

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18326-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1:	PIC16(L)F183XX FAMILY TYPE	S

Device	Data Sheet Index	Program Memory (KB)	Program Memory (KW)	EEPROM (B)	RAM (B)	l/OS ⁽¹⁾	10-bit ADCs	Comparators	5-bit DAC	Timers 0/1/2	CCP/PWM	CWG	EUSART	SPI	l²C	CLC	NCO	Sdd	ICD ⁽²⁾
PIC16(L)F18313	(A)	3.5	2	256	256	6	5	1	1	1/1/1	2/2	1	1	1	1	2	1	Y	I
PIC16(L)F18323	(A)	3.5	2	256	256	12	11	2	1	1/1/1	2/2	1	1	1	1	2	1	Y	I
PIC16(L)F18324	(B)	7	4	256	512	12	11	2	1	1/3/3	4/2	2	1	1	1	4	1	Y	I
PIC16(L)F18325	(C)	14	8	256	1K	12	11	2	1	1/3/3	4/2	2	1	2	2	4	1	Y	I
PIC16(L)F18326	(D)	28	16	256	2K	12	11	2	1	1/3/3	4/2	2	1	2	2	4	1	Υ	I
PIC16(L)F18344	(B)	7	4	256	512	18	17	2	1	1/3/3	4/2	2	1	1	1	4	1	Y	I
PIC16(L)F18345	(C)	14	8	256	1K	18	17	2	1	1/3/3	4/2	2	1	2	2	4	1	Y	I
PIC16(L)F18346	(D)	28	16	256	2K	18	17	2	1	1/3/3	4/2	2	1	2	2	4	1	Y	Ι

Note 1: One pin is input-only.

2: Debugging Methods: (I) – Integrated on Chip; E – using Emulation Header.

Data Sheet Index: (Unshaded devices are described in this document.)

Note A: DS40001799 PIC16(L)F183	3/18323 Data Sheet, Full-Featured, Low Pin Count Microcontrollers with XLP
---------------------------------	--

B: DS40001800 PIC16(L)F18324/18344 Data Sheet,Full-Featured, Low Pin Count Microcontrollers with XLP

C: DS40001795 PIC16(L)F18325/18345 Data Sheet,Full-Featured, Low Pin Count Microcontrollers with XLP

D: DS40001839 PIC16(L)F18326/18346 Data Sheet,Full-Featured, Low Pin Count Microcontrollers with XLP

Note: For other small form-factor package availability and marking information, visit http://www.microchip.com/packaging or contact your local sales office.

IADLL							CONTINUE	<i>.</i> ,				
Address	Name	PIC16(L)F18326 PIC16(L)F18346	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 3)											
					CPU CORE RE	EGISTERS; see	Table 4-2 for spe	cifics				
F20h	CLC2GLS0		LC2G1D4T	LC2G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	XXXX XXXX	นนนน นนนเ
F21h	CLC2GLS1		LC2G2D4T	LC2G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	XXXX XXXX	นนนน นนนเ
F22h	CLC2GLS2		LC2G3D4T	LC2G3D4N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	XXXX XXXX	นนนน นนนเ
F23h	CLC2GLS3		LC2G4D4T	LC2G4D4N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	XXXX XXXX	นนนน นนนเ
F24h	CLC3CON		LC3EN	_	LC3OUT	LC3INTP	LC3INTN		LC3MODE<2:0>	>	0-00 0000	0-00 0000
F25h	CLC3POL		LC3POL	_	_	_	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	0 xxxx	0 uuuu
F26h	CLC3SEL0		_	_		LC3D1S<5:0>					xx xxxx	uu uuuu
F27h	CLC3SEL1		_	_			LC3D2	S<5:0>			xx xxxx	uu uuuu
F28h	CLC3SEL2		_	_			LC3D3	S<5:0>			xx xxxx	uu uuuu
F29h	CLC3SEL3		_	_			LC3D4	S<5:0>			xx xxxx	uu uuuu
F2Ah	CLC3GLS0		LC3G1D4T	LC3G1D4N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	XXXX XXXX	นนนน นนนเ
F2Bh	CLC3GLS1		LC3G2D4T	LC3G2D4N	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	XXXX XXXX	นนนน นนนเ
F2Ch	CLC3GLS2		LC3G3D4T	LC3G3D4N	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	XXXX XXXX	นนนน นนนเ
F2Dh	CLC3GLS3		LC3G4D4T	LC3G4D4N	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	XXXX XXXX	นนนน นนนเ
F2Eh	CLC4CON		LC4EN	—	LC4OUT	LC4INTP	LC4INTN		LC4MODE<2:0>	>	0-00 0000	0-00 0000
F2Fh	CLC4POL		LC4POL	—	_	_	LC4G4POL	LC4G3POL	LC4G2POL	LC4G1POL	0 xxxx	0 uuuu
F30h	CLC4SEL0		_	—			LC4D1	S<5:0>	•	•	xx xxxx	uu uuuu
F31h	CLC4SEL1		_	_			LC4D2	S<5:0>			xx xxxx	uu uuuu
F32h	CLC4SEL2		_	_			LC4D3	S<5:0>			xx xxxx	uu uuuu
F33h	CLC4SEL3		_	_			LC4D4	S<5:0>			xx xxxx	uu uuuu
F34h	CLC4GLS0		LC4G1D4T	LC4G1D4N	LC4G1D3T	LC4G1D3N	LC4G1D2T	LC4G1D2N	LC4G1D1T	LC4G1D1N	XXXX XXXX	นนนน นนนน
F35h	CLC4GLS1		LC4G2D4T	LC4G2D4N	LC4G2D3T	LC4G2D3N	LC4G2D2T	LC4G2D2N	LC4G2D1T	LC4G2D1N	XXXX XXXX	นนนน นนนน
F36h	CLC4GLS2		LC4G3D4T	LC4G3D4N	LC4G3D3T	LC4G3D3N	LC4G3D2T	LC4G3D2N	LC4G3D1T	LC4G3D1N	XXXX XXXX	uuuu uuuu

TABLE 4-4: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

LC4G4D3N

LC4G4D2T

LC4G4D2N

LC4G4D1T

LC4G4D1N

XXXX XXXX

uuuu uuuu

LC4G4D3T

Note 1: Only on PIC16F18326/18346.

CLC4GLS3

2: Register accessible from both User and ICD Debugger.

LC4G4D4T

LC4G4D4N

F37h

6.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

6.2.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep, but device wake-up will be delayed until the BOR can determine that VDD is higher than the BOR threshold. The device wake-up will be delayed until the BOR is ready.

6.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device wake from Sleep is not delayed by the BOR Ready condition or the VDD level only when the SBOREN bit is cleared in software and the device is starting up from a non POR/BOR Reset event.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register. BOR Protection is unchanged by Sleep

FIGURE 6-2: BROWN-OUT SITUATIONS

6.2.4 BOR ALWAYS OFF

When the BOREN bits of Configuration Word 2 are programmed to '00', the BOR is always disable. In the configuration, setting the SWBOREN bit will have no affect on BOR operation.

7.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (ECH, ECM, ECL mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes).

There is also a secondary oscillator block which is optimized for a 32.768 kHz external clock source, which can be used as an alternate clock source.

There are two internal oscillator blocks:

- HFINTOSC
- LFINTOSC

The HFINTOSC can produce clock frequencies from 1-16 MHz. The LFINTOSC generates a 31 kHz clock frequency.

There is a PLL that can be used by the external oscillator. See **Section 7.2.1.4 "4x PLL**" for more details. Additionally, there is a PLL that can be used by the HFINTOSC at certain frequencies. See **Section 7.2.2.2 "2x PLL**" for more details.

7.2.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the RSTOSC<2:0> bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the NOSC<2:0> and NDIV<3:0> bits in the OSCCON1 register to switch the system clock source.

See **Section 7.3 "Clock Switching"** for more information.

7.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the CLKIN input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 7-2 shows the pin connections for EC mode.

EC mode has three power modes to select from through Configuration Words:

- ECH High power, <= 32 MHz
- ECM Medium power, <= 8 MHz
- ECL Low power, <= 0.1 MHz

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 7-2: EXTERNAL CLOCK (EC) MODE OPERATION

PIC16(L)F18326/18346

4: For minimum width of INT pulse, refer to AC specifications in Section 35.0 "Electrical Specifications"".

5: INTF is enabled to be set any time during the Q4-Q1 cycles.

FIGURE 9-2	2: WAI	KE-UP FROM	I SLEEP	THRC	OUGH INTER	RUPT		
CLKIN ⁽¹ CLKOUT ⁽²	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1	Tost ⁽³⁾	Q1 Q2 Q3 Q4 /~	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 	Q1 Q2 Q3 Q4
Interrupt flag	1 F	I I		 	Interrupt Later	ncy ⁽⁴⁾	; '	
GIE bit (INTCON reg.		' <u>'</u> '' '	Processor in Sleep		· · · ·	<u>.</u> 	· · · · · · · · ·	
Instruction Flow	/' /		V————————————————————————————————————				u V0004b	
Instruction {	Inst(PC) = Sleep	Inst(PC + 1)		<u> </u>	Inst(PC + 2)	<u>N PCTZ</u> 	Inst(0004h)	Inst(0005h)
Instruction { Executed {	Inst(PC - 1)	Sleep	1 1 1		Inst(PC + 1)	Forced NOP	Forced NOP	Inst(0004h)
Note 1: 2: 3: 4:	External clock. Hig CLKOUT is shown Tost = 1024 Tosc GIE = 1 assumed.	gh, Medium, Low n here for timing re . This delay does r In this case after v	node assume ference. not apply to E wake-up, the	d. C and IN processo	TOSC Oscillator n r calls the ISR at (nodes. 0004h. If GIE = 0,	execution will con	tinue in-line.

13.8 Register Definitions: PPS Input Selection

REGISTER 13-1: xxxPPS: PERIPHERAL xxx INPUT SELECTION

U-0	U-0	U-0	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u
—	—	—			xxxPPS<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = value dep	ends on periph	eral	
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-0	xxxPPS<4:0> 11xxx = Rese	Peripheral x erved. Do not u	kx Input Selec use.	tion bits			
	10111 = Peri 10110 = Peri 10101 = Peri 10100 = Peri 10011 = Peri 10010 = Peri 10001 = Peri 10000 = Peri	pheral input is pheral input is	RC7 ⁽¹⁾ RC6 ⁽¹⁾ RC5 RC4 RC3 RC2 RC1 RC0				
	 01111 = Peri 01110 = Peri 01101 = Peri 01100 = Peri	pheral input is pheral input is pheral input is pheral input is	RB7 ⁽¹⁾ RB6 ⁽¹⁾ RB5 ⁽¹⁾ RB4 ⁽¹⁾				
	 0011x = Rese 00101 = Peri 00100 = Peri 00011 = Peri 00001 = Peri 00001 = Peri 00000 = Peri	erved. Do not u pheral input is pheral input is pheral input is pheral input is pheral input is pheral input is	use. RA5 RA4 RA3 RA2 RA1 RA0				

Note 1: PIC16(L)F18346 only.

19.0 PULSE-WIDTH MODULATION (PWM)

The PWMx modules generate Pulse-Width Modulated (PWM) signals of varying frequency and duty cycle.

In addition to the CCP modules, the PIC16(L)F18326/18346 devices contain two PWM modules.

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the ON state (pulse width), and the low portion of the signal is considered the OFF state. The term duty cycle describes the proportion of the ON time to the OFF time and is expressed in percentages, where 0% is fully OFF and 100% is fully ON. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse-width time and in turn the power that is applied to the load.

Figure 19-1 shows a typical waveform of the PWM signal.

19.1 Standard PWM Mode

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the PWMx pin with up to ten bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- TMR2, TMR4 or TMR6 registers
- PR2, PR4 or PR6 registers
- PWMxCON registers
- PWMxDCH registers
- PWMxDCL registers

Figure 29-2 shows a simplified block diagram of the PWM operation.

If PWMPOL = 0, the default state of the output is '0'. If PWMPOL = 1, the default state is '1'. If PWMEN = 0, the output will be the default state.

Note: The corresponding TRIS bit must be cleared to enable the PWM output on the PWMx pin

Note: The formulas and text refer to TMR2 and PR2, for simplicity. The same formulas and text apply to TMR4/6 and PR4/6. The timer sources can be selected in Register 19-4. For additional information on TMR2/4/6, refer to Section 28.0 "Timer 2/4/6 Module"

20.9 Operation During Sleep

The CWGx module will operate during Sleep, provided that the input sources remain active.

If the HFINTOSC is selected as the module clock source, dead-band generation will remain active. This will have a direct effect on the Sleep mode current.

20.10 Configuring the CWG

- Ensure that the TRIS control bits corresponding to CWG outputs are set so that all are configured as inputs, ensuring that the outputs are inactive during setup. External hardware may ensure that pin levels are held to safe levels.
- 2. Clear the EN bit, if not already cleared.
- Configure the MODE<2:0> bits of the CWGxCON0 register to set the output operating mode.
- 4. Configure the POLy bits of the CWGxCON1 register to set the output polarities.
- 5. Configure the DAT<3:0> bits of the CWGxDAT register to select the data input source.
- 6. If a Steering mode is selected, configure the STRy bits to select the desired output on the CWG outputs.
- Configure the LSBD<1:0> and LSAC<1:0> bits of the CWGxAS0 register to select the autoshutdown output override states (this is necessary even if not using auto-shutdown because start-up will be from a shutdown state).
- If auto-restart is desired, set the REN bit of CWGxAS0.
- 9. If auto-shutdown is desired, configure the ASxE bits of the CWGxAS1 register to select the shutdown source.
- 10. Set the desired rising and falling dead-band times with the CWGxDBR and CWGxDBF registers.
- 11. Select the clock source in the CWGxCLKCON register.
- 12. Set the EN bit to enable the module.
- 13. Clear the TRIS bits that correspond to the CWG outputs to set them as outputs.
- 14. If auto-restart is to be used, set the REN bit and the SHUTDOWN bit will be cleared automatically. Otherwise, clear the SHUTDOWN bit in software to start the CWG.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	—			DBF	<5:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	ends on condit	ion	
bit 7-6	Unimplemer	nted: Read as ') '				
bit 5-0	DBF<5:0>: (CWG Falling Edg	ge Triggered I	Dead-Band Cou	int bits		
	11 1111 =	63-64 CWG clo	ock periods				
	11 1110 =	62-63 CWG clo	ock periods				
	•						
	•	2.2 CWC alook	noriodo				
	00 0010 =	1-2 CWG clock	periods				
	00 0000 =	0 CWG clock p	eriods. Dead-	band generatio	n is bypassed.		
		· · - • • • • • • •		35110101010			

REGISTER 20-9: CWGxDBF: CWGx FALLING DEAD-BAND COUNT REGISTER

21.0 CONFIGURABLE LOGIC CELL (CLC)

The Configurable Logic Cell (CLCx) provides programmable logic that operates outside the speed limitations of software execution. The logic cell takes up to 36 input signals and, through the use of configurable gates, reduces the 36 inputs to four logic lines that drive one of eight selectable single-output logic functions.

Input sources are a combination of the following:

- · I/O pins
- Internal clocks
- Peripherals
- · Register bits

The output can be directed internally to peripherals and to an output pin.

Refer to Figure 21-1 for a simplified diagram showing signal flow through the CLCx.

Possible configurations include:

- Combinatorial Logic
 - AND
 - NAND
 - AND-OR
 - AND-OR-INVERT
 - OR-XOR
 - OR-XNOR
- Latches
 - S-R
 - Clocked D with Set and Reset
- Transparent D with Set and Reset
- Clocked J-K with Reset

FIGURE 21-1: CLCx SIMPLIFIED BLOCK DIAGRAM

R/W-0/0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxPOL	—	—	_	LCxG4POL	LCxG3POL	LCxG2POL	LCxG1POL
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxPOL: CL	CxOUT Output	Polarity Cont	rol bit			
	1 = The output	ut of the logic of	cell is inverted				
	0 = 1 he outp	ut of the logic of	cell is not inve	rted			
bit 6-4	Unimplemen	ted: Read as '	0'				
bit 3	LCxG4POL:	Gate 3 Output	Polarity Contr	ol bit			
	1 = The output	ut of gate 3 is i	nverted when	applied to the	logic cell		
h:+ 0		ut of gate 3 is r	lot inverted	-1			
bit 2	LCXG3POL:	Gate 2 Output	Polarity Contr		1		
	1 = 1 he outp 0 = The outp	ut of gate 2 is i ut of gate 2 is r	nverted when not inverted	applied to the	logic cell		
bit 1	LCxG2POL:	Gate 1 Output	Polarity Contr	ol bit			
	1 = The outp	ut of gate 1 is i	nverted when	applied to the	logic cell		
	0 = The outp	ut of gate 1 is r	not inverted				
bit 0	LCxG1POL:	Gate 0 Output	Polarity Contr	ol bit			
	1 = The output	ut of gate 0 is i	nverted when	applied to the	logic cell		
	0 = 1 he outp	ut of gate 0 is r	not inverted				

REGISTER 21-2: CLCxPOL: SIGNAL POLARITY CONTROL REGISTER

PIC16(L)F18326/18346

30.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSPx module configured as an I^2C slave in 10-bit Addressing mode.

Figure 30-20 is used as a visual reference for this description.

This is a step-by-step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts Idle.
- Master sends Start condition; S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Master sends matching high address with R/\overline{W} bit clear; UA bit of the SSPxSTAT register is set.
- 4. Slave sends ACK and SSPxIF is set.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. Slave loads low address into SSPxADD, releasing SCL.
- 8. Master sends matching low address byte to the slave; UA bit is set.

Note: Updates to the SSPxADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSPxIF is set.

Note: If the low address does not match, SSPxIF and UA are still set so that the slave software can set SSPxADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSPxIF.
- 11. Slave reads the received matching address from SSPxBUF clearing BF.
- 12. Slave loads high address into SSPxADD.
- 13. Master clocks a data byte to the slave and clocks out the slaves ACK on the ninth SCL pulse; SSPxIF is set.
- 14. If SEN bit of SSPxCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSPxIF.
- 16. Slave reads the received byte from SSPxBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCL.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

30.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPxADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCL line is held low are the same. Figure 30-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 30-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

30.6.4 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition (Figure 30-26), the user sets the Start Enable bit, SEN bit of the SSPxCON2 register. If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the Start condition and causes the S bit of the SSPxSTAT register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPxCON2 register will be automatically cleared by hardware; the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

- Note 1: If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I²C module is reset into its idle state.
 - **2:** The Philips I²C specification states that a bus collision cannot occur on a Start.

The operation of the EUSART1 module is controlled through three registers:

- Transmit Status and Control (TX1STA)
- Receive Status and Control (RC1STA)
- Baud Rate Control (BAUD1CON)

These registers are detailed in Register 31-1, Register 31-2 and Register 31-3, respectively.

The RX and CK input pins are selected with the RXPPS and CKPPS registers, respectively. TX, CK, and DT output pins are selected with each pin's RxyPPS register. Since the RX input is coupled with the DT output in Synchronous mode, it is the user's responsibility to select the same pin for both of these functions when operating in Synchronous mode. The EUSART1 control logic will control the data direction drivers automatically.

31.5 EUSART1 Operation During Sleep

The EUSART1 will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

31.5.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RC1STA and TX1STA Control registers must be configured for Synchronous Slave Reception (see Section 31.4.2.4 "Synchronous Slave Reception Setup").
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RC1REG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF interrupt flag bit of the PIR1 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

31.5.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- The RC1STA and TX1STA Control registers must be configured for synchronous slave transmission (see Section 31.4.2.2 "Synchronous Slave Transmission Setup").
- The TXIF interrupt flag must be cleared by writing the output data to the TX1REG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.
- Interrupt enable bits TXIE of the PIE1 register and PEIE of the INTCON register must set.

Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TX1REG will transfer to the TSR and the TXIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TX1REG is available to accept another character for transmission, which will clear the TXIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit is also set then the Interrupt Service Routine at address 0004h will be called.

PIC16(L)F18326/18346

MOVIW	Move INDFn to W
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31
Operation:	$\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{•} \ &\text{FSR + 1 (preincrement)} \\ &\text{•} \ &\text{FSR - 1 (predecrement)} \\ &\text{•} \ &\text{FSR + k (relative offset)} \\ &\text{After the Move, the FSR value will be either:} \\ &\text{•} \ &\text{FSR + 1 (all increments)} \\ &\text{•} \ &\text{FSR - 1 (all decrements)} \\ &\text{•} \ &\text{Unchanged} \end{split}$
Status Affected:	Z

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

Syntax:	[<i>label</i>]MOVLB k			
Operands:	$0 \leq k \leq 31$			
Operation:	$k \rightarrow BSR$			
Status Affected:	None			
Description:	The 5-bit literal 'k' is loaded into the Bank Select Register (BSR).			

MOVLP	Move literal to PCLATH					
Syntax:	[<i>label</i>]MOVLP k					
Operands:	$0 \le k \le 127$					
Operation:	$k \rightarrow PCLATH$					
Status Affected:	None					
Description:	The 7-bit literal 'k' is loaded into the PCLATH register.					
MOVLW	Move literal to W					
Syntax:	[<i>label</i>] MOVLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k \rightarrow (W)$					
Status Affected:	None					
Description:	The 8-bit literal 'k' is loaded into W reg- ister. The "don't cares" will assemble as '0's.					
Words:	1					
Cycles:	1					
Example:	MOVLW 0x5A					
	After Instruction					
	W = 0x5A					
MOVWF	Move W to f					
Syntax:	[<i>label</i>] MOVWF f					
Operands:	$0 \leq f \leq 127$					
Operation:	$(W) \rightarrow (f)$					
Status Affected:	None					
Description:	Move data from W register to register 'f'.					
Words:	1					
Cycles:	1					
Example:	MOVWF OPTION_REG					
	Before Instruction OPTION_REG = 0xFF W = 0x4F					
	After Instruction					
	$OPHON_REG = 0x4F$ $W = 0x4F$					

TABLE 35-3:POWER-DOWN CURRENTS (IPD)

PIC16LF18326/18346			Standard Operating Conditions (unless otherwise stated)						
PIC16F18326/18346		Standard Operating Conditions (unless otherwise stated) VREGPM = 1							
Param.	Cumb al	Device Obernsterieties	Min	True	Max.	Max.	Units	Conditions	
No.	Symbol	Device Characteristics	win.	тур.т	+85°C	+125°C		Vdd	Note
D200	IPD	IPD Base	—	0.05	2	9	μA	3.0V	
D200	IPD	IPD Base		0.8	4	12	μA	3.0V	
				13	22	27	μA	3.0V	VREGPM = Q
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	-	0.8	5	13	μA	3.0V	\sim
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	—	0.9	5	13	μA	3.0V	
D202	IPD_SOSC	Secondary Oscillator (SOSC)	—	0.6	5	13	μA	3.0V	
D202	IPD_SOSC	Secondary Oscillator (SOSC)		0.8	9	15~	μA	3.00	\searrow
D203	IPD_FVR	FVR	—	40	47	4۲ ۲	μA	3.0V	V
D203	IPD_FVR	FVR		33	44	44	∖µA∕	3.0V	
D204	IPD_BOR	Brown-out Reset (BOR)	—	12	17⁄\	19 \	μÁ	3.0V	
D204	IPD_BOR	Brown-out Reset (BOR)	—	12	18	20	\μA	3.0V	
D205	IPD_LPBOR	Low Power Brown-out Reset (LPBOR)	-	3 <	5	13	μĂ >	3.0V	
D205	IPD_LPBOR	Low Power Brown-out Reset (LPBOR)	-	4	5	13	μΑ	3.0V	
D207	IPD_ADCA	ADC - Active	\nearrow	0.9	5	[√] 13	μA	3.0V	ADC is converting ⁽⁴⁾
D207	IPD_ADCA	ADC - Active	$\neq \prime$	9.0	5	13	μΑ	3.0V	ADC is converting ⁽⁴⁾
D208	IPD_CMP	Comparator	$\langle - \rangle$	32	43	45	μA	3.0V	
D208	IPD_CMP	Comparator		4 31	42	44	μA	3.0V	

These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.

TABLE 35-11: RESET, WATCHDOG TIMER, OSCILLATOR, START-UP TIMER, POWER-UP TIMER, BROWN-OUT RESET AND LOW POWER BROWN-OUT RESET SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions
RST01	TMCLR	MCLR Pulse Width Low to ensure Reset	2	—	—	μS	\wedge
RST02	Tioz	I/O high-impedance from Reset detection	—	—	2	μS	
RST03	Twdt	Watchdog Timer Time-out Period	10	16	27	ms	16 ms Nominal Reset Time
RST04*	TPWRT	Power-up Timer Period	40	65	140	ms	
RST05	Tost	Oscillator Start-up Timer Period ^(1,2)	—	1024	—	Tosc	(Note3)
RST06	VBOR	Brown-out Reset Voltage ⁽⁴⁾	2.55	2.70	2.85	V	BORV = 0
			2.30	2.45	2.60	V	BORV = 1 (PIC16F18326/18346)
			1.80	1.90	2.10	V	BOR∀ = 1 (PIC16L+18326/18346)
RST07	VBORHYS	Brown-out Reset Hysteresis	0	25	75	mV `	$\langle \rangle = 2$
RST08	TBORDC	Brown-out Reset Response Time	1	3	35	μS	
RST09	VLPBOR	Low-Power Brown-out Reset Voltage	1.8	2.1	2.5	×	PIC16LF18326/18346

* These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** Instruction cycle period (Tcy) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC* pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
 - 2: By design.
 - **3:** Period of the slower clock.
 - 4: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.