

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18326-e-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started With PIC16(L)F183XX Microcontrollers	
3.0	Enhanced Mid-Range CPU	
4.0	Memory Organization	
5.0	Device Configuration	
6.0	Resets	
7.0	Oscillator Module	
8.0	Interrupts	
9.0	Power-Saving Operation Modes	
10.0	Watchdog Timer (WDT)	
11.0	Nonvolatile Memory (NVM) Control	
	I/O Ports	
13.0	Peripheral Pin Select (PPS) Module	
	Peripheral Module Disable	
15.0	Interrupt-on-Change	
16.0	Fixed Voltage Reference (FVR)	
17.0	Temperature Indicator Module	
	Comparator Module	
19.0	Pulse-Width Modulation (PWM)	
	Complementary Waveform Generator (CWG) Module	
	Configurable Logic Cell (CLC)	
	Analog-to-Digital Converter (ADC) Module	
	Numerically Controlled Oscillator (NCO1) Module	
	5-bit Digital-to-Analog Converter (DAC1) Module	
	Data Signal Modulator (DSM) Module	
	Timer0 Module	
	Timer1/3/5 Module with Gate Control	
	Timer 2/4/6 Module	
	Capture/Compare/PWM Modules	
	Master Synchronous Serial Port (MSSPx) Module	
	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART1)	
	Reference Clock Output Module	
	In-Circuit Serial Programming™ (ICSP™)	
	Instruction Set Summary	
	Electrical Specifications	
	DC and AC Characteristics Graphs and Charts	
	Development Support	
	Packaging Information	
	ndix A: Data Sheet Revision History	
	Nicrochip Website	
	omer Change Notification Service	
	omer Support	
Produ	uct Identification System	

TABLE 1-2: PIC16(L)F18326 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0+/DAC1OUT/	RA0	TTL/ST	CMOS	General purpose I/O.
SS2 ⁽¹⁾ / ICDDAT/ICSPDAT	ANA0	AN	_	ADC Channel A0 input.
	C1IN0+	AN	_	Comparator C1 positive input.
	DAC1OUT	_	AN	Digital-to-Analog Converter output.
	SS2	TTL/ST	—	Slave Select 2 input.
	ICDDAT	TTL/ST	CMOS	In-Circuit Debug Data I/O.
	ICSPDAT	TTL/ST	CMOS	ICSP™ Data I/O.
RA1/ANA1/VREF+/C1IN0-/	RA1	TTL/ST	CMOS	General purpose I/O.
C2IN0-/DAC1REF+/ ICDCLK/	ANA1	AN	—	ADC Channel A1 input.
ICSPCLK	VREF+	AN	—	ADC positive voltage reference input.
	C1IN0-	AN	_	Comparator C1 negative input.
	C2IN0-	AN	_	Comparator C2 negative input.
	DAC1REF+	_	AN	Digital-to-Analog Converter positive reference input
	ICDCLK	TTL/ST	CMOS	In-Circuit Debug Clock I/O.
	ICSPCLK	TTL/ST	CMOS	ICSP Clock I/O.
RA2/ANA2/VREF-/ DAC1REF-/	RA2	TTL/ST	CMOS	General purpose I/O.
T0CKI ⁽¹⁾ / CCP3 ⁽¹⁾ /CWG1IN ⁽¹⁾ / CWG2IN ⁽¹⁾ /INT ⁽¹⁾	ANA2	AN	_	ADC Channel A2 input.
CWG2IN ⁽¹ /INI ⁽¹⁾	VREF-	AN	—	ADC negative voltage reference input.
	DAC1REF-	—	AN	Digital-to-Analog Converter negative reference inpu
	TOCKI	TTL/ST	_	TMR0 Clock input.
	CCP3	TTL/ST	CMOS	Capture/Compare/PWM 3 input.
	CWG1IN	TTL/ST	—	Complementary Waveform Generator 1 input.
	CWG2IN	TTL/ST	—	Complementary Waveform Generator 2 input.
	INT	TTL/ST	—	External interrupt input.
RA3/MCLR/Vpp	RA3	TTL/ST	CMOS	General purpose I/O.
	MCLR	TTL/ST	—	Master Clear with internal pull-up.
	Vpp	HV	_	Programming voltage.
RA4/ANA4/T1G ⁽¹⁾ / SOSCO/	RA4	TTL/ST	CMOS	General purpose I/O.
CLKOUT/OSC2	ANA4	AN	_	ADC Channel A4 input.
	T1G	ST	_	TMR1 gate input.
	SOSCO	_	XTAL	Secondary Oscillator connection.
	CLKOUT	—	CMOS	Fosc/4 output.
	OSC2	_	XTAL	Crystal/Resonator (LP, XT, HS modes).

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD
 = Open-Drain

 TTL = TTL compatible input
 ST
 = Schmitt Trigger input with CMOS levels
 I²C
 = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL
 = Crystal levels
 I
 I
 I

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 13-1.
 All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 13-2.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

TABLE	4-4: SPE	CIAL FU	NCTION RE		UMMARY B	ANKS 0-31 (CONTINUE)		
Address	Name	PIC16(L)F18326 PIC16(L)F18346	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

Bank 1	0-11											
					CPU CORE RE	EGISTERS; see	Table 4-2 for sp	ecifics				
50Ch to 51Fh	-	-				Unimple	emented				-	_
58Ch to 59Fh	_	—				Unimple	emented				-	_
Bank 1	2											
60Ch	—	—				Unimple	emented				—	_
60Dh	—					Unimple	emented				_	
60Eh	—	—				Unimple	emented				—	_
60Fh	—					Unimple	emented				_	
610h	—					Unimple	emented				_	
611h	—	—				Unimple	emented				—	_
612h	—	—				Unimple	emented				—	_
613h	—	—		Unimplemented						—	—	
614h	—	—		Unimplemented						—	_	
615h	—	—		Unimplemented						—	_	
616h	—	—		Unimplemented						—	_	
617h	PWM5DCL		PWM5DC	PWM5DC<1:0>					xx	uu		
618h	PWM5DCH			PWM5DC<9:2> xxxx xxxx uuuu u						uuuu uuuu		
619h	PWM5CON		PWM5EN	PWM5EN — PWM5OUT PWM5POL — — — —						0-00	0-00	
61Ah	PWM6DCL		PWM6DC	PWM6DC<1:0>					xx	uu		
61Bh	PWM6DCH			PWM6DC<9:2>					XXXX XXXX	uuuu uuuu		
61Ch	PWM6CON		PWM6EN	_	PWM6OUT	PWM6POL	—	—	—	—	0-00	0-00
61Dh to 61Eh	_	-				Unimple	emented				-	_
61Fh	PWMTMRS		_	_	_	_	P6TSE	EL<1:0>	P5TSI	EL<1:0>	0101	0101

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Only on PIC16F18326/18346.

> 2: Register accessible from both User and ICD Debugger.

Value on

all other Resets

Value on: POR, BOR

Address	Name	PIC16(L)F18326 PIC16(L)F18346	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 2	9											
					CPU CORE RI	EGISTERS; see	Table 4-2 for spe	ecifics				
E8Dh	—	—				Unimple	mented				_	-
E8Eh	—	—				Unimple	mented				—	—
E8Fh	—					Unimple	mented				_	
E90h	RA0PPS		_					RA0PPS<4:0>			0 0000	u uuuu
E91h	RA1PPS		—	_	—	RA1PPS<4:0>					0 0000	u uuuu
E92h	RA2PPS		_	_	—			RA2PPS<4:0>			0 0000	u uuuu
E93h	—	—			Unimplemented						-	—
E94h	RA4PPS		—	—	—			RA4PPS<4:0>			0 0000	u uuuu
E95h	RA5PPS		—	—	—			RA5PPS<4:0>			0 0000	u uuuu
E96h	—					Unimple	mented				_	
E97h	_					Unimple	mented					
E98h	—					Unimple	mented					
E99h	_					Unimple	mented					
E9Ah	—			Unimplemented —								
E9Bh	—	_		Unimplemented — —							—	
E9Ch	RB4PPS	X —		Unimplemented								
		— X	_	—							0 0000	u uuuu
E9Dh	RB5PPS	X —		Unimplemented — —						—		
		— X	_	_	_			RB5PPS<4:0>			0 0000	u uuuu
E9Eh	RB6PPS	X —				Unimple	mented				-	-
		— X	_	_	_			RB6PPS<4:0>			0 0000	u uuuu
E9Fh	RB7PPS	X —				Unimple	mented				-	-
		— X	—	—	—			RB7PPS<4:0>			0 0000	u uuuu

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Only on PIC16F18326/18346.

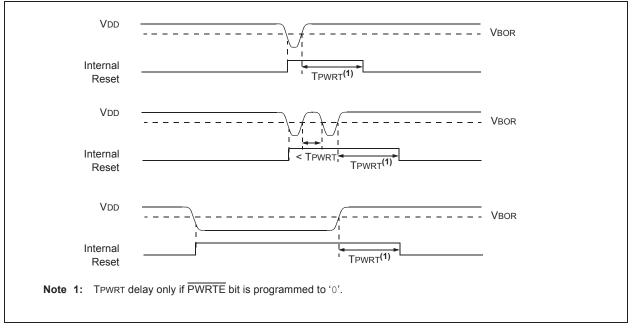
2: Register accessible from both User and ICD Debugger.

6.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

6.2.2 BOR IS OFF IN SLEEP


When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep, but device wake-up will be delayed until the BOR can determine that VDD is higher than the BOR threshold. The device wake-up will be delayed until the BOR is ready.

6.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device wake from Sleep is not delayed by the BOR Ready condition or the VDD level only when the SBOREN bit is cleared in software and the device is starting up from a non POR/BOR Reset event.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register. BOR Protection is unchanged by Sleep

FIGURE 6-2: BROWN-OUT SITUATIONS

6.2.4 BOR ALWAYS OFF

When the BOREN bits of Configuration Word 2 are programmed to '00', the BOR is always disable. In the configuration, setting the SWBOREN bit will have no affect on BOR operation.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
OSFIE	CSWIE	TMR3GIE	TMR3IE	CLC4IE	CLC3IE	CLC2IE	CLC1IE
bit 7	·			•			bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch		x = Bit is unkr	nown	•	at POR and BO		other Resets
'1' = Bit is set	0	'0' = Bit is clea	ared				
bit 7	1 = Enables	ator Fail Interru the Oscillator F the Oscillator I	ail interrupt				
bit 6	1 = The clock	k Switch Comp switch module switch module	e interrupt is e	enabled			
bit 5	1 = Timer3 Ga	mer3 Gate Inte ate interrupt is ate interrupt is	enabled	oit			
bit 4	1 = TMR3 ove	R3 Overflow Interrupt erflow interrupt erflow interrupt	is enabled				
bit 3	1 = CLC4 inte	4 Interrupt Fla errupt is enable errupt is not ena	d				
bit 2	CLC3IE: CLC 1 = CLC3 inte	3 Interrupt Fla errupt is enable errupt is not ena	g bit d				
bit 1	1 = CLC2 inte	2 Interrupt Ena errupt enabled errupt disabled	able bit				
bit 0	CLC1IE: CLC 1 = CLC1 inte	1 Interrupt Ena	able bit				

REGISTER 8-5: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

12.7 Register Definitions: PORTC

'1' = Bit is set

REGISTER 12-17: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
RC7 ⁽¹⁾	RC6 ⁽¹⁾	RC5	RC4	RC3	RC2	RC1	RC0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		

bit 7-6	RC<7:6>: PORTC I/O Value bits ^(1,2)
	1 = Port pin is ≥ Viн
	0 = Port pin is <u><</u> VIL
bit 5-0	RC<5:0>: PORTC General Purpose I/O Pin bits ⁽²⁾
	1 = Port pin is <u>></u> Viн
	0 = Port pin is <u><</u> VIL

'0' = Bit is cleared

Note 1: PIC16(L)F18346 only; otherwise read as '0'.

2: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

REGISTER 12-18: TRISC: PORTC TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	TRISC<7:6> : PORTC Tri-State Control bits ⁽¹⁾ 1 = PORTC pin configured as an input (tri-stated) 0 = PORTC pin configured as an output
bit 5-0	TRISC<5:0>: PORTC Tri-State Control bits 1 = PORTC pin configured as an input (tri-stated)
	0 = PORTC pin configured as an output

Note 1: PIC16(L)F18346 only; otherwise read as '0'.

© 2016-2017 Microchip Technology Inc.

R/W/HS/SC-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	U-0	U-0
SHUTDOWN	REN	LSBE)<1:0>	LSAC	><1:0>	—	
bit 7		·					bit 0
Legend:							
R = Readable bit	t	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
u = Bit is unchan	ged	x = Bit is unki	nown	-n/n = Value a	t POR and BOR	Value at all c	ther Resets
'1' = Bit is set '0' = Bit is cleared q = Value depende					ends on condition	on	
bit 7	1 = An auto	: Auto-Shutdov -shutdown stat -shutdown eve	e is in effect				
bit 6	 REN: Auto-Restart Enable bit 1 = Auto-restart is enabled 0 = Auto-restart is disabled 						
bit 5-4	11 = A logic 10 = A logic 01 = Pin is tri 00 = The ina	1' is placed on 0' is placed on i-stated on CW ctive state of	CWGxB/D wh CWGxB/D wh GxB/D when a the pin, inclue	Shutdown State (nen an auto-shut nen an auto-shut an auto-shutdow ding polarity, is utdown event oc	down event oco down event oco n event occurs. placed on CW	curs.	he required
bit 3-2	11 = A logic ' 10 = A logic ' 01 = Pin is tri 00 = The ina	1' is placed on 0' is placed on i-stated on CW ctive state of	CWGxA/C wh CWGxA/C wh G1A/C when a the pin, include	Shutdown State (nen an auto-shut nen an auto-shut an auto-shutdow ding polarity, is utdown event oc	adown event occ adown event occ n event occurs. placed on CW	curs.	he required
bit 1-0	Unimplemen	ted: Read as '	0'				
				0-1), to place the	•		•

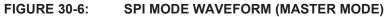
REGISTER 20-6: CWGxAS0: CWG AUTO-SHUTDOWN CONTROL REGISTER 0

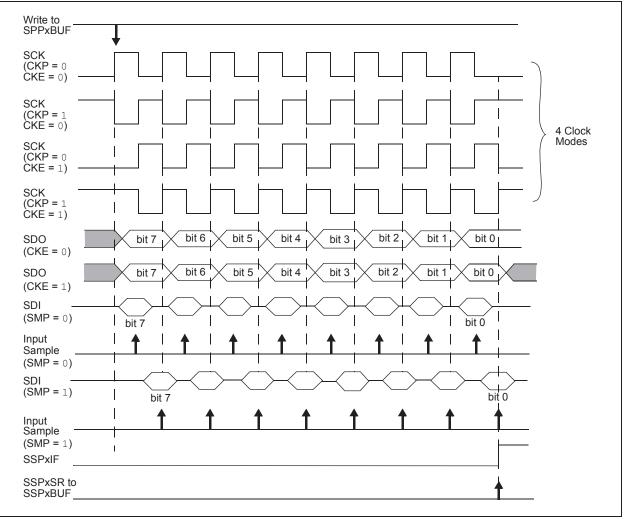
2: The outputs will remain in auto-shutdown state until the next rising edge of the CWG data input after this bit is cleared.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N
bit 7							bit (
Legend:	bit	W = Writable	h:t		nantad hit raad		
R = Readable bit					nented bit, read		than Decete
u = Bit is unch	angeo	x = Bit is unkr		-n/n = value a	at POR and BO	R/Value at all c	iner Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	LCxG3D4T· (Gate 2 Data 4 1	īrue (non-inve	rted) hit			
Sit I		(true) is gated i					
		(true) is not gat					
bit 6	LCxG3D4N:	Gate 2 Data 4	Negated (inve	rted) bit			
	1 = CLCIN3	(inverted) is ga	ted into CLCx	Gate 2			
	0 = CLCIN3	(inverted) is no	t gated into Cl	_Cx Gate 2			
bit 5	LCxG3D3T: (Gate 2 Data 3 1	rue (non-inve	rted) bit			
		(true) is gated i					
		(true) is not gat					
bit 4		Gate 2 Data 3	•	,			
		(inverted) is ga (inverted) is no					
bit 3		Gate 2 Data 2 1	0				
bit 0		(true) is gated i		,			
		(true) is not gat					
bit 2	LCxG3D2N:	Gate 2 Data 2	Negated (inve	rted) bit			
	1 = CLCIN1 ((inverted) is ga	ted into CLCx	Gate 2			
	0 = CLCIN1	(inverted) is no	t gated into Cl	_Cx Gate 2			
bit 1	LCxG3D1T: (Gate 2 Data 1 1	rue (non-inve	rted) bit			
		(true) is gated i					
		(true) is not gat					
bit 0		Gate 2 Data 1	•	,			
		(inverted) is ga (inverted) is no					

REGISTER 21-9: CLCxGLS2: GATE 2 LOGIC SELECT REGISTER

30.2.3 SPI MASTER MODE


The master can initiate the data transfer at any time because it controls the SCK line. The master determines when the slave (Processor 2, Figure 30-5) is to broadcast data by the software protocol.


In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPxCON1 register and the CKE bit of the SSPxSTAT register. This then, would give waveforms for SPI communication as shown in Figure 30-6, Figure 30-8, Figure 30-9 and Figure 30-10, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- Timer2 output/2
- Fosc/(4 * (SPPxADD + 1))

Figure 30-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

REGISTER 30-2: SSPxCON1: SSP CONTROL REGISTER 1 (CONTINUED)

- bit 3-0 SSPM<3:0>: Synchronous Serial Port Mode Select bits 1111 = I²C Slave mode, 10-bit address with Start and Stop bit interrupts enabled $1110 = I^2C$ Slave mode, 7-bit address with Start and Stop bit interrupts enabled 1101 = Reserved 1100 = Reserved $1011 = I^2C$ firmware controlled Master mode (slave idle) 1010 = SPI Master mode, clock = Fosc/(4 * (SPPxADD+1))⁽⁵⁾ 1001 = Reserved $1000 = I^2C$ Master mode, clock = Fosc / (4 * (SPPxADD+1))⁽⁴⁾ 0111 = I^2C Slave mode, 10-bit address $0110 = I^2C$ Slave mode. 7-bit address 0101 = SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin 0100 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control enabled 0011 = SPI Master mode, clock = T2 match/2 0010 = SPI Master mode, clock = Fosc/64 0001 = SPI Master mode, clock = Fosc/16 0000 = SPI Master mode. clock = Fosc/4
- **Note 1:** In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SPPxBUF register.
 - **2:** When enabled, these pins must be properly configured as input or output. Use SSP1SSPPS, SSP1CLKPPS, SSP1DATPPS, and RxyPPS to select the pins.
 - **3:** When enabled, the SDA and SCL pins must be configured as inputs. Use SSPxCLKPPS, SSPxDATPPS, and RxyPPS to select the pins.
 - 4: SPPxADD values of 0, 1 or 2 are not supported for I²C mode.
 - **5:** SPPxADD value of 0 is not supported. Use SSPM = 0000 instead.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-x/x
SPEN ⁽¹⁾	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7	·	1	·			·	bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
u = Bit is uncl	nanged	x = Bit is unk	nown	•	at POR and BC		ther Resets
'1' = Bit is set		'0' = Bit is cle	eared				
bit 7	SPEN: Seria	Il Port Enable b	it(1)				
	1 = Serial p 0 = Serial p	ort enabled ort disabled (he	eld in Reset)				
bit 6	RX9: 9-bit R	eceive Enable	bit				
		9-bit reception 8-bit reception					
bit 5	SREN: Sing	le Receive Ena	ble bit				
	Asynchrono	<u>us mode</u> :					
		iis mode – valu <u>s mode – Mast</u> e	•				
		single receive					
		s single receive					
		eared after rece s mode – Slave		ele.			
	-	iis mode – valu					
bit 4		inuous Receive	•				
	Asynchrono	<u>us mode</u> :					
		s continuous ree s continuous re s mode:		ole bit CREN i	s cleared		
	1 = Enables			ole bit CREN i	s cleared (CREI	N overrides SR	EN)
bit 3	ADDEN: Ad	dress Detect E	nable bit				
	Asynchrono	us mode 9-bit (RX9 = 1 <u>)</u> :				
	the rece	ive buffer is se	t	-	bad of the receiv		
	Asynchrono	us mode 8-bit (RX9 = 0):	are received a	and ninth bit can	i be used as pa	rity dit
		is mode – valu	e ignored				
bit 2	FERR: Fram	-	undeted by rea		Creatister and re	anivo novt volic	huto)
	1 = Framing 0 = No fram			IUNING RUTREC	G register and re		i byte)
bit 1	OERR: Over	rrun Error bit					
	1 = Overrur 0 = No over	error (can be or run error	cleared by clea	ring bit CREN	1)		
bit 0	RX9D: Ninth	bit of Receive	d Data				
	This can be	address/data b	it or a parity bit	and must be	calculated by us	ser firmware.	
	e EUSART1 m sociated TRIS				i-state to drive a	as needed. Con	figure the

.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			SP1BF	RG<15:8>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unkno	own	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets	
'1' = Bit is set		'0' = Bit is clea	red					

REGISTER 31-7: SP1BRGH^(1, 2): BAUD RATE GENERATOR HIGH REGISTER

bit 7 SP1BRG<15:8>: Upper eight bits of the Baud Rate Generator

Note 1: SP1BRGH value is ignored for all modes unless BAUD1CON<BRG16> is active.

2: Writing to SP1BRGH resets the BRG counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TRISA	—	_	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	143
ANSELA	_	_	ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	144
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4				_	149
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4		_			150
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	155
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
INTCON	GIE	PEIE	_	—	_	_	_	INTEDG	100
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	107
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	102
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	384
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	383
BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	385
RC1REG				RC1RE	G<7:0>				386
TX1REG				TX1RE	G<7:0>				386
SP1BRGL				SP1BR	G<7:0>				386
SP1BRGH		SP1BRG<15:8>							
RXPPS	—	RXPPS<4:0>							162
CLCxSELy	_	_	_		L	CxDyS<4:0	>		229
MDSRC	—	—		—		MDMS	S<3:0>		272

TABLE 31-2: SUMMARY OF REGISTERS ASSOCIATED WITH EUSART1

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the EUSART1 module.

Note 1: PIC16(L)F18346 only.

2: Unimplemented, read as '1'.

		SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD	Fosc	= 32.00	0 MHz	Fosc	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—		_	_		_	_		_		_	_	
1200	—	_	—	—		—	—		—	_		—	
2400	—	_	—	—		—	—		—	_	_	_	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

TABLE 31-4: BAUD RATE FOR ASYNCHRONOUS MODES (CONTINUED)

		SYNC = 0, BRGH = 1, BRG16 = 0										
BAUD	Fos	c = 8.000) MHz	Fos	Fosc = 4.000 MHz		Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_	—	_		_	_	_	_	300	0.16	207
1200	—	—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	—	_	—	—	_	—	115.2k	0.00	1	—	—	—

		SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Foso	: = 32.00	0 MHz	Fosc	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303	
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575	
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

PIC16(L)F18326/18346

ΜΟΥΙΨ	Move INDFn to W
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]
Operands:	$\begin{array}{l} n \in [0,1] \\ mm \in [00,01,10,11] \\ \textbf{-32} \leq k \leq 31 \end{array}$
Operation:	$\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{FSR + 1 (preincrement)} \\ &\text{FSR - 1 (predecrement)} \\ &\text{FSR + k (relative offset)} \\ &\text{After the Move, the FSR value will be} \\ &\text{either:} \\ &\text{FSR + 1 (all increments)} \\ &\text{FSR - 1 (all decrements)} \\ &\text{Unchanged} \end{split}$
Status Affected:	Z

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

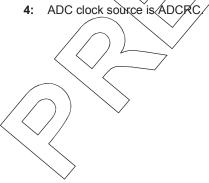
FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

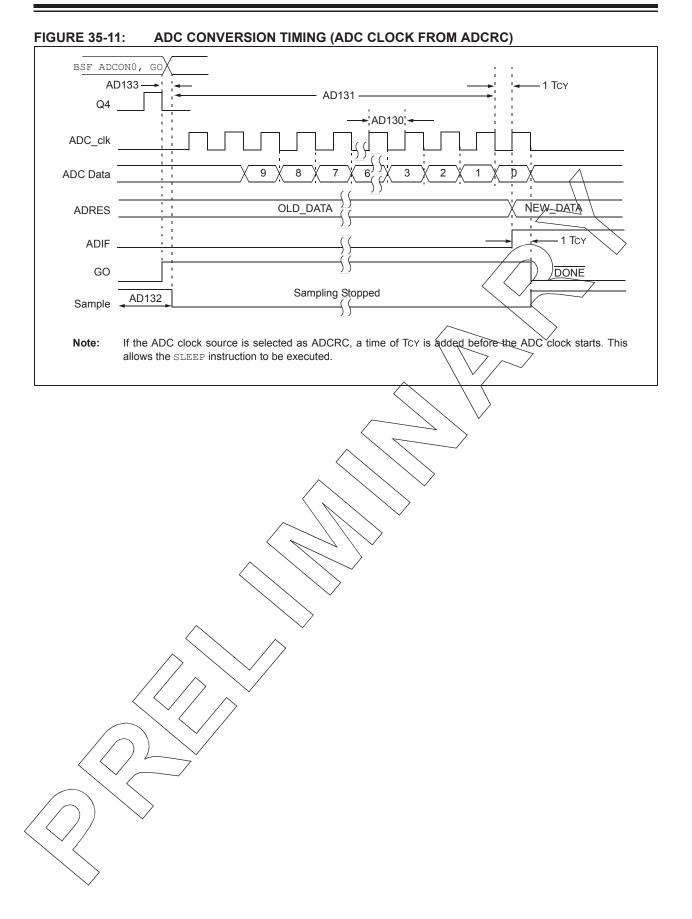
Syntax:	[<i>label</i>]MOVLB k
Operands:	$0 \leq k \leq 31$
Operation:	$k \rightarrow BSR$
Status Affected:	None
Description:	The 5-bit literal 'k' is loaded into the Bank Select Register (BSR).

MOVLP	Move literal to PCLATH
Syntax:	[<i>label</i>]MOVLP k
Operands:	$0 \leq k \leq 127$
Operation:	$k \rightarrow PCLATH$
Status Affected:	None
Description:	The 7-bit literal 'k' is loaded into the PCLATH register.
MOVLW	Move literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The 8-bit literal 'k' is loaded into W reg- ister. The "don't cares" will assemble as '0's.
Words:	1
Cycles:	1
Example:	MOVLW 0x5A
	After Instruction W = 0x5A
MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \to (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVWF OPTION_REG
	Before Instruction OPTION_REG = 0xFF W = 0x4F
	After Instruction OPTION_REG = 0x4F W = 0x4F

TABLE 35-3:POWER-DOWN CURRENTS (IPD)

PIC16LF18326/18346			Standard Operating Conditions (unless otherwise stated)							
PIC16F18326/18346				Standard Operating Conditions (unless otherwise stated) VREGPM = 1						
Param.	Cumhal	Device Characteristics	Min T	Turn + Max	Max.		Units	Conditions		
No.	Symbol	Device Characteristics	Min.	Тур.†	+85°C			Vdd	Note	
D200	IPD	IPD Base	—	0.05	2	9	μA	3.0V		
D200	IPD	IPD Base	—	0.8	4	12	μA	3.0V		
			_	13	22	27	μA	3.0V	VREGPM = Q	
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	—	0.8	5	13	μA	3.0V	\sim	
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	—	0.9	5	13	μA	3.0V		
D202	IPD_SOSC	Secondary Oscillator (SOSC)	_	0.6	5	13	μA	3.0V		
D202	IPD_SOSC	Secondary Oscillator (SOSC)	—	0.8	9	15~	μA	3.0	\searrow	
D203	IPD_FVR	FVR	—	40	47	47 5	μA	3.0V		
D203	IPD_FVR	FVR	—	33	44	44	∖u∕A∕	3.0√		
D204	IPD_BOR	Brown-out Reset (BOR)	—	12	17	19	μÁ	3.0V		
D204	IPD_BOR	Brown-out Reset (BOR)	—	12	18	20	\μA	3.0V		
D205	IPD_LPBOR	Low Power Brown-out Reset (LPBOR)	_	3 <	5	13	μĂ >	3.0V		
D205	IPD_LPBOR	Low Power Brown-out Reset (LPBOR)	—		5	13	μA	3.0V		
D207	IPD_ADCA	ADC - Active	\nearrow	0.9	5	[√] 13	μA	3.0V	ADC is converting ⁽⁴⁾	
D207	IPD_ADCA	ADC - Active	$\neq \prime$	0.9	5	13	μA	3.0V	ADC is converting ⁽⁴⁾	
D208	IPD_CMP	Comparator	/	32	43	45	μA	3.0V		
D208	IPD_CMP	Comparator		× 31	42	44	μA	3.0V		


These parameters are characterized but not tested.


† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

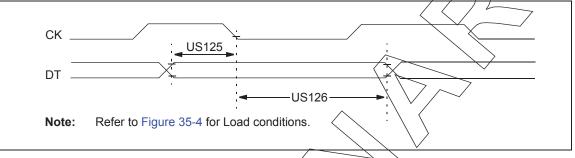
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.


3: All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.

PIC16(L)F18326/18346

FIGURE 35-12: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 35-17: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS


Standa	rd Operating	g Conditions (un	less otherwis	se stated) 🖉 🦯		\sim			
Param. No.	Sym.	с	haracteristic		Min.	Typ.†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High Pulse	Width No Prescaler		0.5 TCY + 20	—	—	ns	
				With Rrescaler	10	—	—	ns	
41*	TT0L	T0CKI Low Pulse	Width	No Rrescaler	0.5 TCY + 20	—	_	ns	
			\sim	With Prescaler	10		_	ns	
42*	Тт0Р	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value
45*	T⊤1H	T1CKI High Time	Synchronou	s, No Prescaler	0.5 Tcy + 20	—	—	ns	
		Synchronous		s, with Prescaler	15	—	_	ns	
			Asynchrono	us	30		_	ns	
46*	TT1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 Tcy + 20		_	ns	
			Synchronou	s, with Prescaler	15		_	ns	
			Asynchronous		30	_		ns	
47*	Тт1Р	T1CKI Input Period	Synchronous Asynchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value
					60	—	—	ns	
48	FT1		tor Input Frequency Range by setting bit T1OSCEN)		32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from Extern Increment	al Clock Edge to Timer		2 Tosc	—	7 Tosc	—	Timers in Sync mode
/ (*	These paran	eters are character	rized but not t	ested.		1	1	1	ı

Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 35-20: EUSART SYNCHRONOUS TRANSMISSION CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)						
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US120	TCKH2DTV	CKH2DTV SYNC XMIT (Master and Slave)		80	ns	$3.0V \le V\text{DD} \le 5.5V$
	Clock high to data-out valid	—	100	ns	$1.8V \le V\text{DD} \le 5.5V$	
US121 TCKRF CI		Clock out rise time and fall time	_	45	ns	$3.0V \le VDD \le 5.5V$
	(Master mode)	—	50	ns	$1.8V \leq VDD \leq 5.5V$	
US122	TDTRF	Data-out rise time and fall time	_	45	ns	3.0V ≤ VØD ≤ 5.5V
			_	50	ns	$1.8V \leq VDD \leq 5.5V$

FIGURE 35-16: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIM/NG

TABLE 35-21: EUSART SYNCHRONOUS RECEIVE CHARACTERISTICS

Standar	Standard Operating Conditions (unless otherwise stated)						
Param. No. Symbol Characteristic Min. Max. Units Conditions							
US125	TDTV2CKL	SYNC RCV (Master and Slave) Data-setup before CK ↓ (D1 hold time) 10		ns			
US126	TCKL2DTL	Data-hold after CK↓ (DT hold time) 15	_	ns			

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://www.microchip.com/support