Microchip Technology - PIC16F18326-I/P Datasheet

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18326-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		(0) (0)														
Address	Name	PIC16(L)F18326 PIC16(L)F18346	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets				
Bank 2	29			·		•	-	•		•	•					
CPU CORE REGISTERS; see Table 4-2 for specifics																
EA0h	RC0PPS		_	—	_			RC0PPS<4:0>			0 0000	u uuuu				
EA1h	RC1PPS		—	—	—			RC1PPS<4:0>			0 0000	u uuuu				
EA2h	RC2PPS		—	_	—			RC2PPS<4:0>			0 0000	u uuuu				
EA3h	RC3PPS		_	_	_			RC3PPS<4:0>			0 0000	u uuu				
EA4h	RC4PPS		_	_	—			RC4PPS<4:0>			0 0000	u uuuu				
EA5h	RC5PPS		_	_	_			RC5PPS<4:0>			0 0000	u uuuu				
EA6h	RC6PPS	X —		Unimplemented					—	—						
		— X	_	_	_			RC6PPS<4:0>			0 0000	u uuuu				
EA7h	RC7PPS	X —				Unimple	emented				—	—				
		— X	_	_	_			RC7PPS<4:0>								

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

Only on PIC16F18326/18346. Note 1:

Register accessible from both User and ICD Debugger. 2:

PIC16(L)F18326/18346

5.7 Register Definitions: Device and Revision

REGISTER 5-5:	DE\	ID: DEVICE ID	REGISTER							
		R	R	R	R	R	R			
				DEV<	:13:8>					
		bit 13					bit 8			
R	R	R	R	R	R	R	R			
	DEV<7:0>									
bit 7							bit 0			

Legend:

R = Readable bit

'1' = Bit is set '0' = Bit is cleared

bit 13-0 **DEV<13:0>:** Device ID bits

Device	DEVID<13:0> Values							
PIC16F18326	11 0000 1010 0100 (30A4)							
PIC16LF18326	11 0000 1010 0110 (30A6)							
PIC16F18346	11 0000 1010 0101 (30A5)							
PIC16LF18346	11 0000 1010 0111 (30A7)							

REGISTER 5-6: REVID: REVISION ID REGISTER

R-1	R-0	R	R	R	R				
REV<13:8>									
bit 13					bit 8				

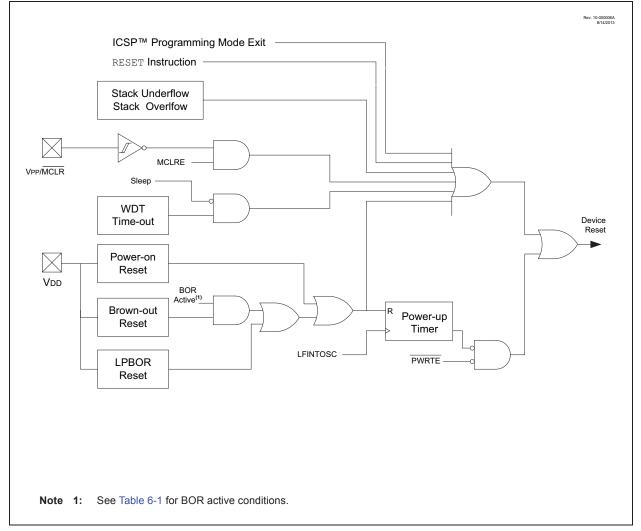
R	R	R	R	R	R	R	R				
	REV<7:0>										
bit 7 b											

Legend:	
R = Readable bit	
'1' = Bit is set	'0' = Bit is cleared

bit 13-0 **REV<13:0>:** Revision ID bits

Note: The upper two bits of the Revision ID Register will always read '10'.

6.0 RESETS


There are multiple ways to reset this device:

- Power-On Reset (POR)
- Brown-Out Reset (BOR)
- Low-Power Brown-Out Reset (LPBOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- · Stack Overflow
- · Stack Underflow
- Programming mode exit

To allow VDD to stabilize, an optional Power-up Timer can be enabled to extend the Reset time after a BOR or POR event.

A simplified block diagram of the on-chip Reset circuit is shown in Figure 6-1.

FIGURE 6-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

6.1 Power-on Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

6.2 Brown-out Reset (BOR)

The BOR circuit holds the device in Reset while VDD is below a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:

- · BOR is always on
- BOR is off when in Sleep
- BOR is controlled by software
- BOR is always off

Refer to Table 6-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Words.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset, and the BOR bit of the PCON0 register will be cleared, indicating that a Brown-out Reset condition occurred. See Figure 6-2 for more information.

BOREN<1:0>	SBOREN	Device Mode	BOR Mode	Instruction Execution upon: Release of POR or Wake-up from Sleep		
11	Х	X	Active	In these specific cases, "Release of POR" and "Wake-up from Sleep", there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits.		
1.0	v	Awake Active		Waits for release of BOR (BORRDY = 1)		
10	Х	Sleep	Disabled	BOR ignored when asleep		
01	1	X	Active	In these specific cases, "Release of POR" and "Wake-up from Sleep", there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits		
	0	Х	Disabled	Pagina immediately (POPPDV =)		
0.0	Х	Х	Disabled	Begins immediately (BORRDY = x)		

TABLE 6-1: BOR OPERATING MODES

© 2016-2017 Microchip Technology Inc.

6.11 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON registers are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition	
0	0	1	1	1	0	x	1	1	Power-on Reset	
0	0	1	1	1	0	x	0	x	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$	
0	0	1	1	1	0	x	x	0	Illegal, PD is set on POR	
0	0	u	1	1	u	0	1	1	Brown-out Reset	
u	u	0	u	u	u	u	0	u	WDT Reset	
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep	
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep	
u	u	u	0	u	u	u	u	u	MCLR Reset during Normal Operation	
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep	
u	u	u	u	0	u	u	u	u	RESET Instruction Executed	
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)	
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)	

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

Condition	Program Counter	STATUS Register	PCON0 Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during Normal Operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu-0 uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu-u uuuu
Brown-out Reset	0000h	1 1000	00-1 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu-u uuuu
RESET Instruction Executed	0000h	u uuuu	uu-u u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu-u uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul-u uuuu

Legend: u = unchanged, x = unknown, – = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

7.5 Register Definitions: Oscillator Control

REGISTER 7-1. OSCIONT. OSCIELATOR CONTROL REGISTER T									
U-0	R/W-f/f ⁽¹⁾	R/W-f/f ⁽¹⁾	R/W-f/f ⁽¹⁾	R/W-q/q ⁽⁴⁾	R/W-q/q ⁽⁴⁾	R/W-q/q ⁽⁴⁾	R/W-q/q ⁽⁴⁾		
—	1	NOSC<2:0> ^{(2,3}	3)	NDIV<3:0> ^(2,3)					
bit 7							bit 0		

REGISTER 7-1: OSCCON1: OSCILLATOR CONTROL REGISTER 1

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	f = determined by fuse setting
q = Reset value is determ	nined by hardware	

bit 7	Unimplemented:	Read as	'0
	ommpicinicitica.	ricuu us	0

bit 6-4	NOSC<2:0>: New Oscillator Source Request bits
	The setting requests a source oscillator and PLL combination per Table 7-1.
	POR value = RSTOSC (Register 5-2).

- bit 3-0 NDIV<3:0>: New Divider Selection Request bits The setting determines the new postscaler division ratio per Table 7-2.
- **Note 1:** The default value (f/f) is set equal to the RSTOSC Configuration bits.
 - 2: If NOSC is written with a reserved value (Table 7-1), the HFINTOSC will be automatically selected as the clock source.
 - 3: When CSWEN = 0, this register is read-only and cannot be changed from the POR value.
 - 4: When RSTOSC = 110 (HFINTOSC 1 MHz) the NDIV bits will default to '0010' upon Reset; for all other NOSC settings, the NVID bits will default to '0000' upon Reset.

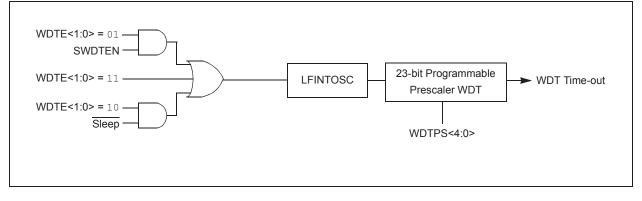
REGISTER 7-2: OSCCON2: OSCILLATOR CONTROL REGISTER 2

U-0	R-q/q ⁽¹⁾						
—	COSC<2:0>		CDIV<3:0>				
bit 7	t 7						bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Reset value is determined by hardware

bit 7Unimplemented: Read as '0'bit 6-4COSC<2:0>: Current Oscillator Source Select bits (read-only)
Indicates the current source oscillator and PLL combination per Table 7-1.bit 3-0CDIV<3:0>: Current Divider Select bits (read-only)
Indicates the current postscaler division ratio per Table 7-2.

Note 1: The Reset value (q/q) will match the NOSC<2:0>/NDIV<3:0> bits.


10.0 WATCHDOG TIMER (WDT)

The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events.

The WDT has the following features:

- Independent clock source
- Multiple operating modes
- WDT is always ON
- WDT is OFF when in Sleep
- WDT is controlled by software
- WDT is always OFF
- Configurable time-out period is from 1 ms to 256 seconds (nominal)
- Multiple WDT clearing conditions
- Operation during Sleep

FIGURE 10-1: WATCHDOG TIMER BLOCK DIAGRAM

17.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40° C and $+85^{\circ}$ C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN2092, *"Using the Temperature Indicator Module"* (DS00002092) for more details regarding the calibration process.

17.1 Circuit Operation

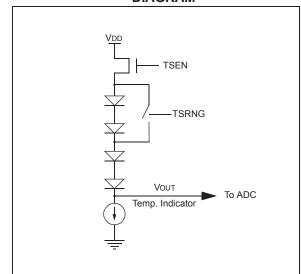
Figure 17-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 17-1 describes the output characteristics of the temperature indicator.

EQUATION 17-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT


The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section 16.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower VDD voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 17-1: TEMPERATURE CIRCUIT DIAGRAM

17.2 Minimum Operating VDD

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 17-1 shows the recommended minimum VDD vs. range setting.

TABLE 17-1: RECOMMENDED VDD VS. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0
3.6V	1.8V

17.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is provided for the temperature circuit output. Refer to **Section 22.0 "Analog-to-Digital Converter (ADC) Module"** for detailed information.

TABLE 19-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWMx

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TRISA			TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	143
ANSELA	_		ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	144
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	_		_	149
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	_	_	_	_	150
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	155
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
PWM5CON	PWM5EN	_	PWM5OUT	PWM5POL	_	_	_	_	196
PWM5DCH				PWM5DC<	9:2>				196
PWM5DCL	PWM5	DC<1:0>	—	_	_	_		_	196
PWM6CON	PWM6EN	_	PWM6OUT	PWM6POL	_	_	_	_	196
PWM6DCH				PWM6DC<	9:2>				196
PWM6DCL	PWM6	DC<1:0>	—	_	_	—	—	_	196
PWMTMRS	_	_	_	_	P6TSE	L<1:0>	P5TSEL<1:0>		197
INTCON	GIE	PEIE	_	_	_	_	_	INTEDG	100
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	107
PIR2	TMR6IF	C2IF	C1IF	NVMIF	SSP2IF	BCL2IF	TMR4IF	NCO1IF	108
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	102
PIE2	TMR6IE	C2IE	C1IE	NVMIE	SSP2IE	BCL2IE	TMR4IE	NCO1IE	103
T2CON	_		T2OUTPS	S<3:0>		TMR2ON	T2CKP	S<1:0>	298
T4CON	_		T4OUTPS	S<3:0>		TMR4ON	T4CKP	'S<1:0>	292
T6CON	_		T6OUTPS	S<3:0>		TMR6ON	T6CKP	'S<1:0>	292
TMR2				TMR2<7:0)>				299
TMR4				TMR4<7:()>				299
TMR6				TMR6<7:0)>				299
PR2				PR2<7:0	>				299
PR4				PR4<7:0	>				299
PR6				PR6<7:0	>				299
CWGxDAT			—			DAT<	<3:0>		215
CLCxSELy	—	—		·	LCxDyS<	5:0>			229
MDSRC		_	_			MDMS	3:0>		272
MDCARH		MDCHPOL	MDCHSYNC			MDCH	<3:0>		273
MDCARL		MDCLPOL	MDCLSYNC	—		MDCL	<3:0>		274

Legend: - = Unimplemented locations, read as '0'. Shaded cells are not used by the PWM module.

Note 1: PIC16(L)F18346 only.

2: Unimplemented, read as '1'.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N	
bit 7							bit 0	
Legend:								
R = Readable		W = Writable			nented bit, read			
u = Bit is unch	anged	x = Bit is unkr		-n/n = Value a	at POR and BO	R/Value at all c	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
			_ , .	6 N.1.4				
bit 7		Gate 3 Data 4 1		,				
		(true) is gated i (true) is not gat						
bit 6		Gate 3 Data 4 I						
bit o		(inverted) is ga	•	,				
		· · · ·	inverted) is not gated into CLCx Gate 3					
bit 5	LCxG4D3T: 0	Gate 3 Data 3 1	rue (non-inve	rted) bit				
		(true) is gated i						
		(true) is not gat						
bit 4		Gate 3 Data 3	•					
		(inverted) is ga (inverted) is no						
bit 3	LCxG4D2T:	Gate 3 Data 2 1	rue (non-inve	rted) bit				
	1 = CLCIN1 ((true) is gated i	nto CLCx Gat	e 3				
	0 = CLCIN1 ((true) is not gat	ed into CLCx	Gate 3				
bit 2	LCxG4D2N:	Gate 3 Data 2 I	Negated (inve	rted) bit				
		(inverted) is ga						
		(inverted) is no	•					
bit 1		Gate 3 Data 1 1		,				
		(true) is gated i (true) is not gat						
bit 0		Gate 3 Data 1 I						
		(inverted) is ga	•	,				
		(inverted) is no						

REGISTER 21-10: CLCxGLS3: GATE 3 LOGIC SELECT REGISTER

22.2 ADC Operation

22.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit will not be set in the
	same instruction that turns on the ADC.
	Refer to Section 22.2.5 "ADC Conver-
	sion Procedure".

22.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- · Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

Note:	A device Reset forces all registers to their
	Reset state. Thus, the ADC module is
	turned off and any pending conversion is
	terminated.

22.2.3 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the ADCRC option. When the ADCRC oscillator source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than ADCRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

22.2.4 AUTO-CONVERSION TRIGGER

The Auto-conversion Trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO/DONE bit is set by hardware.

The Auto-conversion Trigger source is selected with the ADACT<4:0> bits of the ADACT register.

See Table 22-2 for auto-conversion sources.

TABLE 22-2:	ADC AUTO-CONVERSIO		
	TABLE		

Source Peripheral	Description
TMR0	Timer0 Overflow condition
TMR1	Timer1 Overflow condition
TMR3	Timer3 Overflow condition
TMR5	Timer5 Overflow condition
TMR2	Match between Timer2 and PR2
TMR4	Match between Timer4 and PR4
TMR6	Match between Timer6 and PR6
C1	Comparator C1 output
C2	Comparator C2 output
CLC1	CLC1 output
CLC2	CLC2 output
CLC3	CLC3 output
CLC4	CLC4 output
CCP1	CCP1 output
CCP2	CCP2 output
CCP3	CCP3 output
CCP4	CCP4 output

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		—	ADNREF	ADPRE	EF<1:0>
bit 7	•						bit
Levendu							
Legend:	. 1.10						
R = Readable		W = Writable b			mented bit, read		
u = Bit is unc	•	x = Bit is unkn		-n/n = value	at POR and BO	R/value at all	other Resets
'1' = Bit is se	t	'0' = Bit is clea	ired				
bit 7	1 = Right ju loaded.	Result Format S stified. Six Most tified. Six Least	Significant bi				
bit 6-4	111 = ADCI 110 = Fosc 101 = Fosc 100 = Fosc	/16 /4 RC (dedicated R ⁱ /32 /8	C oscillator)	ct bits			
bit 3	Unimpleme	nted: Read as '0)'				
bit 2	When ADO 0 = VREF- is	/D Negative Volta N = 0, all multiple connected to A connected to ex	exer inputs an /ss	•			
bit 1-0	11 = VREF+		nternal Fixed external VREF	Voltage Refere		lule ⁽¹⁾	

REGISTER 22-2: ADCON1: ADC CONTROL REGISTER 1

Note 1: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See Table 35-13 for details.

R/W-0/	0 R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
	N1PWS<2:0>				_	N1CKS<1:0>	
bit 7							bit (
Legend:							
R = Read	able bit	W = Writable b	oit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is u	unchanged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is	set	'0' = Bit is clea	red				
bit 4-2	101 = NCO 100 = NCO 011 = NCO 010 = NCO 001 = NCO 000 = NCO	1 output is active 1 outp	e for 32 input e for 16 input e for 8 input e for 4 input e for 2 input e for 1 input o	clock periods clock periods clock periods clock periods clock periods clock period			
bit 1-0 Note 1:	N1CKS<1:0> 11 =Reserved 10 = CLC10U 01 = Fosc 00 = HFINTO N1PWS applies of	JT PSC (16 MHz)			le		
	If NCO1 pulse wi						

REGISTER 23-2: NCO1CLK: NCO1 INPUT CLOCK CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			NCO1A	ACC<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	nanged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 NCO1ACC<7:0>: NCO1 Accumulator, low byte

29.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral that allows the user to time and control different events and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

This family of devices contains four standard Capture/Compare/PWM modules (CCP1, CCP2, CCP3 and CCP4).

The Capture and Compare functions are identical for all CCP modules.

29.1 CCP/PWM Clock Selection

The PIC16(L)F18326/18346 devices allow each individual CCP and PWM module to select the timer source that controls the module. Each module has an independent selection.

As there are up to three 8-bit timers with auto-reload (Timer2, Timer4, and Timer6), PWM mode on the CCP and PWM modules can use any of these timers.

The CCPTMRS register is used to select which timer is used.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to CCPx module. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

29.2 Capture Mode

Capture mode makes use of either the 16-bit Timer0 or Timer1 resource. When an event occurs on the capture source, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMR0H:TMR0L or TMR1H:TMR1L register pair, respectively. An event is defined as one of the following and is configured by the CCPxMODE<3:0> bits of the CCPxCON register:

- · Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIR4 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Figure 29-1 shows a simplified diagram of the capture operation.

29.2.1 CAPTURE SOURCES

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Note: If the CCPx pin is configured as an output, a write to the port can cause a Capture condition.

The capture source is selected by configuring the CCPxCTS<3:0> bits of the CCPxCAP register. The following sources can be selected:

- · CCPxPPS input
- C1 output
- C2_output
- NCO_output
- IOC_interrupt
- LC1_output
- LC2_output
- LC3_output
- LC4_output

31.6 Register Definitions: EUSART1 Control

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7		•					bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unki	nown	-n/n = Value a	at POR and BOF	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	Asynchronou Unused in thi Synchronous 1 = Master r	s mode – value	e ignored nerated intern)		
bit 6	TX9: 9-bit Tra 1 = Selects	ansmit Enable I 9-bit transmiss 8-bit transmiss	oit ion	,			
bit 5	TXEN: Trans 1 = Transmit 0 = Transmit		1)				
bit 4	SYNC: EUSA 1 = Synchron 0 = Asynchron		lect bit				
bit 3	Asynchronou 1 = Send SY bit; clear 0 = SYNCH Synchronous	NCH BREAK ed by hardware BREAK transm	on next transr e upon comple iission disable	etion	bit, followed by	12 '0' bits, fol	lowed by Sto
bit 2	Asynchronou 1 = High spe 0 = Low spect Synchronous	ed ed					
bit 1	TRMT: Trans 1 = TSR emp 0 = TSR full	mit Shift Regisi oty	er Status bit				
bit 0	TX9D: Ninth Can be addre	bit of Transmit	Data				

REGISTER 31-1: TX1STA: TRANSMIT STATUS AND CONTROL REGISTER

Note 1: SREN/CREN overrides TXEN in Sync mode.

TABLE 34-3: P	IC16(L)F18326/18346 INSTRUCTION SET ((CONTINUED)
---------------	---------------------------------------	-------------

Mnemonic, Operands		Description		Cycles MSb		Opcode)	Status	Notes
							LSb	Affected	
		INHERENT OPERA	ATIONS						
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	_	No Operation	1	00	0000	0000	0000		
RESET	-	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED						
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm							
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	Onkk	kkkk	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	1nmm		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk	kkkk		2

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Section 34.2 "Instruction Descriptions" for detailed MOVIW and MOVWI instruction descriptions.

PIC16(L)F18326/18346

 $0 \leq f \leq 127$

 $0 \rightarrow \text{dest} < 7 >$ (f<7:1>) $\rightarrow \text{dest} < 6:0 >$,

 $(f<0>) \rightarrow C,$

0-

The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

register f

С

C, Z

 $d \in [0,1]$

Operands:

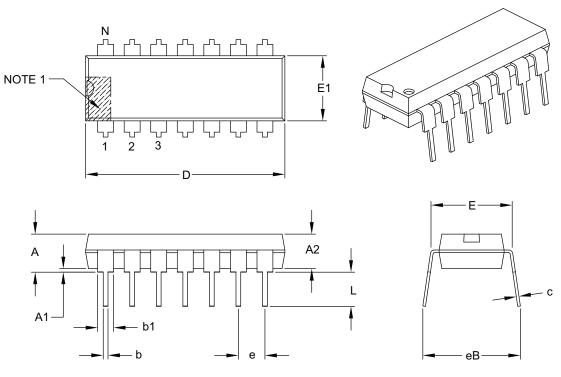
Operation:

Status Affected:

Description:

LSLF	Logical Left Shift	MOVF	Move f
Syntax:	[<i>label</i>]LSLF f{,d}	Syntax:	[<i>label</i>] MOVF f,d
Operands:	$0 \le f \le 127$ d $\in [0,1]$	Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(f < 7 >) \rightarrow C$	Operation:	$(f) \rightarrow (dest)$
	$(f<6:0>) \rightarrow dest<7:1>$ 0 $\rightarrow dest<0>$	Status Affected:	Z
Status Affected: Description:	C, Z The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the	Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is
	result is stored back in register 'f'. C ← register f ← 0	Words: Cycles:	affected. 1 1
		Example:	MOVF FSR, 0
LSRF	Logical Right Shift		After Instruction W = value in FSR register
Syntax:	[<i>label</i>]LSRF f{,d}		Z = 1

35.2 Standard Operating Conditions


The standard operating conditions for any device are defined as:
Operating Voltage: $VDDMIN \le VDD \le VDDMAX$
Operating Temperature: $TA_MIN \le TA \le TA_MAX$
VDD — Operating Supply Voltage ⁽¹⁾
PIC16LF18326/18346
VDDMIN (Fosc \leq 16 MHz) +1.8V
VDDMIN (Fosc \leq 32 MHz)
VDDMAX
PIC16F18326/18346
VDDMIN (Fosc ≤ 16 MHz)+2.3V
VDDMIN (Fosc \leq 32 MHz) +2.5V
VDDMAX
TA — Operating Ambient Temperature Range
Industrial Temperature
TA_MIN
TA_MAX
Extended Temperature
TA_MIN
TA_MAX
Note 1: See Parameter D002, DC Characteristics: Supply Voltage.

38.2 Package Details

The following sections give the technical details of the packages.

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

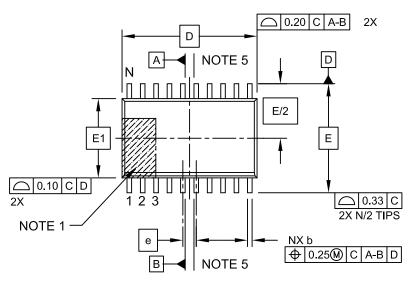
	Units		INCHES	
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	N		14	
Pitch	е		.100 BSC	_
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.735	.750	.775
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eВ	-	-	.430

Notes:

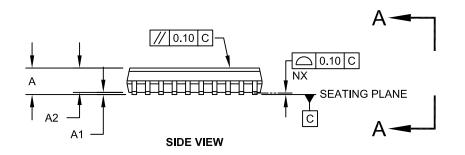
1. Pin 1 visual index feature may vary, but must be located with the hatched area.

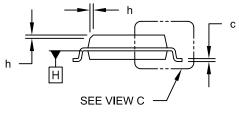
2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-005B


20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW A-A

Microchip Technology Drawing C04-094C Sheet 1 of 2

© 2016-2017 Microchip Technology Inc.