbar for peripheral routing
 - 5 mA source, 12.5 mA sink allows direct drive of LEDs
- · Clock Sources:
 - Internal 72 MHz oscillator with accuracy of ±2%
 - Internal 24.5 MHz oscillator with ±2% accuracy
 - · Internal 80 kHz low-frequency oscillator
 - External CMOS clock option
 - External crystal/RC/C Oscillator (up to 25 MHz)

- Analog:
 - 14/12/10-Bit Analog-to-Digital Converter (ADC)
 - Internal calibrated temperature sensor (±3 °C)
 - 4 x 12-Bit Digital-to-Analog Converters (DAC)
 - 2 x Low-current analog comparators with adjustable reference
- · Communications and Digital Peripherals:
 - 2 x UART, up to 3 Mbaud
 - SPI[™] Master / Slave, up to 12 Mbps
 - SMBus™/I2C™ Master / Slave, up to 400 kbps
 - I²C High-Speed Slave, up to 3.4 Mbps
 - 16-bit CRC unit, supporting automatic CRC of flash at 256byte boundaries
 - 4 Configurable Logic Units
- · Timers/Counters and PWM:
 - 6-channel Programmable Counter Array (PCA) supporting PWM, capture/compare, and frequency output modes
 - 6 x 16-bit general-purpose timers
 - Independent watchdog timer, clocked from the low frequency oscillator
- On-Chip, Non-Intrusive Debugging
 - · Full memory and register inspection
 - · Four hardware breakpoints, single-stepping

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8LB1 devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing nonvolatile data storage and allowing field upgrades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging. Device operation is specified from 2.2 V up to a 3.6 V supply. Devices are AEC-Q100 qualified (pending) and available in 4x4 mm 32-pin QFN, 3x3 mm 24-pin QFN, 32-pin QFP, or 24-pin QSOP packages. All package options are lead-free and RoHS compliant.

2. Ordering Information

Figure 2.1. EFM8LB1 Part Numbering

All EFM8LB1 family members have the following features:

- CIP-51 Core running up to 72 MHz
- Three Internal Oscillators (72 MHz, 24.5 MHz and 80 kHz)
- SMBus
- I2C Slave
- SPI
- 2 UARTs
- · 6-Channel Programmable Counter Array (PWM, Clock Generation, Capture/Compare)
- · Six 16-bit Timers
- Four Configurable Logic Units
- 14-bit Analog-to-Digital Converter with integrated multiplexer, voltage reference, temperature sensor, channel sequencer, and directto-XRAM data transfer
- Two Analog Comparators
- 16-bit CRC Unit
- AEC-Q100 qualified (pending)

In addition to these features, each part number in the EFM8LB1 family has a set of features that vary across the product line. The product selection guide shows the features available on each family member.

Table 2.1. Product Selection Guide

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC0 Channels	Voltage DACs	Comparator 0 Inputs	Comparator 1 Inputs	Pb-free (RoHS Compliant)	Temperature Range	Package
EFM8LB12F64E-A-QFN32	64	4352	29	20	4	10	9	Yes	-40 to +105 °C	QFN32
EFM8LB12F64E-A-QFP32	64	4352	28	20	4	10	9	Yes	-40 to +105 °C	QFP32
EFM8LB12F64E-A-QFN24	64	4352	20	12	4	6	6	Yes	-40 to +105 °C	QFN24
EFM8LB12F64E-A-QSOP24	64	4352	21	13	4	6	7	Yes	-40 to +105 °C	QSOP24

3.4 Clocking

The CPU core and peripheral subsystem may be clocked by both internal and external oscillator resources. By default, the system clock comes up running from the 24.5 MHz oscillator divided by 8.

The clock control system offers the following features:

- · Provides clock to core and peripherals.
- 24.5 MHz internal oscillator (HFOSC0), accurate to ±2% over supply and temperature corners.
- 72 MHz internal oscillator (HFOSC1), accurate to ±2% over supply and temperature corners.
- 80 kHz low-frequency oscillator (LFOSC0).
- · External Crystal / RC / C Oscillator.
- · External CMOS clock input (EXTCLK).
- · Clock divider with eight settings for flexible clock scaling:
 - Divide the selected clock source by 1, 2, 4, 8, 16, 32, 64, or 128.
 - HFOSC0 and HFOSC1 include 1.5x pre-scalers for further flexibility.

3.5 Counters/Timers and PWM

Programmable Counter Array (PCA0)

The programmable counter array (PCA) provides multiple channels of enhanced timer and PWM functionality while requiring less CPU intervention than standard counter/timers. The PCA consists of a dedicated 16-bit counter/timer and one 16-bit capture/compare module for each channel. The counter/timer is driven by a programmable timebase that has flexible external and internal clocking options. Each capture/compare module may be configured to operate independently in one of five modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, or Pulse-Width Modulated (PWM) Output. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the crossbar to port I/O when enabled.

- · 16-bit time base
- · Programmable clock divisor and clock source selection
- · Up to six independently-configurable channels
- 8, 9, 10, 11 and 16-bit PWM modes (center or edge-aligned operation)
- Output polarity control
- Frequency output mode
- Capture on rising, falling or any edge
- Compare function for arbitrary waveform generation
- · Software timer (internal compare) mode
- · Can accept hardware "kill" signal from comparator 0 or comparator 1

Timers (Timer 0, Timer 1, Timer 2, Timer 3, Timer 4, and Timer 5)

Several counter/timers are included in the device: two are 16-bit counter/timers compatible with those found in the standard 8051, and the rest are 16-bit auto-reload timers for timing peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. The other timers offer both 16-bit and split 8-bit timer functionality with auto-reload and capture capabilities.

Timer 0 and Timer 1 include the following features:

- Standard 8051 timers, supporting backwards-compatibility with firmware and hardware.
- Clock sources include SYSCLK, SYSCLK divided by 12, 4, or 48, the External Clock divided by 8, or an external pin.
- · 8-bit auto-reload counter/timer mode
- 13-bit counter/timer mode
- 16-bit counter/timer mode
- Dual 8-bit counter/timer mode (Timer 0)

Timer 2, Timer 3, Timer 4, and Timer 5 are 16-bit timers including the following features:

- · Clock sources for all timers include SYSCLK, SYSCLK divided by 12, or the External Clock divided by 8
- · LFOSC0 divided by 8 may be used to clock Timer 3 and Timer 4 in active or suspend/snooze power modes
- Timer 4 is a low-power wake source, and can be chained together with Timer 3
- 16-bit auto-reload timer mode
- Dual 8-bit auto-reload timer mode
- · External pin capture
- · LFOSC0 capture
- Comparator 0 capture
- Configurable Logic output capture

Watchdog Timer (WDT0)

The device includes a programmable watchdog timer (WDT) running off the low-frequency oscillator. A WDT overflow forces the MCU into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences a software or hardware malfunction preventing the software from restarting the WDT, the WDT overflows and causes a reset. Following a reset, the WDT is automatically enabled and running with the default maximum time interval. If needed, the WDT can be disabled by system software or locked on to prevent accidental disabling. Once locked, the WDT cannot be disabled until the next system reset. The state of the RST pin is unaffected by this reset.

The Watchdog Timer has the following features:

- · Programmable timeout interval
- · Runs from the low-frequency oscillator
- · Lock-out feature to prevent any modification until a system reset

3.6 Communications and Other Digital Peripherals

Universal Asynchronous Receiver/Transmitter (UART0)

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates. Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

The UART module provides the following features:

- · Asynchronous transmissions and receptions
- Baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive)
- 8- or 9-bit data
- · Automatic start and stop generation
- · Single-byte buffer on transmit and receive

4.1.4 Flash Memory

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Write Time ^{1,2}	t _{WRITE}	One Byte,	19	20	21	μs
		F _{SYSCLK} = 24.5 MHz				
Erase Time ^{1 ,2}	t _{ERASE}	One Page,	5.2	5.35	5.5	ms
		F _{SYSCLK} = 24.5 MHz				
V _{DD} Voltage During Programming ³	V _{PROG}		2.2		3.6	V
Endurance (Write/Erase Cycles)	N _{WE}		20k	100k		Cycles

Table 4.4. Flash Memory

Note:

1. Does not include sequencing time before and after the write/erase operation, which may be multiple SYSCLK cycles.

2. The internal High-Frequency Oscillator 0 has a programmable output frequency, which is factory programmed to 24.5 MHz. If user firmware adjusts the oscillator speed, it must be between 22 and 25 MHz during any flash write or erase operation. It is recommended to write the HFO0CAL register back to its reset value when writing or erasing flash.

3. Flash can be safely programmed at any voltage above the supply monitor threshold (V_{VDDM}).

4. Data Retention Information is published in the Quarterly Quality and Reliability Report.

4.1.5 Power Management Timing

Table 4.5. Power Management Timing

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Idle Mode Wake-up Time	t _{IDLEWK}		2	_	3	SYSCLKs
Suspend Mode Wake-up Time	t _{SUS-}	SYSCLK = HFOSC0	—	170	_	ns
	PENDWK	CLKDIV = 0x00				
Snooze Mode Wake-up Time	t _{SLEEPWK}	SYSCLK = HFOSC0	—	12	_	μs
		CLKDIV = 0x00				

4.1.6 Internal Oscillators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
High Frequency Oscillator 0 (24.5 MHz)								
Oscillator Frequency	f _{HFOSC0}	Full Temperature and Supply Range	24	24.5	25	MHz		
Power Supply Sensitivity	PSS _{HFOS} C0	T _A = 25 °C	_	0.5	_	%/V		
Temperature Sensitivity	TS _{HFOSC0}	V _{DD} = 3.0 V	_	40	_	ppm/°C		
High Frequency Oscillator 1 (72 MHz)								
Oscillator Frequency	f _{HFOSC1}	Full Temperature and Supply Range	70.5	72	73.5	MHz		
Power Supply Sensitivity	PSS _{HFOS} C1	T _A = 25 °C	_	TBD	_	%/V		
Temperature Sensitivity	TS _{HFOSC1}	V _{DD} = 3.0 V	_	TBD		ppm/°C		
Low Frequency Oscillator (80 kHz)								
Oscillator Frequency	f _{LFOSC}	Full Temperature and Supply Range	75	80	85	kHz		
Power Supply Sensitivity	PSS _{LFOSC}	T _A = 25 °C	—	0.05	_	%/V		
Temperature Sensitivity	TS _{LFOSC}	V _{DD} = 3.0 V	—	65	_	ppm/°C		

Table 4.6. Internal Oscillators

4.1.7 External Clock Input

Table 4.7. External Clock Input

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
External Input CMOS Clock	f _{CMOS}		0	—	50	MHz
Frequency (at EXTCLK pin)						
External Input CMOS Clock High Time	t _{СМОЅН}		9	—	—	ns
External Input CMOS Clock Low Time	t _{CMOSL}		9	—	_	ns

Table 4.9. ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Resolution	N _{bits}	14 Bit Mode		14		Bits	
		12 Bit Mode		12			
		10 Bit Mode		10			
Throughput Rate	f _S	14 Bit Mode	—	_	900	ksps	
(High Speed Mode)		12 Bit Mode	_	_	1	Msps	
		10 Bit Mode	_	_	1.125	Msps	
Throughput Rate	f _S	14 Bit Mode	—	_	TBD	ksps	
(Low Power Mode)		12 Bit Mode	—	_	TBD	ksps	
		10 Bit Mode	—	_	TBD	ksps	
Tracking Time	t _{TRK}	High Speed Mode	217.8 ¹	_	_	ns	
		Low Power Mode	450	_	_	ns	
Power-On Time	t _{PWR}		1.2	_	_	μs	
SAR Clock Frequency	f _{SAR}	High Speed Mode	_	_	18.36	MHz	
		Low Power Mode	_	_	TBD	MHz	
Conversion Time ²	t _{CNV}	14-Bit Conversion,		0.81	1	μs	
		SAR Clock =18 MHz,					
		System Clock = 72 MHz.					
		12-Bit Conversion,		0.7		μs	
		SAR Clock =18 MHz,					
		System Clock = 72 MHz.					
		10-Bit Conversion,		μs			
		SAR Clock =18 MHz,					
		System Clock = 72 MHz.					
Sample/Hold Capacitor	C _{SAR}	Gain = 1	_	5.2	_	pF	
		Gain = 0.75	_	3.9	_	pF	
		Gain = 0.5	_	2.6	_	pF	
		Gain = 0.25	_	1.3	_	pF	
Input Pin Capacitance	C _{IN}	High Quality Input	_	TBD	_	pF	
		Normal Input	—	20	_	pF	
Input Mux Impedance	R _{MUX}	High Quality Input	_	TBD	_	Ω	
		Normal Input	_	550	_	Ω	
Voltage Reference Range	V _{REF}		1	_	V _{IO}	V	
Input Voltage Range ³	V _{IN}	Gain = 1	0 — V _{REF} / Gain		V _{REF} / Gain	V	

Parameter	Symbol	Symbol Test Condition		Тур	Max	Unit
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	_	-1.5	—	mV
Mode 3 (CPMD = 11)		CPHYN = 01	—	-4	_	mV
		CPHYN = 10	—	-8	—	mV
		CPHYN = 11	—	-16	_	mV
Input Range (CP+ or CP-)	V _{IN}		-0.25		V _{IO} +0.25	V
Input Pin Capacitance	C _{CP}			7.5		pF
Internal Reference DAC Resolution	N _{bits}			6		bits
Common-Mode Rejection Ratio	CMRR _{CP}		_	70	_	dB
Power Supply Rejection Ratio	PSRR _{CP}		_	72	_	dB
Input Offset Voltage	V _{OFF}	T _A = 25 °C	-10	0	10	mV
Input Offset Tempco	TC _{OFF}		_	3.5	_	μV/°

4.1.14 Configurable Logic

Table 4.14. Configurable Logic

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Propagation Delay	t _{DLY}	Through single CLU	TBD	_	TBD	ns
Clocking Frequency	F _{CLK}	1 or 2 CLUs Cascaded	—	—	73.5	MHz
		3 or 4 CLUs Cascaded	—	_	36.75	MHz

Pin	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
Number					
1	P0.0	Multifunction I/O	Yes	P0MAT.0	VREF
				INT0.0	
				INT1.0	
				CLU0A.8	
				CLU2A.8	
				CLU3B.8	
2	VIO	I/O Supply Power Input			
3	VDD	Supply Power Input			
4	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
5	P3.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			
6	P3.4	Multifunction I/O			
7	P3.3	Multifunction I/O			DAC3
8	P3.2	Multifunction I/O			DAC2
9	P3.1	Multifunction I/O			DAC1
10	P3.0	Multifunction I/O			DAC0
11	P2.6	Multifunction I/O			ADC0.19
					CMP1P.8
					CMP1N.8
12	P2.5	Multifunction I/O		CLU3OUT	ADC0.18
					CMP1P.7
					CMP1N.7
13	P2.4	Multifunction I/O			ADC0.17
					CMP1P.6
					CMP1N.6
14	P2.3	Multifunction I/O	Yes	P2MAT.3	ADC0.16
				CLU1B.15	CMP1P.5
				CLU2B.15	CMP1N.5
				CLU3A.15	

Table 6.1. Pin Definitions for EFM8LB1x-QFN32

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
15	P2.2	Multifunction I/O	Yes	P2MAT.2	ADC0.15
				CLU2OUT	CMP1P.4
				CLU1A.15	CMP1N.4
				CLU2B.14	
				CLU3A.14	
16	P2.1	Multifunction I/O	Yes	P2MAT.1	ADC0.14
				I2C0_SCL	CMP1P.3
				CLU1B.14	CMP1N.3
				CLU2A.15	
				CLU3B.15	
17	P2.0	Multifunction I/O	Yes	P2MAT.0	CMP1P.2
				I2C0_SDA	CMP1N.2
				CLU1A.14	
				CLU2A.14	
				CLU3B.14	
18	P1.7	Multifunction I/O	Yes	P1MAT.7	ADC0.13
				CLU0B.15	CMP0P.9
				CLU1B.13	CMP0N.9
				CLU2A.13	
19	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.12
				CLU0A.15	
				CLU1B.12	
				CLU2A.12	
20	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.11
				CLU0B.14	
				CLU1A.13	
				CLU2B.13	
				CLU3B.11	
21	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.10
				CLU0A.14	
				CLU1A.12	
				CLU2B.12	
				CLU3B.10	

Pin	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
2	P0.0	Multifunction I/O	Vos		
2	1 0.0		163		
				CLUUA.8	
				CLUZA.8	
-		Oneveral		CLU3B.8	
3		Ground			
4		Supply Power Input			
5	RSID/	Active-low Reset /			
	C2CK	C2 Debug Clock			
6	P3.0 /	Multifunction I/O /			
	C2D	C2 Debug Data			
7	P2.3	Multifunction I/O	Yes	P2MAT.3	DAC3
				CLU1B.15	
				CLU2B.15	
				CLU3A.15	
8	P2.2	Multifunction I/O	Yes	P2MAT.2	DAC2
				CLU1A.15	
				CLU2B.14	
				CLU3A.14	
9	P2.1	Multifunction I/O	Yes	P2MAT.1	DAC1
				CLU1B.14	
				CLU2A.15	
				CLU3B.15	
10	P2.0	Multifunction I/O	Yes	P2MAT.0	DAC0
				CLU1A.14	
				CLU2A.14	
				CLU3B.14	
11	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.11
				CLU3OUT	CMP1P.5
				CLU0A.15	CMP1N.5
				CLU1B.12	
				CLU2A.12	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
19	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.5
				INT0.7	CMP0P.5
				INT1.7	CMP0N.5
				CLU1OUT	CMP1P.1
				CLU0B.11	CMP1N.1
				CLU1B.9	
				CLU3A.11	
20	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.4
				CNVSTR	CMP0P.4
				INT0.6	CMP0N.4
				INT1.6	CMP1P.0
				CLU0A.11	CMP1N.0
				CLU1B.8	
				CLU3A.10	
21	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.3
				INT0.5	CMP0P.3
				INT1.5	CMP0N.3
				UART0_RX	
				CLU0B.10	
				CLU1A.9	
22	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.2
				INT0.4	CMP0P.2
				INT1.4	CMP0N.2
				UART0_TX	
				CLU0A.10	
				CLU1A.8	
23	P0.3	Multifunction I/O	Yes	P0MAT.3	XTAL2
				EXTCLK	
				INT0.3	
				INT1.3	
				CLU0B.9	
				CLU2B.10	
				CLU3A.9	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
24	P0.2	Multifunction I/O	Yes	P0MAT.2	XTAL1
				INT0.2	ADC0.1
				INT1.2	CMP0P.1
				CLU0OUT	CMP0N.1
				CLU0A.9	
				CLU2B.8	
				CLU3A.8	
Center	GND	Ground			

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
2	P0.2	Multifunction I/O	Yes	P0MAT.2	XTAL1
				INT0.2	ADC0.1
				INT1.2	CMP0P.1
				CLU0OUT	CMP0N.1
				CLU0A.9	
				CLU2B.8	
				CLU3A.8	
3	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.0
				INT0.1	CMP0P.0
				INT1.1	CMP0N.0
				CLU0B.8	AGND
				CLU2A.9	
				CLU3B.9	
4	P0.0	Multifunction I/O	Yes	P0MAT.0	VREF
				INT0.0	
				INT1.0	
				CLU0A.8	
				CLU2A.8	
				CLU3B.8	
5	GND	Ground			
6	VDD / VIO	Supply Power Input			
7	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
8	P3.0 /	Multifunction I/O /			
	C2D	C2 Debug Data			
9	P2.3	Multifunction I/O	Yes	P2MAT.3	DAC3
				CLU1B.15	
				CLU2B.15	
				CLU3A.15	
10	P2.2	Multifunction I/O	Yes	P2MAT.2	DAC2
				CLU1A.15	
				CLU2B.14	
				CLU3A.14	

7. QFN32 Package Specifications

7.1 QFN32 Package Dimensions

Figure 7.1. QFN32 Package Drawing

Dimension	Min	Тур	Мах						
A	0.45	0.50	0.55						
A1	0.00	0.035	0.05						
b	0.15	0.20	0.25						
D		4.00 BSC.							
D2	2.80	2.90	3.00						
е	0.40 BSC.								
E		4.00 BSC.							
E2	2.80	2.90	3.00						
L	0.20	0.30	0.40						
ааа	_	_	0.10						
bbb	_	—	0.10						
ССС	_	—	0.08						
ddd	_	_	0.10						
eee	—	—	0.10						
999			0.05						

Table 7.1. QFN32 Package Dimensions

Dimension	Min	Тур	Мах								
Note:											
1. All dimensions shown are in	1. All dimensions shown are in millimeters (mm) unless otherwise noted.										
2. Dimensioning and Toleranci	2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.										
3. This drawing conforms to JEDEC Solid State Outline MO-220.											
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.											

Dimension	Min						
Note:							
1. All dimensions shown are in millimeters	(mm) unless otherwise noted.						
2. Dimensioning and Tolerancing is per the	e ANSI Y14.5M-1994 specification.						
3. This Land Pattern Design is based on the	ne IPC-7351 guidelines.						
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm.							
 All metal pads are to be non-solder mas minimum, all the way around the pad. 	sk defined (NSMD). Clearance between the so	older mask and the metal pad is to be 60 μm					
6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste released to assure good to assure good solder paste released to assure good to assure good solder paste released to assure good good to assure good to assure good to assure good to							
7. The stencil thickness should be 0.125 m	nm (5 mils).						
8. The ratio of stencil aperture to land pad	size should be 1:1 for all perimeter pads.						
9. A 2 x 2 array of 1.10 mm square openin	gs on a 1.30 mm pitch should be used for the	center pad.					

- 10. A No-Clean, Type-3 solder paste is recommended.
- 11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

7.3 QFN32 Package Marking

Figure 7.3. QFN32 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

Dimension	Min	Мах
Note:		
1. All dimensions shown are in millimeters	(mm) unless otherwise noted.	
2. Dimensioning and Tolerancing is per the	ANSI Y14.5M-1994 specification.	
3. This Land Pattern Design is based on th	e IPC-SM-782 guidelines.	
 All metal pads are to be non-solder mas minimum, all the way around the pad. 	k defined (NSMD). Clearance between the so	lder mask and the metal pad is to be 60 μm
5. A stainless steel, laser-cut and electro-p	olished stencil with trapezoidal walls should b	be used to assure good solder paste release.
6. The stencil thickness should be 0.125 m	ım (5 mils).	
7. The ratio of stencil aperture to land pad	size should be 1:1 for all perimeter pads.	
8. A 2 x 1 array of 1.20 mm x 0.95 mm ope	enings on a 1.15 mm pitch should be used for	the center pad.
9. A No-Clean, Type-3 solder paste is reco	mmended.	

10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.3 QFN24 Package Marking

Figure 9.3. QFN24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

	6.3 EFM8LB1x-QFN24 Pin Definitions .										.40
	6.4 EFM8LB1x-QSOP24 Pin Definitions .								•		.45
7.	. QFN32 Package Specifications.										50
	7.1 QFN32 Package Dimensions										.50
	7.2 QFN32 PCB Land Pattern										.52
	7.3 QFN32 Package Marking									•	.53
8.	. QFP32 Package Specifications.										54
	8.1 QFP32 Package Dimensions										.54
	8.2 QFP32 PCB Land Pattern								•		.56
	8.3 QFP32 Package Marking								•	•	.57
9.	. QFN24 Package Specifications.										58
	9.1 QFN24 Package Dimensions										.58
	9.2 QFN24 PCB Land Pattern										.60
	9.3 QFN24 Package Marking								•		.61
10	0. QSOP24 Package Specifications										62
	10.1 QSOP24 Package Dimensions										.62
	10.2 QSOP24 PCB Land Pattern										.64
	10.3 QSOP24 Package Marking										.65
11	1. Revision History										66
	11.1 Revision 0.1										.66
	11.2 Revision 0.2										.66
Та	able of Contents					•					67

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific to result in significant personal injury or death. Silicon Laboratories products are generally not intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com