E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18346-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-4:	SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)	

Address	Name	PIC16(L)F18326 PIC16(L)F18346	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 2	8											
					CPU CORE RI	EGISTERS; see 1	Table 4-2 for sp	ecifics				
E0Ch	_	-				Unimple	mented				_	_
E0Dh	—	—				Unimple	mented				-	_
E0Eh	—	—				Unimple	mented				-	_
E0Fh	PPSLOCK		_	—	—	—	_	_	—	PPSLOCKED	0	(
E10h	INTPPS		_	—	—			INTPPS<4:0>			0 0010	u uuuu
E11h	TOCKIPPS		_	—	—			T0CKIPPS<4:0>			0 0010	u uuuu
E12h	T1CKIPPS		—	_	—		T1CKIPPS<4:0>				0 0101	u uuu
E13h	T1GPPS		_	—	—	T1GPPS<4:0>				0 0100	u uuu	
E14h	CCP1PPS		—	_	—	CCP1PPS<4:0>					1 0011	u uuu
E15h	CCP2PPS		_	—	—	CCP2PPS<4:0>					1 0101	u uuuu
E16h	CCP3PPS		—	_	—		CCP3PPS<4:0>				0 0010	u uuu
E17h	CCP4PPS	X —	—	—	—			CCP4PPS<4:0>			1 0001	u uuu
		— X	—	_	—			CCP4PPS<4:0>			0 0100	u uuuu
E18h	CWG1PPS		—	—	—			CWG1PPS<4:0>			0 0010	u uuuu
E19h	CWG2PPS		—	_	—			CWG2PPS<4:0>			0 0010	u uuuu
E1Ah	MDCIN1PPS		—		—		Ν	IDCIN1PPS<4:0	>		1 0010	u uuu
E1Bh	MDCIN2PPS		—	_	—		Ν	IDCIN2PPS<4:0	>		1 0101	u uuu
E1Ch	MDMINPPS		_	—	—		I	MDMINPPS<4:0>	•		1 0011	u uuu
E1Dh	SSP2CLKPPS	X —	—	_	—		S	SP2CLKPPS<4:0)>		1 0100	u uuu
		— X	—	—	—		SSP2CLKPPS<4:0>				0 1111	u uuu
E1Eh	SSP2DATPPS	X —	_	—	—	SSP2DATPPS<4:0>				1 0101	u uuu	
		— X	—	—	—		S	SP2DATPPS<4:0)>		0 1101	u uuuu
E1Fh	SSP2SSPPS	Х —	—	—	—		5	SP2SSPPS<4:0	>		0 0000	u uuu
		— X	—	—	—		S	SP2SSPPS<4:0	>		0 0001	u uuu
E20h	SSP1CLKPPS	X —	—	_	—		S	SP1CLKPPS<4:0)>		1 0000	u uuuu
		— X	_	—	—		S	SP1CLKPPS<4:0)>		0 1110	u uuu

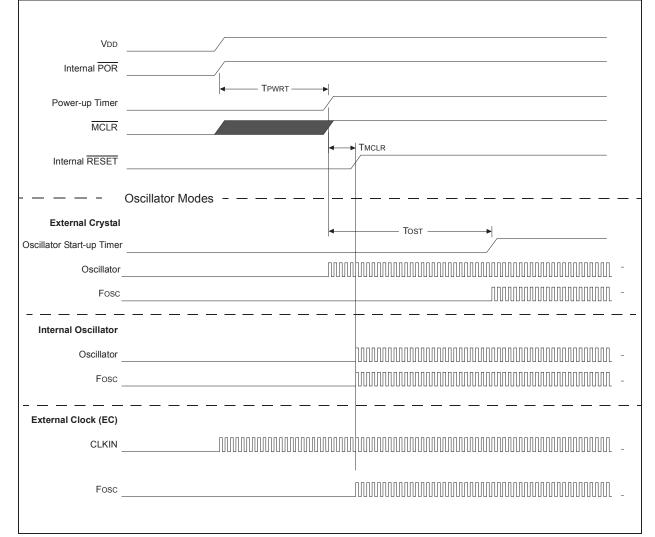
PIC16(L)F18326/18346

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Only on PIC16F18326/18346.

2: Register accessible from both User and ICD Debugger.

6.10 Start-up Sequence


Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. MCLR must be released (if enabled).
- 3. Oscillator start-up timer runs to completion (if required for oscillator source).

The total time out will vary based on oscillator configuration and Power-up Timer Configuration. See Section 7.0, Oscillator Module for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer will expire. Upon bringing MCLR high, the device will begin execution after ten Fosc cycles (see Figure 6-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.

6.13 Register Definitions: Power Control

R/W/HS-0/q	R/W/HS-0/q	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR
bit 7							bit 0
Legend:							
HC = Bit is clea	•	are		HS = Bit is se	et by hardware		
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unki	nown	-m/n = Value	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Value dep	pends on condit	ion	
bit 7	1 = A Stack C	ick Overflow Fl Overflow occur Overflow has n	red	has been clea	red by firmware		
bit 6	6 STKUNF: Stack Underflow Flag bit 1 = A Stack Underflow occurred 0 = A Stack Underflow has not occurred or has been cleared by firmware						
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	1 = A Watcho	ndog Timer Re dog Timer Res dog Timer Res	et has not occ		'1' by firmware hardware)		
bit 3	1 = A MCLR	_R Reset Flag Reset has not Reset has occ	occurred or se				
bit 2	RI: RESET Instruction Flag bit 1 = A RESET instruction has not been executed or set to '1' by firmware 0 = A RESET instruction has been executed (cleared by hardware)						
bit 1	POR: Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)						s)
bit 0	 BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Routed (must be set in software after a Power-on Reset or Brown-out Routed (must be set in software after a Power-on Reset or Brown-out Routed (must be set in software after a Power-on Reset or Brown-out Routed (must be set in software after a Power-on Reset or Brown-out Routed (must be set in software after a Power-on Reset or Brown-out Routed (must be set in software after a Power-on Routed or Brown-out Routed (must be set in software after a Power-on Routed or Brown-out Routed (must be set in software after a Power-on Routed or Brown-out Routed (must be set in software after a Power-on Routed or Brown-out Routed or Brown-out Routed (must be set in software after a Power-on Routed or Brown-out Routed or Brown-out Routed (must be set in software after a Power-on Routed or Brown-out Routed or Brown-out Routed (must be set in software after a Power-on Routed or Brown-out Routed or Brown-out Routed (must be set in software after a Power-on Routed or Brown-out Routed or Brown-out Routed (must be set in software after a Power-on Routed or Brown-out Routed or Brown-out Routed or Brown-out Routed or Brown-out Routed (must be set in software after a Power-on Routed or Brown-out R						own-out Reset

REGISTER 6-2: PCON0: POWER CONTROL REGISTER 0

TABLE 6-5 :	SUMMARY OF REGISTERS ASSOCIATED WITH RESETS
--------------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN			_	_	_		BORRDY	76
PCON0	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	77
STATUS	_	_	_	TO	PD	Z	DC	С	30
WDTCON			WDTPS<4:0>					SWDTEN	121

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

© 2016-2017 Microchip Technology Inc.

7.2.2.3 Internal Oscillator Frequency Adjustment

The HFINTOSC and LFINTOSC internal oscillators are both factory-calibrated. TH HFINTOSC oscillator can be adjusted in software by writing to the OSCTUNE register (Register 7-3). OSCTUNE does not affect the LFINTOSC frequency.

The default value of the OSCTUNE register is 00h. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the HFINTOSC oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

7.2.2.4 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is a factory-calibrated 31 kHz internal clock source.

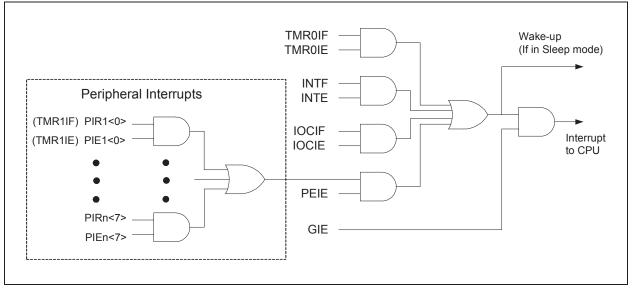
The LFINTOSC is the clock source for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM). The LFINTOSC can also be used as the system clock, or as a clock or input source to certain peripherals.

The LFINTOSC is selected as the clock source through one of the following methods:

- Programming the RSTOSC<2:0> bits of Configuration Word 1 to enable LFINTOSC.
- Write to the NOSC<2:0> bits of the OSCCON1 register.

7.2.2.5 Oscillator Status and Manual Enable

The 'ready' status of each oscillator is displayed in the OSCSTAT1 register (Register 7-4). The oscillators can also be manually enabled through the OSCEN register (Register 7-5). Manual enables make it possible to verify the operation of the EXTOSC or SOSC crystal oscillators. This can be achieved by enabling the selected oscillator, then watching the corresponding 'ready' state of the oscillator in the OSCSTAT1 register.


8.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 8-1.

FIGURE 8-1: INTERRUPT LOGIC

8.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIEx registers).

The PIR1, PIR2, PIR3 and PIR4 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 8.5 "Automatic Context Saving")
- PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

Note 1:	Individual	inte	rrupt	flag	bits	s are	set,
	regardless	of	the	state	of	any	other
	enable bits	-					

2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

8.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. The interrupt is sampled during Q1 of the instruction cycle. The actual interrupt latency then depends on the instruction that is executing at the time the interrupt is detected. See Figure 8-2 and Figure 8-3 for more details.

REGISTE	R 8-3: PIE	1: PERIPHERA	L INTERRU	PT ENABLE	REGISTER 1		
R/W-0/	0 R/W-0/	0 R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR1G	IE ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE
bit 7							bit (
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is ı	unchanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is	set	'0' = Bit is cle	ared				
bit 7	1 = Enabl	: Timer1 Gate Inte es the Timer1 gate les the Timer1 gat	e acquisition ir	nterrupt			
bit 6	ADIE: An 1 = Enabl	alog-to-Digital Cor es the ADC interru les the ADC interru	verter (ADC) upt	-	e bit		
bit 5	1 = Enabl	SART Receive Int es the EUSART re les the EUSART re	ceive interrup	t			
bit 4	1 = Enabl	SART Transmit Inf es the EUSART tr les the EUSART tr	ansmit interru	ot			
bit 3	SSP1IE: S 1 = Enabl	Synchronous Seria es the MSSP inter les the MSSP inte	al Port (MSSP) rupt	•	ole bit		
bit 2	BCL1IE: 1 = MSSF	MSSP1 Bus Collis P bus collision inter P bus collision inter	ion Interrupt E rrupt enabled				
bit 1	TMR2IE: 1 = Enabl	TMR2 to PR2 Mat es the Timer2 to P les the Timer2 to P	ch Interrupt Er R2 match inte	nable bit errupt			
bit 0	TMR1IE: 1 = Enabl	Timer1 Overflow I es the Timer1 ove les the Timer1 ove	nterrupt Enablerflow interrupt	e bit			
Note:		e INTCON register					

REGISTER 8-3: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
WPUB7	WPUB6	WPUB5	WPUB4		—	—	—
bit 7		•			•		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unchanged		x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 12-13: WPUB: WEAK PULL-UP PORTB REGISTER

bit 7-4	WPUB<7:4>: Weak Pull-up Register bits
	1 = Weak Pull-up enabled
	0 = Weak Pull-up disabled
bit 3-0	Unimplemented: Read as '0'

REGISTER 12-14: ODCONB: PORTB OPEN-DRAIN CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
ODCB7	ODCB6	ODCB5	ODCB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 **ODCB<7:4>:** PORTB Open-Drain Configuration bits For RB<7:4> pins, respectively: 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)

bit 3-0 Unimplemented: Read as '0'

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	
IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		own	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 15-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER⁽¹⁾

bit 7-4	IOCBN<7:4>: Interrupt-on-Change PORTB Negative Edge Enable bits 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCAFx bit and IOCIF flag will
	be set upon detecting an edge.0 = Interrupt-on-Change disabled for the associated pin
bit 3-0	Unimplemented: Read as '0'

Note 1: PIC16(L)F18346 only.

REGISTER 15-6: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER⁽¹⁾

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	U-0
IOCBF7	IOCBF6	IOCBF5	IOCBF4	_	—	—	—
bit 7							bit 0

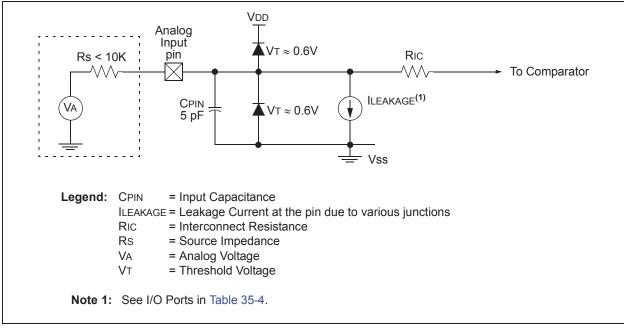
Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-4 **IOCBF<7:4>:** Interrupt-on-Change PORTB Flag bits 1 = An enabled change was detected on the associated pin

Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was detected on RBx.

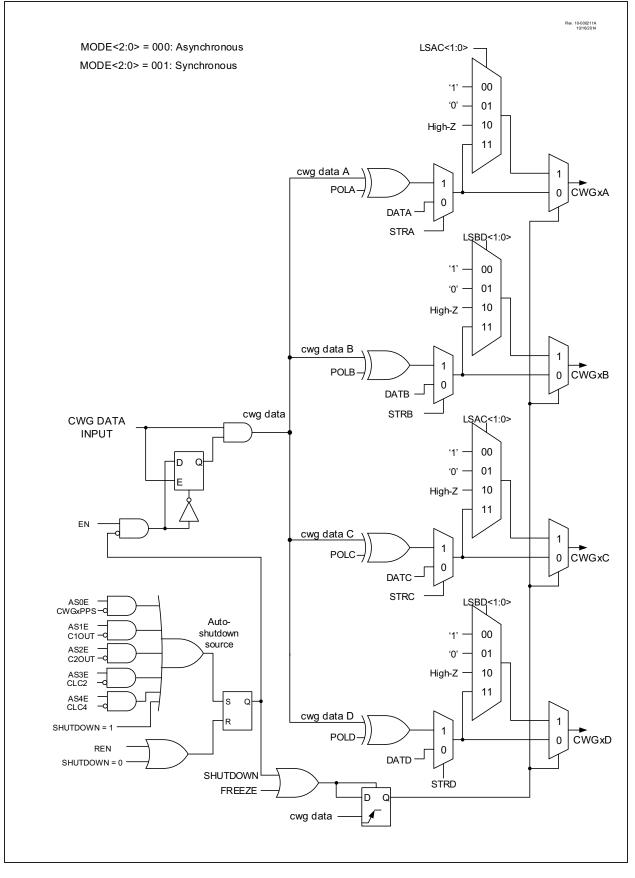
0 = No change was detected, or the user cleared the detected change.

bit 3-0 Unimplemented: Read as '0'


Note 1: PIC16(L)F18346 only.

18.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 18-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.


A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, may have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will provide an input based on their level as either a TTL or ST input buffer.
 - Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

FIGURE 18-3: ANALOG INPUT MODEL

20.11 Register Definitions: CWG Control

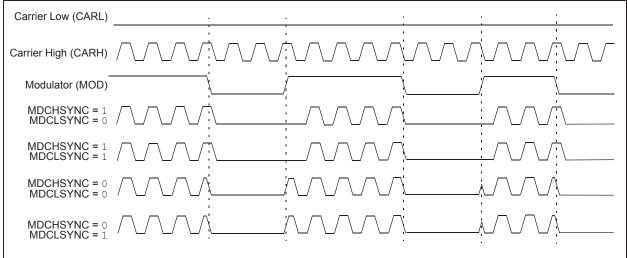
R/W/HC-0/0 LD ⁽¹⁾ it nged EN: CWGx E	U-0 — W = Writable I x = Bit is unkn '0' = Bit is clea	iown			R/W-0/0 MODE<2:0> d as '0' DR/Value at all o	R/W-0/0 bit 0
it nged EN: CWGx E	x = Bit is unkn '0' = Bit is clea	iown	-n/n = Value a	at POR and BC	d as '0'	
nged	x = Bit is unkn '0' = Bit is clea	iown	-n/n = Value a	at POR and BC		
nged	x = Bit is unkn '0' = Bit is clea	iown	-n/n = Value a	at POR and BC		ther Resets
nged	x = Bit is unkn '0' = Bit is clea	iown	-n/n = Value a	at POR and BC		ther Resets
EN: CWGx E	'0' = Bit is clea				R/Value at all o	ther Resets
		ared	HS/HC = Bit			
	nable bit			is set/cleared b	y hardware	
1 = CWGX is 0 = CWGX is	enabled					
1 = Dead-bai this bit is		s to be loade	d on CWG dat	a rising edge fo	ollowing first fall	ing edge afte
Unimplemen	ted: Read as 'o)'				
111 = Reser 110 = Reser 101 = CWG 100 = CWG 011 = CWG 010 = CWG	ved ved outputs operate outputs operate outputs operate outputs operate outputs operate	e in Push-Pull e in Half-Bridg e in Reverse f e in Forward f e in Synchron	ge mode Full-Bridge mod Full-Bridge mod lous Steering m	de node		
	MODE<2:0>: 111 = Reser 100 = Reser 101 = CWG 100 = CWG 111 = CWG 100 = CWG 100 = CWG	MODE<2:0>: CWGx Mode b 111 = Reserved 100 = Reserved 101 = CWG outputs operate 100 = CWG outputs operate 101 = CWG outputs operate 100 = CWG outputs operate 100 = CWG outputs operate 100 = CWG outputs operate	MODE<2:0>: CWGx Mode bits 111 = Reserved 100 = Reserved 101 = CWG outputs operate in Push-Pul 100 = CWG outputs operate in Half-Bridg 111 = CWG outputs operate in Reverse 101 = CWG outputs operate in Forward I 101 = CWG outputs operate in Synchron 100 = CWG outputs operate in Asynchron	MODE<2:0>: CWGx Mode bits 111 = Reserved 100 = Reserved 101 = CWG outputs operate in Push-Pull mode 100 = CWG outputs operate in Half-Bridge mode 111 = CWG outputs operate in Reverse Full-Bridge mode 102 = CWG outputs operate in Forward Full-Bridge mode 103 = CWG outputs operate in Synchronous Steering mode 104 = CWG outputs operate in Asynchronous Steering mode 105 = CWG outputs operate in Asynchronous Steering mode 106 = CWG outputs operate in Asynchronous Steering mode 107 = CWG outputs operate in Asynchronous Steering mode 108 = CWG outputs operate in Asynchronous Steering mode 109 = CWG outputs operate in Asynchronous Steering mode 100 = CWG outputs operate in Asynchronous Steering	MODE<2:0>: CWGx Mode bits 111 = Reserved 100 = Reserved 101 = CWG outputs operate in Push-Pull mode 100 = CWG outputs operate in Half-Bridge mode 111 = CWG outputs operate in Reverse Full-Bridge mode 102 = CWG outputs operate in Forward Full-Bridge mode 103 = CWG outputs operate in Synchronous Steering mode 104 = CWG outputs operate in Asynchronous Steering mode 105 = CWG outputs operate in Asynchronous Steering mode	MODE<2:0>: CWGx Mode bits 11 = Reserved 10 = Reserved 01 = CWG outputs operate in Push-Pull mode 00 = CWG outputs operate in Half-Bridge mode 011 = CWG outputs operate in Reverse Full-Bridge mode 010 = CWG outputs operate in Reverse Full-Bridge mode 010 = CWG outputs operate in Forward Full-Bridge mode 010 = CWG outputs operate in Synchronous Steering mode

REGISTER 20-1: CWGxCON0: CWGx CONTROL REGISTER 0

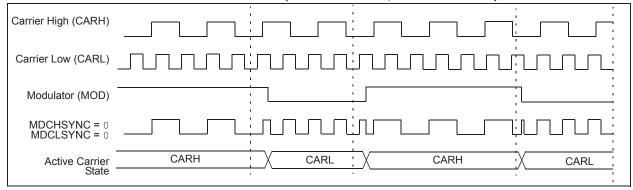
Note 1: This bit can only be set after EN = 1; it cannot be set in the same cycle when EN is set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	—	—	—	_	INTEDG	100
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	102
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	107
TRISA	—	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	143
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	—	_	—	149
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	155
ANSELA	—	—	ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	144
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	_	—	_	—	150
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
ADCON0			CHS<	5:0>			GO/DONE	ADON	244
ADCON1	ADFM	A	ADCS<2:0>	•		ADNREF	ADPRE	245	
ADACT	—	—				ADACT<4:)>		246
ADRESH				ADRES	SH<7:0>				247
ADRESL				ADRES	SL<7:0>				247
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFVR	<1:0>	180
DAC1CON1	_	—			-	DAC1R<4:	0>		264
OSCSTAT1	EXTOR	HFOR		LFOR	SOR	ADOR	_	PLLR	91

TABLE 22-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC


Legend: -= unimplemented read as '0'. Shaded cells are not used for the ADC module.

Note 1: PIC16(L)F18346 only.


2: Unimplemented, read as '1'.

PIC16(L)F18326/18346

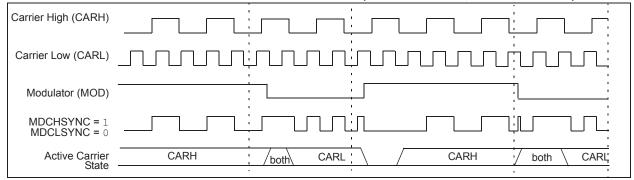


FIGURE 25-3: NO SYNCHRONIZATION (MDSHSYNC = 0, MDCLSYNC = 0)

FIGURE 25-4: CARRIER HIGH SYNCHRONIZATION (MDSHSYNC = 1, MDCLSYNC = 0)

29.2.2 TIMER1/3/5 MODE RESOURCE

Timer1/3/5 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

See Section 27.0 "Timer1/3/5 Module with Gate Control" for more information on configuring Timer1/3/5.

Note: Clocking Timer1/3/5 from the system clock (Fosc) should not be used in Capture mode. In order for Capture mode to recognize the trigger event on the CCPx pin, Timer1/3/5 must be clocked from the instruction clock (Fosc/4) or from an external clock source.

29.2.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIE4 register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIR4 register following any change in Operating mode.

29.2.4 CCP PRESCALER

There are four prescaler settings specified by the CCPxMODE<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler. Example 29-1 demonstrates the code to perform this function.

EXAMPLE 29-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEL	CCPxCON	;Set Bank bits to point
		;to CCPxCON
CLRF	CCPxCON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		;the new prescaler
		;move value and CCP ON
MOVWF	CCPxCON	;Load CCPxCON with this
		;value

29.2.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1/3/5 module for proper operation. There are two options for driving the Timer1/3/5 module in Capture mode. It can be driven by the instruction clock (Fosc/4), or by an external clock source.

When Timer1/3/5 is clocked by Fosc/4, Timer1/3/5 will not increment during Sleep. When the device wakes from Sleep, Timer1/3/5 will continue from its previous state.

Capture mode will operate during Sleep when Timer1/3/5 is clocked by an external clock source.

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x		
			CCPR	xL<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other Reset					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-0	CCPxMODE	= Capture mode	<u>e</u>						
	CCPRx	I <7:0>: Capture	d value of TM	/R1/3/5I					

REGISTER 29-3: CCPRxL REGISTER: CCPx REGISTER LOW BYTE

Capture mode Captured value of TMR1/3/5L
Compare mode
7:0>: LS Byte compared to TMR1/3/5L
PWM modes when CCPxFMT = 0
7:0>: CCPW<7:0> – Pulse-width Least Significant eight bits
PWM modes when CCPxFMT = 1
7:6>: CCPW<1:0> – Pulse-width Least Significant two bits
<5:0>: Not used.

REGISTER 29-4: CCPRxH REGISTER: CCPx REGISTER HIGH BYTE

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
		CCPR	xH<7:0>			
						bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all	other Reset
	'0' = Bit is clea	ared				
		bit W = Writable I anged x = Bit is unkn	CCPR: bit W = Writable bit	CCPRxH<7:0> bit W = Writable bit U = Unimpler anged x = Bit is unknown -n/n = Value a	CCPRxH<7:0> bit W = Writable bit U = Unimplemented bit, read anged x = Bit is unknown -n/n = Value at POR and BC	CCPRxH<7:0> bit W = Writable bit U = Unimplemented bit, read as '0' anged x = Bit is unknown -n/n = Value at POR and BOR/Value at all of the second se

bit 7-0	CCPxMODE = Capture mode
	CCPRxH<7:0>: Captured value of TMR1/3/5H
	CCPxMODE = Compare mode
	CCPRxH<7:0>: MS Byte compared to TMR1/3/5H
	CCPxMODE = PWM modes when CCPxFMT = 0
	CCPRxH<7:2>: Not used
	CCPRxH<1:0>: CCPW<9:8> – Pulse-width Most Significant two bits
	CCPxMODE = PWM modes when CCPxFMT = 1
	CCPRxH<7:0>: CCPW<9:2> – Pulse-width Most Significant eight bits

30.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSPx module configured as an I^2C slave in 10-bit Addressing mode.

Figure 30-20 is used as a visual reference for this description.

This is a step-by-step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts Idle.
- Master sends Start condition; S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Master sends matching high address with R/\overline{W} bit clear; UA bit of the SSPxSTAT register is set.
- 4. Slave sends ACK and SSPxIF is set.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. Slave loads low address into SSPxADD, releasing SCL.
- 8. Master sends matching low address byte to the slave; UA bit is set.

Note: Updates to the SSPxADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSPxIF is set.

Note: If the low address does not match, SSPxIF and UA are still set so that the slave software can set SSPxADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSPxIF.
- 11. Slave reads the received matching address from SSPxBUF clearing BF.
- 12. Slave loads high address into SSPxADD.
- Master clocks a data byte to the slave and clocks out the slaves ACK on the ninth SCL pulse; SSPxIF is set.
- 14. If SEN bit of SSPxCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSPxIF.
- 16. Slave reads the received byte from SSPxBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCL.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

30.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPxADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCL line is held low are the same. Figure 30-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 30-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

-n/n = Value at POR and BOR/Value at all other Resets

REGISTER 30-7: SSPxBUF: MSSP BUFFER REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			SSPxB	UF<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit	t	U = Unimpler	nented bit, read	as '0'	

bit 7-0 **SSPxBUF<7:0>:** MSSP Buffer bits

u = Bit is unchanged

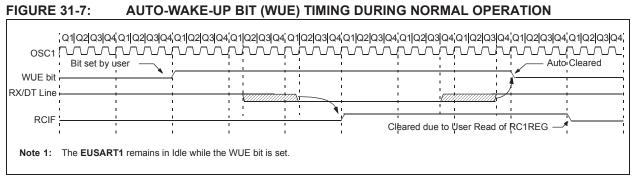
'1' = Bit is set

TABLE 30-3: SUMMARY OF REGISTERS ASSOCIATED WITH MSSPx

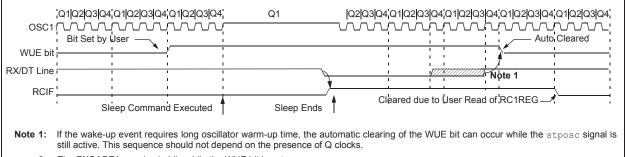
x = Bit is unknown

'0' = Bit is cleared

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TRISA	—	_	TRISA5	TRISA4	(3)	TRISA2	TRISA1	TRISA0	143
ANSELA	_	_	ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	144
INLVLA ⁽¹⁾	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	146
TRISB ⁽²⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_	_	149
ANSELB ⁽²⁾	ANSB7	ANSB6	ANSB5	ANSB4	_	_	_	_	150
INLVLB ⁽²⁾	INLVLB7	INLVLB6	INLVLB5	INLVLB4	_	_	_	—	152
TRISC	TRISC7 ⁽²⁾	TRISC6 ⁽²⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	155
ANSELC	ANSC7 ⁽²⁾	ANSC6 ⁽²⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
INLVLC ⁽¹⁾	INLVLC7 ⁽²⁾	INLVLC6(2)	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	159
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	100
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	107
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	102
PIR2	TMR6IF	C2IF	C1IF	NVMIF	SSP2IF	BCL2IF	TMR4IF	NCO1IF	108
PIE2	TMR6IE	C2IE	C1IE	NVMIE	SSP2IE	BCL2IE	TMR4IE	NCO1IE	103
SSPxSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	359
SSPxCON1	WCOL	SSPOV	SSPEN	CKP	SSPM<3:0>				360
SSPxCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	362
SSPxCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	363
SSPxMSK	SSPxMSK<7:0>								364
SSPxADD	SSPxADD<7:0>								364
SSPxBUF	SSPxBUF<7:0>								365
SSPxCLKPPS	—	_		SSPxCLKPPS<4:0>					162
SSPxDATPPS	_	—	_	SSPxDATPPS<4:0>					162
SSPxSSPPS	_	—	SSPxSSPPS<4:0>						


Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSP module

Note 1: When using designated I^2C pins, the associated pin values in INLVLx will be ignored.


2: PIC16(L)F18346 only.

3: Unimplemented, read as '1'.

PIC16(L)F18326/18346

FIGURE 31-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

2: The EUSART1 remains in Idle while the WUE bit is set.

31.3.4 BREAK CHARACTER SEQUENCE

The EUSART1 module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TX1STA register. The Break character transmission is then initiated by a write to the TX1REG. The value of data written to TX1REG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TX1STA register indicates when the transmit operation is active or idle, just as it does during normal transmission. See Figure 31-9 for the timing of the Break character sequence.

31.3.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

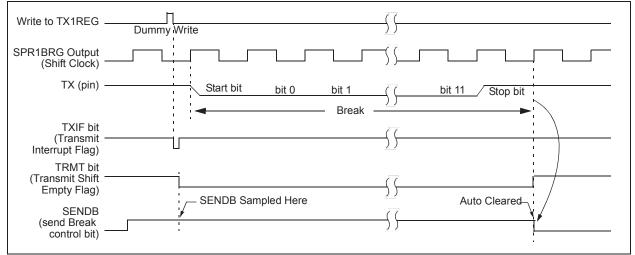
- 1. Configure the EUSART1 for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TX1REG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TX1REG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TX1REG becomes empty, as indicated by the TXIF, the next data byte can be written to TX1REG.

31.3.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART1 module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RC1STA register and the received data as indicated by RC1REG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.


A Break character has been received when:

- RCIF bit is set
- FERR bit is set
- RC1REG = 00h

The second method uses the Auto-Wake-up feature described in **Section 31.3.3** "**Auto-Wake-up on Break**". By enabling this feature, the EUSART1 will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUD1CON register before placing the EUSART1 in Sleep mode.

