

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

-XF

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 32MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                   |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                       |
| Number of I/O              | 12                                                                          |
| Program Memory Size        | 28KB (16K x 14)                                                             |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | 256 x 8                                                                     |
| RAM Size                   | 2K x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 5.5V                                                                 |
| Data Converters            | A/D 11x10b; D/A 1x5b                                                        |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 16-UQFN Exposed Pad                                                         |
| Supplier Device Package    | 16-UQFN (4x4)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f18326t-i-jq |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### **Pin Diagrams**



#### FIGURE 2: 16-PIN UQFN (4x4)



### FIGURE 3: 20-PIN PDIP, SOIC, SSOP



| <b>TABLE 1-3</b> : | PIC16(L)F18346 PINOUT DESCRIPTION (CONTINUED) |
|--------------------|-----------------------------------------------|
|--------------------|-----------------------------------------------|

| Name                                                                | Function | Input<br>Type | Output<br>Type | Description                      |
|---------------------------------------------------------------------|----------|---------------|----------------|----------------------------------|
| RC3/ANC3/C1IN3-/C2IN3-/                                             | RC3      | TTL/ST        | CMOS           | General purpose I/O.             |
| MDMIN <sup>(1)</sup> / CCP2 <sup>(1)</sup> /CLCIN1 <sup>(1)</sup> / | ANC3     | AN            | —              | ADC Channel C3 input.            |
|                                                                     | C1IN3-   | AN            | —              | Comparator C1 negative input.    |
|                                                                     | C2IN3-   | AN            | _              | Comparator C2 negative input.    |
|                                                                     | MDMIN    | TTL/ST        | —              | Modular Source input.            |
|                                                                     | CCP2     | TTL/ST        | CMOS           | Capture/Compare/PWM 2 input.     |
|                                                                     | CLCIN1   | TTL/ST        | —              | Configurable Logic Cell 1 input. |
| RC4/ANC4                                                            | RC4      | TTL/ST        | CMOS           | General purpose I/O.             |
|                                                                     | ANC4     | AN            | —              | ADC Channel C4 input.            |
| RC5/ANC5/MDCIN2 <sup>(1)</sup> / CCP1 <sup>(1)</sup>                | RC5      | TTL/ST        | CMOS           | General purpose I/O.             |
|                                                                     | ANC5     | AN            |                | ADC Channel C5 input.            |
|                                                                     | MDCIN2   | TTL/ST        | _              | Modular Carrier input 2.         |
|                                                                     | CCP1     | TTL/ST        | CMOS           | Capture/Compare/PWM 1 input.     |
| RC6/ANC6/SS1 <sup>(1)</sup>                                         | RC6      | TTL/ST        | CMOS           | General purpose I/O.             |
|                                                                     | ANC6     | AN            | _              | ADC Channel C6 input.            |
|                                                                     | SS1      | TTL/ST        | _              | Slave Select 1 input.            |
| RC7/ANC7                                                            | RC7      | TTL/ST        | CMOS           | General purpose I/O.             |
|                                                                     | ANC7     | AN            | _              | ADC Channel C7 input.            |
| VDD                                                                 | Vdd      | Power         | _              | Positive supply.                 |
| Vss                                                                 | Vss      | Power         | _              | Ground reference.                |

Legend: AN = Analog input or output CMOS= CMOS compatible input or output OD = Open-Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels  $I^2C$  = Schmitt Trigger input with  $I^2C$ HV = High Voltage XTAL = Crystal levels

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 13-2.
 All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output

2: All pin outputs derauit to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 13-2.

3: These I<sup>2</sup>C functions are bidirectional. The output pin selections must be the same as the input pin selections.

| TABLE 4-4: | SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED) |
|------------|----------------------------------------------------------|
|------------|----------------------------------------------------------|

| Address | Name    | PIC16(L)F18326<br>PIC16(L)F18346 | Bit 7  | Bit 6         | Bit 5       | Bit 4         | Bit 3             | Bit 2   | Bit 1   | Bit 0  | Value on:<br>POR, BOR | Value on<br>all other<br>Resets |
|---------|---------|----------------------------------|--------|---------------|-------------|---------------|-------------------|---------|---------|--------|-----------------------|---------------------------------|
| Bank 5  |         |                                  |        |               |             |               |                   |         |         |        |                       |                                 |
|         |         |                                  |        |               | CPU CORE RI | EGISTERS; see | Table 4-2 for spe | ecifics |         |        |                       |                                 |
| 28Ch    | ODCONA  |                                  | _      | _             | ODCA5       | ODCA4         | _                 | ODCA2   | ODCA1   | ODCA0  | 00 -000               | 00 -000                         |
| 28Dh    | ODCONB  | X —                              |        |               |             | Unimple       | emented           |         |         |        | —                     | —                               |
|         |         | — X                              | ODCB7  | ODCB6         | ODCB5       | ODCB4         | _                 | _       | _       | _      | 0000                  | 0000                            |
| 28Eh    | ODCONC  | X —                              | —      | _             | ODCC5       | ODCC4         | ODCC3             | ODCC2   | ODCC1   | ODCC0  | 00 0000               | 00 0000                         |
|         |         | — X                              | ODCC7  | ODCC6         | ODCC5       | ODCC4         | ODCC3             | ODCC2   | ODCC1   | ODCC0  | 0000 0000             | 0000 0000                       |
| 28Fh    | —       | —                                |        | Unimplemented |             |               |                   |         |         |        | —                     | —                               |
| 290h    | —       | —                                |        | Unimplemented |             |               |                   |         |         | —      | —                     |                                 |
| 291h    | CCPR1L  |                                  |        | CCPR1<7:0>    |             |               |                   |         |         |        | XXXX XXXX             | XXXX XXXX                       |
| 292h    | CCPR1H  |                                  |        |               |             | CCPR1         | <15:8>            |         |         |        | XXXX XXXX             | XXXX XXXX                       |
| 293h    | CCP1CON |                                  | CCP1EN | —             | CCP10UT     | CCP1FMT       |                   | CCP1MC  | DE<3:0> |        | 0-x0 0000             | 0-x0 0000                       |
| 294h    | CCP1CAP |                                  | —      |               | —           | —             |                   | CCP1C   | TS<3:0> |        | 0000                  | xxxx                            |
| 295h    | CCPR2L  |                                  |        |               |             | CCPR          | 2<7:0>            |         |         |        | XXXX XXXX             | XXXX XXXX                       |
| 296h    | CCPR2H  |                                  |        |               |             | CCPR2         | <15:8>            |         |         |        | XXXX XXXX             | XXXX XXXX                       |
| 297h    | CCP2CON |                                  | CCP2EN | —             | CCP2OUT     | CCP2FMT       |                   | CCP2MC  | DE<3:0> |        | 0-x0 0000             | 0-x0 0000                       |
| 298h    | CCP2CAP |                                  | —      | —             | —           | —             |                   | CCP2C   | TS<3:0> |        | 0000                  | XXXX                            |
| 299h    | —       | -                                |        |               |             | Unimple       | emented           |         |         |        | _                     | _                               |
| 29Ah    | —       | -                                |        | Unimplemented |             |               |                   |         |         | _      | _                     |                                 |
| 29Bh    | —       | -                                |        |               |             | Unimple       | emented           |         |         |        | _                     | _                               |
| 29Ch    | —       | —                                |        |               |             | Unimple       | emented           |         |         |        | _                     | _                               |
| 29Dh    | —       | -                                |        |               |             | Unimple       | emented           |         |         |        | _                     | _                               |
| 29Eh    | —       | —                                |        |               |             | Unimple       | emented           |         |         |        | —                     | _                               |
| 29Fh    | CCPTMRS |                                  | C4TSEL | <1:0>         | C3TS        | EL<1:0>       | C2TSE             | L<1:0>  | C1TSE   | L<1:0> | 0101 0101             | 0101 0101                       |

Legend:

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Only on PIC16F18326/18346.

2: Register accessible from both User and ICD Debugger.

### 4.3 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 4-3 shows the five situations for the loading of the PC.

FIGURE 4-3: LOADING OF PC IN DIFFERENT SITUATIONS



#### 4.3.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register.

#### 4.3.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *Implementing a Table Read* (DS00556).

#### 4.3.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and  $\overline{W}$  to form the destination address. A computed CALLW is accomplished by loading the  $\overline{W}$  register with the desired address and executing CALLW. The PCL register is loaded with the value of  $\overline{W}$  and PCH is loaded with PCLATH.

#### 4.3.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the  $\overline{W}$  register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 +  $\overline{W}$ .

If using BRA, the entire PC will be loaded with PC + 1 + the signed value of the operand of the BRA instruction.

#### 7.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 7-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

- LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals) but can operate up to 100 kHz.
- XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to crystals and resonators with a frequency rang up to 4 MHz.
- HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require operating frequencies up to 20 MHz.

Figure 7-3 and Figure 7-4 show typical circuits for quartz crystal and ceramic resonators, respectively.





Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.

- **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
- **3:** For oscillator design assistance, reference the following Microchip Application Notes:
  - AN826, Crystal Oscillator Basics and Crystal Selection for rfPIC<sup>®</sup> and PIC<sup>®</sup> Devices (DS00826)
  - AN849, Basic PIC<sup>®</sup> Oscillator Design (DS00849)
  - AN943, Practical PIC<sup>®</sup> Oscillator Analysis and Design (DS00943)
  - AN949, Making Your Oscillator Work (DS00949)



CERAMIC RESONATOR OPERATION (XT OR HS MODE)



| U-0              | U-0                                                       | R/W-x/u           | R/W-x/u | U-0                                                   | R/W-x/u | R/W-x/u | R/W-x/u |  |  |
|------------------|-----------------------------------------------------------|-------------------|---------|-------------------------------------------------------|---------|---------|---------|--|--|
|                  | —                                                         | LATA5             | LATA4   | —                                                     | LATA2   | LATA1   | LATA0   |  |  |
| bit 7            |                                                           |                   |         |                                                       |         |         | bit 0   |  |  |
|                  |                                                           |                   |         |                                                       |         |         |         |  |  |
| Legend:          |                                                           |                   |         |                                                       |         |         |         |  |  |
| R = Readable     | bit                                                       | W = Writable bit  |         | U = Unimplemented bit, read as '0'                    |         |         |         |  |  |
| u = Bit is unch  | anged                                                     | x = Bit is unkr   | nown    | -n/n = Value at POR and BOR/Value at all other Resets |         |         |         |  |  |
| '1' = Bit is set |                                                           | '0' = Bit is clea | ared    |                                                       |         |         |         |  |  |
|                  |                                                           |                   |         |                                                       |         |         |         |  |  |
| bit 7-6          | Unimplemented: Read as '0'                                |                   |         |                                                       |         |         |         |  |  |
| bit 5-4          | LATA<5:4>: RA<5:4> Output Latch Value bits <sup>(1)</sup> |                   |         |                                                       |         |         |         |  |  |
| bit 3            | Unimplemented: Read as '0'                                |                   |         |                                                       |         |         |         |  |  |

#### REGISTER 12-3: LATA: PORTA DATA LATCH REGISTER

| bit 3 | Unimplemented: Read as '0' |
|-------|----------------------------|
|       |                            |

bit 2-0 LATA<2:0>: RA<2:0> Output Latch Value bits<sup>(1)</sup>

**Note 1:** Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

#### REGISTER 12-4: ANSELA: PORTA ANALOG SELECT REGISTER

| U-0   | U-0 | R/W-1/1 | R/W-1/1 | U-0 | R/W-1/1 | R/W-1/1 | R/W-1/1 |
|-------|-----|---------|---------|-----|---------|---------|---------|
| —     | _   | ANSA5   | ANSA4   | —   | ANSA2   | ANSA1   | ANSA0   |
| bit 7 |     |         |         |     |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

| bit 7-6 | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                        |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 5-4 | <ul> <li>ANSA&lt;5:4&gt;: Analog Select between Analog or Digital Function on pins RA&lt;5:4&gt;, respectively</li> <li>1 = Analog input. Pin is assigned as analog input<sup>(1)</sup>. Digital input buffer disabled.</li> <li>0 = Digital I/O. Pin is assigned to port or digital special function.</li> </ul> |
| bit 3   | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                        |
| bit 2-0 | <ul> <li>ANSA&lt;2:0&gt;: Analog Select between Analog or Digital Function on pins RA&lt;2:0&gt;, respectively</li> <li>1 = Analog input. Pin is assigned as analog input<sup>(1)</sup>. Digital input buffer disabled.</li> <li>0 = Digital I/O. Pin is assigned to port or digital special function.</li> </ul> |

**Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

| R/W-x/u                                                                                | R/W-x/u              | R/W-x/u      | R/W-x/u | R/W-x/u                            | R/W-x/u | R/W-x/u | R/W-x/u |  |
|----------------------------------------------------------------------------------------|----------------------|--------------|---------|------------------------------------|---------|---------|---------|--|
| LATC7 <sup>(1)</sup>                                                                   | LATC6 <sup>(1)</sup> | LATC5        | LATC4   | LATC3                              | LATC2   | LATC1   | LATC0   |  |
| bit 7                                                                                  |                      |              |         |                                    |         |         | bit 0   |  |
|                                                                                        |                      |              |         |                                    |         |         |         |  |
| Legend:                                                                                |                      |              |         |                                    |         |         |         |  |
| R = Readable                                                                           | bit                  | W = Writable | bit     | U = Unimplemented bit, read as '0' |         |         |         |  |
| u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other |                      |              |         | ther Resets                        |         |         |         |  |
| '1' = Bit is set '0' = Bit is cleared                                                  |                      |              | ared    |                                    |         |         |         |  |
|                                                                                        |                      |              |         |                                    |         |         |         |  |

#### REGISTER 12-19: LATC: PORTC DATA LATCH REGISTER

LATC<7:6>: PORTC Output Latch Value bits<sup>(1)</sup> bit 7-6

LATC<5:0>: PORTC Output Latch Value bits bit 5-0

Note 1: PIC16(L)F18346 only; otherwise read as '0'.

#### 22.3 ADC Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 22-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 22-4. The maximum recommended impedance for analog sources is 10 k $\Omega$ .

As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an ADC acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 22-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

#### EQUATION 22-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature = 
$$50^{\circ}C$$
 and external impedance of  $10k\Omega 5.0V VDD$   
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$   
 $= TAMP + TC + TCOFF$   
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$ 

*The value for TC can be approximated with the following equations:* 

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD} \qquad ;[1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} \qquad ;[2] V_{CHOLD} charge response to V_{APPLIED} \\V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) \qquad ;combining [1] and [2]$$

*Note: Where* n = number *of bits of the ADC.* 

Solving for TC:

$$T_{C} = -C_{HOLD}(R_{IC} + R_{SS} + R_{S}) \ln(1/2047)$$
$$= -10pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)$$
$$= 1.37us$$

Therefore:

$$TACQ = 2\mu s + 892ns + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$
  
= 4.62\mu s

**Note 1:** The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is  $10 \text{ k}\Omega$ . This is required to meet the pin leakage specification.

| R/W-0/0                                                                                                                                                                             | U-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R-0                                                | R/W-0/0        | R/W-0/0        | R/W-0/0          | R/W-0/0          | R/W-0/0     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------|----------------|------------------|------------------|-------------|
| T0EN                                                                                                                                                                                | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TOOUT                                              | T016BIT        |                | TOOUT            | PS<3:0>          |             |
| bit 7                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                |                |                  |                  | bit 0       |
|                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                |                |                  |                  |             |
| Legend:                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                |                |                  |                  |             |
| R = Readable                                                                                                                                                                        | bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W = Writable                                       | bit            | U = Unimplen   | nented bit, read | l as '0'         |             |
| u = Bit is unch                                                                                                                                                                     | anged                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x = Bit is unk                                     | nown           | -n/n = Value a | at POR and BO    | R/Value at all o | ther Resets |
| '1' = Bit is set                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | '0' = Bit is cle                                   | ared           |                |                  |                  |             |
| bit 7 <b>TOEN:</b> TMR0 Enable bit<br>1 = The module is enabled and operating<br>0 = The module is disabled and in the lowest power mode<br>bit 6 <b>Unimplemented:</b> Read as '0' |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                |                |                  |                  |             |
| bit 5                                                                                                                                                                               | TOOUT:TMR0                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) Output (read-                                    | -only)         |                |                  |                  |             |
|                                                                                                                                                                                     | TMR0 output                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bit                                                | 0              |                |                  |                  |             |
| bit 4                                                                                                                                                                               | <b>T016BIT:</b> TMF<br>1 = TMR0 is<br>0 = TMR0 is                                                                                                                                                                                                                                                                                                                                                                                                                     | R0 Operating a<br>a 16-bit timer<br>an 8-bit timer | as 16-bit Time | r Select bit   |                  |                  |             |
| bit 3-0                                                                                                                                                                             | <b>TOOUTPS&lt;3:0&gt;:</b> TMR0 Output Postscaler (divider) Select bits<br>1111 = 1:16 Postscaler<br>1110 = 1:15 Postscaler<br>1101 = 1:14 Postscaler<br>1001 = 1:13 Postscaler<br>1011 = 1:12 Postscaler<br>1010 = 1:11 Postscaler<br>1001 = 1:10 Postscaler<br>1000 = 1:9 Postscaler<br>1011 = 1:8 Postscaler<br>1010 = 1:7 Postscaler<br>1010 = 1:5 Postscaler<br>1010 = 1:5 Postscaler<br>1011 = 1:4 Postscaler<br>1010 = 1:2 Postscaler<br>1000 = 1:1 Postscaler |                                                    |                |                |                  |                  |             |

#### REGISTER 26-3: T0CON0: TIMER0 CONTROL REGISTER 0



#### FIGURE 27-5: TIMER1 GATE SINGLE-PULSE MODE



#### 30.2.4 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as external clock pulses appear on SCK. When the last bit is latched, the SSPxIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit of the SSPxCON1 register.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. The shift register is clocked from the SCK pin input and when a byte is received, the device will generate an interrupt. If enabled, the device will wake-up from Sleep.

#### 30.2.4.1 Daisy-Chain Configuration

The SPI bus can sometimes be connected in a daisy-chain configuration. The first slave output is connected to the second slave input, the second slave output is connected to the third slave input, and so on. The final slave output is connected to the master input. Each slave sends out, during a second group of clock pulses, an exact copy of what was received during the first group of clock pulses. The whole chain acts as one large communication shift register. The daisy-chain feature only requires a single Slave Select line from the master device.

Figure 30-7 shows the block diagram of a typical daisy-chain connection when operating in SPI mode.

In a daisy-chain configuration, only the most recent byte on the bus is required by the slave. Setting the BOEN bit of the SSPxCON3 register will enable writes to the SSPxBUF register, even if the previous byte has not been read. This allows the software to ignore data that may not apply to it.

#### 30.2.5 SLAVE SELECT SYNCHRONIZATION

The Slave Select can also be used to synchronize communication. The Slave Select line is held high until the master device is ready to communicate. When the Slave Select line is pulled low, the slave knows that a new transmission is starting.

If the slave fails to receive the communication properly, it will be reset at the end of the transmission, when the Slave Select line returns to a high state. The slave is then ready to receive a new transmission when the Slave Select line is pulled low again. If the Slave Select line is not used, there is a risk that the slave will eventually become out of sync with the master. If the slave misses a bit, it will always be one bit off in future transmissions. Use of the Slave Select line allows the slave and master to align themselves at the beginning of each transmission.

The  $\overline{SS}$  pin allows a Synchronous Slave mode. The SPI must be in Slave mode with  $\overline{SS}$  pin control enabled (SSPxCON1<3:0> = 0100).

When the  $\overline{SS}$  pin is low, transmission and reception are enabled and the SDO pin is driven.

When the  $\overline{SS}$  pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

| Note 1: | When the SPI is in Slave mode with $\overline{SS}$ pin<br>control enabled (SSPxCON1<3:0> =<br>0100), the SPI module will reset if the $\overline{SS}$<br>pin is set to VDD. |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:      | When the SPI is used in Slave mode with CKE set; the user must enable SS pin control.                                                                                       |

3: While operated in SPI Slave mode the SMP bit of the SSPxSTAT register must remain clear.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit.









#### FIGURE 30-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)



DS40001839B-page 322

#### 30.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSPx module configured as an  $I^2C$  slave in 10-bit Addressing mode.

Figure 30-20 is used as a visual reference for this description.

This is a step-by-step process of what must be done by slave software to accomplish  $I^2C$  communication.

- 1. Bus starts Idle.
- Master sends Start condition; S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Master sends matching high address with  $R/\overline{W}$  bit clear; UA bit of the SSPxSTAT register is set.
- 4. Slave sends ACK and SSPxIF is set.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. Slave loads low address into SSPxADD, releasing SCL.
- 8. Master sends matching low address byte to the slave; UA bit is set.

**Note:** Updates to the SSPxADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSPxIF is set.

Note: If the low address does not match, SSPxIF and UA are still set so that the slave software can set SSPxADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSPxIF.
- 11. Slave reads the received matching address from SSPxBUF clearing BF.
- 12. Slave loads high address into SSPxADD.
- Master clocks a data byte to the slave and clocks out the slaves ACK on the ninth SCL pulse; SSPxIF is set.
- 14. If SEN bit of SSPxCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSPxIF.
- 16. Slave reads the received byte from SSPxBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCL.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

#### 30.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPxADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCL line is held low are the same. Figure 30-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 30-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

| REGISTER            | R 31-2: RC1S                        | IA: RECEIVE                   | STATUS A                      | ND CONTR         | OL REGISTER        |                  |                 |
|---------------------|-------------------------------------|-------------------------------|-------------------------------|------------------|--------------------|------------------|-----------------|
| R/W-0/0             | R/W-0/0                             | R/W-0/0                       | R/W-0/0                       | R/W-0/0          | R-0/0              | R-0/0            | R-x/x           |
| SPEN <sup>(1)</sup> | ) RX9                               | SREN                          | CREN                          | ADDEN            | FERR               | OERR             | RX9D            |
| bit 7               |                                     |                               |                               |                  |                    |                  | bit 0           |
| r                   |                                     |                               |                               |                  |                    |                  |                 |
| Legend:             |                                     |                               |                               |                  |                    |                  |                 |
| R = Reada           | ble bit                             | W = Writable                  | bit                           | U = Unimple      | mented bit, read   | l as '0'         |                 |
| u = Bit is u        | nchanged                            | x = Bit is unki               | nown                          | -n/n = Value     | at POR and BO      | R/Value at all o | ther Resets     |
| '1' = Bit is s      | set                                 | '0' = Bit is cle              | ared                          |                  |                    |                  |                 |
|                     |                                     |                               |                               |                  |                    |                  |                 |
| bit 7               | SPEN: Serial                        | Port Enable b                 |                               |                  |                    |                  |                 |
|                     | 1 = Serial po<br>0 = Serial po      | rt enabled<br>rt disabled (he | ld in Reset)                  |                  |                    |                  |                 |
| bit 6               | <b>RX9</b> : 9-bit Re               | ceive Enable h                | nit                           |                  |                    |                  |                 |
| bit o               | 1 = Selects 9                       | -bit reception                |                               |                  |                    |                  |                 |
|                     | 0 = Selects 8                       | B-bit reception               |                               |                  |                    |                  |                 |
| bit 5               | SREN: Single                        | e Receive Enat                | ole bit                       |                  |                    |                  |                 |
|                     | Asynchronou:                        | <u>s mode</u> :               |                               |                  |                    |                  |                 |
|                     | Unused in this                      | s mode – value                | e ignored                     |                  |                    |                  |                 |
|                     | Synchronous                         | <u>mode – Maste</u>           | <u>:r</u> :                   |                  |                    |                  |                 |
|                     | $\perp = \text{Enables}$            | single receive                |                               |                  |                    |                  |                 |
|                     | This bit is clea                    | ared after rece               | ption is compl                | ete.             |                    |                  |                 |
|                     | Synchronous                         | mode – Slave                  |                               |                  |                    |                  |                 |
|                     | Unused in this                      | s mode – value                | e ignored                     |                  |                    |                  |                 |
| bit 4               | CREN: Contin                        | nuous Receive                 | Enable bit                    |                  |                    |                  |                 |
|                     | Asynchronou:                        | <u>s mode</u> :               |                               |                  |                    |                  |                 |
|                     | 1 = Enables                         | continuous rec                | eive until ena                | ble bit CREN i   | s cleared          |                  |                 |
|                     | Svnchronous                         | mode:                         | Seive                         |                  |                    |                  |                 |
|                     | 1 = Enables                         | continuous rec                | eive until ena                | ble bit CREN i   | s cleared (CREN    | l overrides SR   | EN)             |
|                     | 0 = Disables                        | continuous red                | ceive                         |                  |                    |                  |                 |
| bit 3               | ADDEN: Add                          | ress Detect Er                | able bit                      |                  |                    |                  |                 |
|                     | Asynchronou                         | s mode 9-bit (F               | RX9 = <u>1</u> ):             |                  |                    |                  |                 |
|                     | 1 = Enables                         | address detect                | tion – enable i               | interrupt and lo | pad of the receiv  | e buffer when t  | he ninth bit in |
|                     | 0 = Disables                        | address detec                 | tion all bytes                | are received a   | and ninth bit can  | be used as pa    | ritv bit        |
|                     | Asynchronous                        | s mode 8-bit (F               | <u>RX9 = 0)</u> :             |                  |                    |                  |                 |
|                     | Unused in this                      | s mode – value                | e ignored                     |                  |                    |                  |                 |
| bit 2               | FERR: Frami                         | ng Error bit                  |                               |                  |                    |                  |                 |
|                     | 1 = Framing                         | error (can be ι               | pdated by rea                 | ading RC1RE      | G register and re  | ceive next valio | l byte)         |
|                     | 0 = No frami                        | ng error                      |                               |                  |                    |                  |                 |
| bit 1               | OERR: Overr                         | un Error bit                  |                               |                  | D.                 |                  |                 |
|                     | 1 = Overrun = 0 = No overrun        | error (can be c<br>un error   | leared by clea                | aring bit CREN   | 1)                 |                  |                 |
| bit 0               | RX9D: Ninth                         | bit of Received               | l Data                        |                  |                    |                  |                 |
|                     | This can be a                       | ddress/data bi                | t or a parity bi              | t and must be    | calculated by us   | er firmware.     |                 |
| Note 1:             | The EUSART1 mc<br>associated TRIS b | dule automatio                | cally changes<br>and RX/DT to | the pin from tr  | i-state to drive a | s needed. Con    | figure the      |

#### . . . . . . .

| R-0/0            | R-1/1                                 | U-0                                 | R/W-0/0                             | R/W-0/0          | U-0              | R/W-0/0           | R/W-0/0       |
|------------------|---------------------------------------|-------------------------------------|-------------------------------------|------------------|------------------|-------------------|---------------|
| ABDOVF           | RCIDL                                 | _                                   | SCKP                                | BRG16            | _                | WUE               | ABDEN         |
| bit 7            | _                                     |                                     |                                     |                  |                  |                   | bit 0         |
|                  |                                       |                                     |                                     |                  |                  |                   |               |
| Legend:          |                                       |                                     |                                     |                  |                  |                   |               |
| R = Readable     | bit                                   | W = Writable                        | bit                                 | U = Unimple      | mented bit, rea  | d as '0'          |               |
| u = Bit is unch  | anged                                 | x = Bit is unkr                     | nown                                | -n/n = Value     | at POR and BC    | DR/Value at all o | ther Resets   |
| '1' = Bit is set |                                       | '0' = Bit is cle                    | ared                                |                  |                  |                   |               |
|                  |                                       |                                     |                                     |                  |                  |                   |               |
| bit 7            | ABDOVF: Au                            | ito-Baud Detec                      | t Overflow bit                      |                  |                  |                   |               |
|                  | Asynchronou                           | <u>s mode</u> :                     |                                     |                  |                  |                   |               |
|                  | $\perp$ = Auto-bau                    | d timer overnov<br>d timer did not  | vea<br>overflow                     |                  |                  |                   |               |
|                  | Synchronous                           | <u>mode</u> :                       | overnow                             |                  |                  |                   |               |
|                  | Don't care                            |                                     |                                     |                  |                  |                   |               |
| bit 6            | RCIDL: Rece                           | ive Idle Flag bi                    | t                                   |                  |                  |                   |               |
|                  | Asynchronou                           | <u>s mode</u> :                     |                                     |                  |                  |                   |               |
|                  | $\perp$ = Receiver<br>0 = Start bit h | is idle<br>las been receiv          | ed and the rec                      | ceiver is receiv | vina             |                   |               |
|                  | Synchronous                           | mode:                               |                                     |                  | , ng             |                   |               |
|                  | Don't care                            |                                     |                                     |                  |                  |                   |               |
| bit 5            | Unimplemen                            | ted: Read as '                      | 0'                                  |                  |                  |                   |               |
| bit 4            | SCKP: Clock                           | /Transmit Pola                      | rity Select bit                     |                  |                  |                   |               |
|                  | Asynchronou                           | <u>s mode</u> :                     |                                     |                  |                  |                   |               |
|                  | 1 = Idle state                        | for transmit (T                     | X) is a low lev<br>X) is a bigh lev | el               |                  |                   |               |
|                  | Synchronous                           | mode:                               |                                     |                  |                  |                   |               |
|                  | 1 = Idle state                        | for clock (CK)                      | is a high level                     |                  |                  |                   |               |
|                  | 0 = Idle state                        | for clock (CK)                      | is a low level                      |                  |                  |                   |               |
| bit 3            | BRG16: 16-b                           | it Baud Rate G                      | enerator bit                        |                  |                  |                   |               |
|                  | 1 = 16-bit Ba                         | ud Rate Gener                       | ator is used                        |                  |                  |                   |               |
|                  | 0 = 8-bit Bau                         | Id Rate Genera                      | ator is used                        |                  |                  |                   |               |
| Dit 2            |                                       | ted: Read as                        | 0.                                  |                  |                  |                   |               |
| DIT 1            | WUE: Wake-                            | up Enable bit                       |                                     |                  |                  |                   |               |
|                  |                                       | <u>s mode</u> :<br>will continue to | sampla tha E                        | Av nin intorru   | int concrated o  | n falling odgo: h | it cloared in |
|                  | hardware                              | on following ris                    | sing edge.                          | x pin – interre  | ipi generaleu o  | n ialling euge, b |               |
|                  | 0 = RX pin no                         | ot monitored no                     | or rising edge of                   | detected         |                  |                   |               |
|                  | Synchronous                           | mode:                               |                                     |                  |                  |                   |               |
|                  | Unused in thi                         | s mode – value                      | eignored                            |                  |                  |                   |               |
| bit 0            | ABDEN: Auto                           | -Baud Detect                        | Enable bit                          |                  |                  |                   |               |
|                  | Asynchronou                           | <u>s mode</u> :                     |                                     |                  |                  |                   |               |
|                  | $\perp$ = Enable c<br>(55h):cle       | ared in hardwa                      | ire upon comp                       | letion           | acter – requires | s reception of a  | STINCH lield  |
|                  | 0 = Baud rate                         | e measuremen                        | t disabled or d                     | completed        |                  |                   |               |
|                  | Synchronous                           | mode:                               |                                     |                  |                  |                   |               |
|                  | Unused in thi                         | s mode – value                      | e ignored                           |                  |                  |                   |               |

|        | SYNC = 0, BRGH = 0, BRG16 = 1 |            |                             |                  |            |                             |                   |            |                             |                  |            |                             |
|--------|-------------------------------|------------|-----------------------------|------------------|------------|-----------------------------|-------------------|------------|-----------------------------|------------------|------------|-----------------------------|
| BAUD   | Fosc = 8.000 MHz              |            |                             | Fosc = 4.000 MHz |            |                             | Fosc = 3.6864 MHz |            |                             | Fosc = 1.000 MHz |            |                             |
| RATE   | Actual<br>Rate                | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate   | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate   | %<br>Error | SPBRG<br>value<br>(decimal) |
| 300    | 299.9                         | -0.02      | 1666                        | 300.1            | 0.04       | 832                         | 300.0             | 0.00       | 767                         | 300.5            | 0.16       | 207                         |
| 1200   | 1199                          | -0.08      | 416                         | 1202             | 0.16       | 207                         | 1200              | 0.00       | 191                         | 1202             | 0.16       | 51                          |
| 2400   | 2404                          | 0.16       | 207                         | 2404             | 0.16       | 103                         | 2400              | 0.00       | 95                          | 2404             | 0.16       | 25                          |
| 9600   | 9615                          | 0.16       | 51                          | 9615             | 0.16       | 25                          | 9600              | 0.00       | 23                          | —                | _          | —                           |
| 10417  | 10417                         | 0.00       | 47                          | 10417            | 0.00       | 23                          | 10473             | 0.53       | 21                          | 10417            | 0.00       | 5                           |
| 19.2k  | 19.23k                        | 0.16       | 25                          | 19.23k           | 0.16       | 12                          | 19.20k            | 0.00       | 11                          | —                | _          | —                           |
| 57.6k  | 55556                         | -3.55      | 8                           | —                |            | —                           | 57.60k            | 0.00       | 3                           | —                | _          | —                           |
| 115.2k | —                             | —          |                             | —                | _          |                             | 115.2k            | 0.00       | 1                           | —                | —          |                             |

### TABLE 31-4: BAUD RATE FOR ASYNCHRONOUS MODES (CONTINUED)

|        | SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1 |            |                             |                   |            |                             |                   |            |                             |                    |            |                             |
|--------|------------------------------------------------------|------------|-----------------------------|-------------------|------------|-----------------------------|-------------------|------------|-----------------------------|--------------------|------------|-----------------------------|
| BAUD   | Fosc = 32.000 MHz                                    |            |                             | Fosc = 20.000 MHz |            |                             | Fosc = 18.432 MHz |            |                             | Fosc = 11.0592 MHz |            |                             |
| RATE   | Actual<br>Rate                                       | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate     | %<br>Error | SPBRG<br>value<br>(decimal) |
| 300    | 300.0                                                | 0.00       | 26666                       | 300.0             | 0.00       | 16665                       | 300.0             | 0.00       | 15359                       | 300.0              | 0.00       | 9215                        |
| 1200   | 1200                                                 | 0.00       | 6666                        | 1200              | -0.01      | 4166                        | 1200              | 0.00       | 3839                        | 1200               | 0.00       | 2303                        |
| 2400   | 2400                                                 | 0.01       | 3332                        | 2400              | 0.02       | 2082                        | 2400              | 0.00       | 1919                        | 2400               | 0.00       | 1151                        |
| 9600   | 9604                                                 | 0.04       | 832                         | 9597              | -0.03      | 520                         | 9600              | 0.00       | 479                         | 9600               | 0.00       | 287                         |
| 10417  | 10417                                                | 0.00       | 767                         | 10417             | 0.00       | 479                         | 10425             | 0.08       | 441                         | 10433              | 0.16       | 264                         |
| 19.2k  | 19.18k                                               | -0.08      | 416                         | 19.23k            | 0.16       | 259                         | 19.20k            | 0.00       | 239                         | 19.20k             | 0.00       | 143                         |
| 57.6k  | 57.55k                                               | -0.08      | 138                         | 57.47k            | -0.22      | 86                          | 57.60k            | 0.00       | 79                          | 57.60k             | 0.00       | 47                          |
| 115.2k | 115.9k                                               | 0.64       | 68                          | 116.3k            | 0.94       | 42                          | 115.2k            | 0.00       | 39                          | 115.2k             | 0.00       | 23                          |

|        | SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1 |            |                             |                  |            |                             |                   |            |                             |                  |            |                             |
|--------|------------------------------------------------------|------------|-----------------------------|------------------|------------|-----------------------------|-------------------|------------|-----------------------------|------------------|------------|-----------------------------|
| BAUD   | Fosc = 8.000 MHz                                     |            |                             | Fosc = 4.000 MHz |            |                             | Fosc = 3.6864 MHz |            |                             | Fosc = 1.000 MHz |            |                             |
| RATE   | Actual<br>Rate                                       | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate   | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate   | %<br>Error | SPBRG<br>value<br>(decimal) |
| 300    | 300.0                                                | 0.00       | 6666                        | 300.0            | 0.01       | 3332                        | 300.0             | 0.00       | 3071                        | 300.1            | 0.04       | 832                         |
| 1200   | 1200                                                 | -0.02      | 1666                        | 1200             | 0.04       | 832                         | 1200              | 0.00       | 767                         | 1202             | 0.16       | 207                         |
| 2400   | 2401                                                 | 0.04       | 832                         | 2398             | 0.08       | 416                         | 2400              | 0.00       | 383                         | 2404             | 0.16       | 103                         |
| 9600   | 9615                                                 | 0.16       | 207                         | 9615             | 0.16       | 103                         | 9600              | 0.00       | 95                          | 9615             | 0.16       | 25                          |
| 10417  | 10417                                                | 0          | 191                         | 10417            | 0.00       | 95                          | 10473             | 0.53       | 87                          | 10417            | 0.00       | 23                          |
| 19.2k  | 19.23k                                               | 0.16       | 103                         | 19.23k           | 0.16       | 51                          | 19.20k            | 0.00       | 47                          | 19.23k           | 0.16       | 12                          |
| 57.6k  | 57.14k                                               | -0.79      | 34                          | 58.82k           | 2.12       | 16                          | 57.60k            | 0.00       | 15                          | —                | _          | _                           |
| 115.2k | 117.6k                                               | 2.12       | 16                          | 111.1k           | -3.55      | 8                           | 115.2k            | 0.00       | 7                           | —                | _          | _                           |

## 35.2 Standard Operating Conditions

| The standard operating conditi | ons for any device are defined as:      |
|--------------------------------|-----------------------------------------|
| Operating Voltage: VDI         | $DMIN \leq VDD \leq VDDMAX$             |
| Operating Temperature: TA_     | $\underline{MIN} \leq TA \leq TA\_MAX$  |
| VDD — Operating Supply Vol     | tage <sup>(1)</sup>                     |
| PIC16LF18326/18346             |                                         |
| VDDMIN (Fosc                   | ≤ 16 MHz) +1.8V                         |
| VDDMIN (Fosc                   | ≤ 32 MHz)                               |
| VDDMAX                         | \+3.6V                                  |
| PIC16F18326/18346              |                                         |
| VDDMIN (Fosc                   | ≤ 16 MHz)+2.3V                          |
| VDDMIN (Fosc                   | ≤ 32 MHz) +2.5V                         |
| VDDMAX                         |                                         |
| TA — Operating Ambient Ten     | nperature Range                         |
| Industrial Temperature         |                                         |
| TA_MIN                         | -40°C                                   |
| Та_мах                         | +85°C                                   |
| Extended Temperature           |                                         |
| TA_MIN                         | -40°C                                   |
| Та_мах                         |                                         |
| Note 1: See Parameter D0       | 02, DC Characteristics: Supply Voltage. |
|                                |                                         |

#### 37.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM<sup>™</sup> and dsPICDEM<sup>™</sup> demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ<sup>®</sup> security ICs, CAN, IrDA<sup>®</sup>, PowerSmart battery management, SEEVAL<sup>®</sup> evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

### 37.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent<sup>®</sup> and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika<sup>®</sup>

## THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

# CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

### **CUSTOMER SUPPORT**

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://www.microchip.com/support