

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18346-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC16(L)F18346 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0+/DAC1OUT/	RA0	TTL/ST	CMOS	General purpose I/O.
ICDDAT/ICSPDAT	ANA0	AN	_	ADC Channel A0 input.
	C1IN0+	AN	—	Comparator C1 positive input.
	DAC1OUT	—	AN	Digital-to-Analog Converter output.
	ICDDAT	TTL/ST	CMOS	In-Circuit Debug Data I/O.
	ICSPDAT	TTL/ST	CMOS	ICSP™ Data I/O.
RA1/ANA1/VREF+/C1IN0-/	RA1	TTL/ST	CMOS	General purpose I/O.
C2IN0-/ DAC1REF+/SS2 ⁽¹⁾)/	ANA1	AN	—	ADC Channel A1 input.
ICDCLK/ ICSPCLK	VREF+	AN	—	ADC positive voltage reference input.
	C1IN0-	AN	_	Comparator C1 negative input.
	C2IN0-	AN	_	Comparator C2 negative input.
	DAC1REF+	AN	—	Digital-to-Analog Converter positive reference input.
	SS2	TTL/ST	—	Slave Select 2 input.
	ICDCLK	TTL/ST	CMOS	In-Circuit Debug Clock I/O.
	ICSPCLK	TTL/ST	CMOS	ICSP Clock I/O.
RA2/ANA2/VREF-/ DAC1REF-/	RA2	TTL/ST	CMOS	General purpose I/O.
$TOCKI^{(1)}/CCP3^{(1)}/CWG1IN^{(1)}/CWG1IN^{(1)}/CUCUNU^{(1)}/CWG1IN^{(1)}/CWG1IN^{(1)}/CUCUNU^{(1)}/CWG1IN$	ANA2	AN	—	ADC Channel A2 input.
	VREF-	AN	—	ADC negative voltage reference input.
	DAC1REF-	AN	—	Digital-to-Analog Converter negative reference input.
	T0CKI	TTL/ST	—	TMR0 Clock input.
	CCP3	TTL/ST	CMOS	Capture/Compare/PWM 3 input.
	CWG1IN	TTL/ST		Complementary Waveform Generator 1 input.
	CWG2IN	TTL/ST		Complementary Waveform Generator 2 input.
	CLCIN0	TTL/ST	-	Configurable Logic Cell 0 input.
	INT	TTL/ST	—	External interrupt input.
RA3/MCLR/Vpp	RA3	TTL/ST	CMOS	General purpose I/O.
	MCLR	TTL/ST	—	Master Clear with internal pull-up.
	Vpp	HV	—	Programming voltage.
RA4/ANA4/T1G(1)/T3G ⁽¹⁾ /	RA4	TTL/ST	CMOS	General purpose I/O.
T5G(')/SOSCO/CCP4(')/	ANA4	AN		ADC Channel A4 input.
CEROUTIOSCZ	T1G	TTL/ST	—	TMR1 gate input.
	T3G	TTL/ST	—	TMR3 gate input.
	T5G	TTL/ST	—	TMR5 gate input.
	SOSCO	—	XTAL	Secondary Oscillator connection.
	CCP4	TTL/ST	CMOS	Capture/Compare/PWM 4 input.
	CLKOUT	—	CMOS	Fosc/4 output.
	OSC2	—	XTAL	Crystal/Resonator (LP, XT, HS modes).

Legend:AN= Analog input or outputCMOS= CMOS compatible input or outputOD= Open-DrainTTL = TTL compatible inputST= Schmitt Trigger input with CMOS levelsI²C= Schmitt Trigger input with I²CHV= High VoltageXTAL= Crystal levelsI²C= Schmitt Trigger input with I²C

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 13-2.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 13-2.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

TABLE	4-4: SPE			EGISTER S	UMMARY B	ANKS 0-31						
Address	Name	PIC16(L)F18326	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 0												
					CPU CORE R	EGISTERS; see	Table 4-2 for spe	ecifics				
00Ch	PORTA		—	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
00Dh	PORTB	X –	-			Unimple	emented				-	_
		— X	RB7	RB6	RB5	RB4	—	_	—	—	XXXX	uuuu
00Eh	PORTC	X –		—	RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	uu uuuu
		— X	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	นนนน นนนน
00Fh	—	—				Unimple	emented				_	_
010h	PIR0		_	_	TMR0IF	IOCIF	_	_	_	INTF	000	000

UUEN	PORIC	X	_	—	—	RC5	RC4	RC3	RC2	RC1	RCU	XX XXXX	uu uuuu
		—	Х	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	uuuu uuuu
00Fh	—	-	_				Unimple	mented				_	_
010h	PIR0			—	—	TMR0IF	IOCIF	—	—	—	INTF	000	000
011h	PIR1			TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
012h	PIR2			TMR6IF	C2IF	C1IF	NVMIF	SSP2IF	BCL2IF	TMR4IF	NCO1IF	0000 0000	0000 0000
013h	PIR3			OSFIF	CSWIF	TMR3GIF	TMR3IF	CLC4IF	CLC3IF	CLC2IF	CLC1IF	0000 0000	0000 0000
014h	PIR4			CWG2IF	CWG1IF	TMR5GIF	TMR5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	0000 0000	0000 0000
015h	TMR0L				TMR0L<7:0>						XXXX XXXX	XXXX XXXX	
016h	TMR0H				TMR0H<7:0>						1111 1111	1111 1111	
017h	T0CON0			T0EN	—	TOOUT	T016BIT		TOOUT	PS<3:0>		0-00 0000	0-00 0000
018h	T0CON1				T0CS<2:0>		TOASYNC		TOCKP	S<3:0>		0000 0000	0000 0000
019h	TMR1L						TMR1I	_<7:0>				XXXX XXXX	uuuu uuuu
01Ah	TMR1H						TMR1H	H<7:0>				XXXX XXXX	uuuu uuuu
01Bh	T1CON			TMR1CS	5<1:0>	T1CKF	PS<1:0>	T1SOSC	T1SYNC	—	TMR10N	0000 00-0	uuuu uu-u
01Ch	T1GCON			TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GS	S<1:0>	0000 0x00	uuuu uxuu
01Dh	TMR2				TMR2<7:0>						0000 0000	0000 0000	
01Eh	PR2						PR2<	<7:0>				1111 1111	1111 1111

TMR2ON

T2CKPS<1:0>

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

T2OUTPS<3:0>

Note 1: Only on PIC16F18326/18346.

T2CON

01Fh

2: Register accessible from both User and ICD Debugger.

_

-000 0000 -000 0000

PIC16(L)F18326/18346

FIGURE 7-6: CLOCK SWITCH (CSWHOLD = 0) OSCCON1 WRITTEN OSC #1 OSC #2 ORDY Note 2 NOSCR Note '1 CSWIF USER CLEAR **CSWHOLD**

Note 1: CSWIF is asserted coincident with NOSCR; interrupt is serviced at OSC#2 speed. 2: The assertion of NOSCR is hidden from the user because it appears only for the duration of the switch.

FIGURE 7-7: CLOCK SWITCH (CSWHOLD = 1)

8.6 Register Definitions: Interrupt Control

R/W/HS/HC	R/W-0/0	U-0	U-0	U-0	U-0	U-0	R-1/1
GIE	PEIE	—	—	—	—	—	INTEDG
bit 7					•	·	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set	t	'0' = Bit is clea	ared	HS = Hardwa	are set	HC = Hardwa	ire clear
bit 7	GIE: Global II 1 = Enables a 0 = Disables	nterrupt Enable all active interru all interrupts	e bit ipts				
bit 6	PEIE: Peripho 1 = Enables a 0 = Disables	eral Interrupt E all active periph all peripheral ir	nable bit eral interrupts iterrupts				
bit 5-1	Unimplemen	ted: Read as '	0'				
bit 0	INTEDG: Inte 1 = Interrupt (0 = Interrupt (errupt Edge Sel on rising edge on falling edge	ect bit of INT pin of INT pin				
Note: In cc its En Us ap	terrupt flag bits a ondition occurs, r corresponding nable bit, GIE, c ser software opropriate interre- ior to enabling a	re set when an egardless of the enable bit or the f the INTCON should ensu upt flag bits a n interrupt.	interrupt e state of le Global register. ure the are clear				

REGISTER 8-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
TMR6IE	C2IE	C1IE	NVMIE	SSP2IE	BCL2IE	TMR4IE	NCO1IE	
bit 7							bit 0	
I								
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is unch	anged	x = Bit is unkr	Iown	-n/n = Value	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	TMR6IE: TMF 1 = TMR6 to F 0 = TMR6 to F	R6 to PR6 Mate PR6 match inte PR6 match is n	ch Interrupt Er errupt is enabl ot enabled	nable bit ed				
bit 6	C2IE: Compa 1 = Enables t 0 = Disables	rator C2 Interru the Comparato the Comparato	upt Enable bit r C2 interrupt or C2 interrupt	:				
bit 5	C1IE: Comparator C1 Interrupt Enable bit 1 = Enables the Comparator C1 interrupt 0 = Disables the Comparator C1 interrupt							
bit 4	NVMIE: NVM 1 = ENVM tas 0 = NVM inter	Interrupt Enab sk complete inte rupt not enable	le Bit errupt enableo ed	t				
bit 3	SSP2IE: Mas 1 = Enables th 0 = Disables t	ter Synchronou he MSSP2 inte the MSSP2 inte	us Serial Port rrupt errupt	(MSSP2) Inter	rupt Enable bit			
bit 2	BCL2IE: MSS 1 = MSSP bus 0 = MSSP bus	SP2 Bus Collisi s collision inter s collision inter	on Interrupt E rupt enabled rupt not enab	nable bit led				
bit 1	TMR4IE: TMF 1 = TMR4 to F 0 = TMR4 to F	R4 to PR4 Mate PR4 match inte PR4 match is n	ch Interrupt Er errupt is enabl ot enabled	nable bit ed				
bit 0	NCO1IE: NCO 1 = NCO rollo 0 = NCO rollo	D Interrupt Ena over interrupt e over interrupt n	ble bit nabled ot enabled					
Note: Bit	PEIE of the IN	TCON register	must be					

REGISTER 8-4: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

FIGURE 9-2	2: WAI	KE-UP FROM	I SLEEP	THRC	OUGH INTER	RUPT		
CLKIN ⁽¹ CLKOUT ⁽²	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1	Tost ⁽³⁾	Q1 Q2 Q3 Q4 /~	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 	Q1 Q2 Q3 Q4
Interrupt flag	1 F	I I		 	Interrupt Later	ncy ⁽⁴⁾	; '	
GIE bit (INTCON reg.		' <u>'</u> '' '	Processor in Sleep		· · · ·	<u>.</u> 	· · · · · · · ·	
Instruction Flow	/' /		V————————————————————————————————————	<u>.</u>			u V0004b	
Instruction {	Inst(PC) = Sleep	Inst(PC + 1)		<u> </u>	Inst(PC + 2)	<u>n PC+2</u> 	Inst(0004h)	Inst(0005h)
Instruction { Executed {	Inst(PC - 1)	Sleep	1 1 1		Inst(PC + 1)	Forced NOP	Forced NOP	Inst(0004h)
Note 1: 2: 3: 4:	External clock. Hig CLKOUT is shown Tost = 1024 Tosc GIE = 1 assumed.	gh, Medium, Low n here for timing re . This delay does r In this case after v	node assume ference. not apply to E wake-up, the	d. C and IN processo	TOSC Oscillator n r calls the ISR at (nodes. 0004h. If GIE = 0,	execution will con	tinue in-line.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
STATUS	—	_		TO	PD	Z	DC	С	30
WDTCON		_		N		SWDTEN	121		

TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 10-4:	SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER
-------------	---

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8			DEBUG	STVREN	PPS1WAY		BORV		0.5
CONFIG2	7:0	BOREN1	BOREN0	LPBOREN	_	WDTE1	WDTE0	PWRTE	MCLRE	65

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTA			RA5	RA4	RA3	RA2	RA1	RA0	143
TRISA	—	—	TRISA5	TRISA4	—	TRISA2	TRISA1	TRISA0	143
LATA	—	—	LATA5	LATA4	—	LATA2	LATA1	LATA0	144
ANSELA	—	—	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0	144
WPUA	—	—	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	145
ODCONA	—	—	ODCA5	ODCA4	—	ODCA2	ODCA1	ODCA0	145
SLRCONA	_	_	SLRA5	SLRA4	_	SLRA2	SLRA1	SLRA0	146
INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	146

TABLE 12-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

TABLE 12-3: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	—	DEBUG	STVREN	PPS1WAY	_	BORV	_	C.F.
CONFIGZ	7:0	BOREN1	BOREN0	LPBOREN	—	WDTE1	WDTE0	PWRTE	MCLRE	60

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	—	—	CLC4MD	CLC3MD	CLC2MD	CLC1MD	DSMMD	
bit 7	·			·			bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'		
u = Bit is unc	hanged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets	
'1' = Bit is set	t	'0' = Bit is clea	ared	-n/n = Value at POR and BOR/Value at all other Resets q = Value depends on condition				
bit 7-5	Unimplemen	ted: Read as ')'					
bit 4	CLC4MD: Dis	sable CLC4 bit						
	1 = CLC4 mc	dule disabled						
	0 = CLC4 mc	dule enabled						
bit 3	CLC3MD: Dis	sable CLC3 bit						
	1 = CLC3 mc 0 = CLC3 mc							
hit 2	CI C2MD: Dis	able CI C2 bit						
DIT Z	1 = CLC2 mc	dule disabled						
	0 = CLC2 mc	dule enabled						
bit 1	CLC1MD: Dis	sable CLC1 bit						
	1 = CLC1 mc	dule disabled						
	0 = CLC1 mc	odule enabled						
bit 0	DSMMD: Disa	able Data Signa	al Modulator bi	it				
	1 = DSM mod	dule disabled						
	0 = DSIM mo	dule enabled						

REGISTER 14-6: PMD5: PMD CONTROL REGISTER 5

15.6 Register Definitions: Interrupt-on-Change Control

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all o)' lue at all other Resets			
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 15-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **IOCAP<5:0>:** Interrupt-on-Change PORTA Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-change disabled for the associated pin

REGISTER 15-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		IOCAN3 IOCAN2 IOCAN1 IOCAN0 bit 0 U = Unimplemented bit, read as '0' -n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IOCAN<5:0>: Interrupt-on-Change PORTA Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin

REGISTER IG	5-5. CIVIOU		ATOK OUTF		.N		
U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
—	_	_	_	_	—	MC2OUT	MC10UT
bit 7							bit

REGISTER 18-3 CMOUT COMPARATOR OUTPUT REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'

bit 1 MC2OUT: Mirror Copy of C2OUT bit

bit 0 MC10UT: Mirror Copy of C10UT bit

SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE **TABLE 18-3**:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0	144
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	_	—	—	—	150
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
TRISA	—	_	TRISA5	TRISA4	_	TRISA2	TRISA1	TRISA0	143
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—	149
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	155
CMxCON0	CxON	CxOUT	—	CxPOL	—	CxSP	CxHYS	CxSYNC	190
CMxCON1	CxINTP	CxINTN		CxPCH<2:0> CxNCH<2:0>					191
CMOUT	—	—	—	—	—	—	MC2OUT	MC1OUT	192
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADF\	/R<1:0>	180
DACCON0	DAC1EN	—	DAC10E	—	DAC1PS	SS<1:0>	—	DAC1NSS	263
DACCON1	—	—	—			DAC1R<4:0	>		264
INTCON	GIE	PEIE	—	_	—	—	—	INTEDG	100
PIE2	TMR6IE	C2IE	C1IE	NVMIE	SSP2IE	BLC2IE	TMR4IE	NCO1IE	103
PIR2	TMR6IF	C2IF	C1IF	NVMIF	SSP2IF	BLC2IF	TMR4IF	NCO1IF	108
CLCINxPPS	—	—	—		С	LCINxPPS<4	:0>		162
MDMINPPS	—	—	—		N	1DMINPPS<4	:0>		162
T1GPPS	—	—	—			T1GPPS<4:0	>		162
CWGxAS1	—	—	—	AS4E	AS3E	AS2E	AS1E	AS0E	218

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

Note 1: PIC16(L)F18346 only.

bit 0

U-0	U-0	R-x	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
	_	IN	—	POLD	POLC	POLB	POLA		
bit 7		•			•		bit 0		
P									
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	= Value depends on condition				
bit 7-6	Unimplemen	ted: Read as '	כ'						
bit 5	IN: CWGx Da	ita Input Signal	(read-only)						
bit 4	Unimplemen	ted: Read as ')'						
bit 3	POLD: WGxD) Output Polari	ty bit						
	1 = Signal out	tput is inverted	polarity						
	0 = Signal out	tput is normal p	olarity						
bit 2	POLC: WGxC	COutput Polari	ty bit						
	1 = Signal out	tput is inverted	polarity						
		tput is normal p	olarity						
bit 1	POLB: WGXE	3 Output Polari	iy bit						
	\perp = Signal out	tput is inverted	polarity						
bit 0		V Output Polori	hy bit						
	1 = Signal out	tout is inverted	polarity						
	\perp = Signal output is inverted polarity 0 = Signal output is normal polarity								
	e eighteir ean								

REGISTER 20-2: CWGxCON1: CWGx CONTROL REGISTER 1

REGISTER 20-3: CWGxCLKCON: CWGx CLOCK INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	_	—	—	—	—	—	CS
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-1 Unimplemented: Read as '0'

CS: CWG Clock Source Selection Select bits

WGCLK	Clock Source
0	Fosc
1	HFINTOSC (remains operating during Sleep)

bit 0

REGISTER 27-3: TMRxL⁽¹⁾: TIMERx LOW BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			TMRx	L<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 TMRxL<7:0>: TMRx Low Byte bits

Note 1: 'x' refers to either '1', '3' or '5' for the respective Timer1/3/5 registers.

REGISTER 27-4: TMRxH⁽¹⁾: TIMERx HIGH BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			TMRxH	 <7:0>			
bit 7							bit 0
L a manual.							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TMRxH<7:0>: TMRx High Byte bits

Note 1: 'x' refers to either '1', '3' or '5' for the respective Timer1/3/5 registers.

30.2.4 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as external clock pulses appear on SCK. When the last bit is latched, the SSPxIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit of the SSPxCON1 register.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. The shift register is clocked from the SCK pin input and when a byte is received, the device will generate an interrupt. If enabled, the device will wake-up from Sleep.

30.2.4.1 Daisy-Chain Configuration

The SPI bus can sometimes be connected in a daisy-chain configuration. The first slave output is connected to the second slave input, the second slave output is connected to the third slave input, and so on. The final slave output is connected to the master input. Each slave sends out, during a second group of clock pulses, an exact copy of what was received during the first group of clock pulses. The whole chain acts as one large communication shift register. The daisy-chain feature only requires a single Slave Select line from the master device.

Figure 30-7 shows the block diagram of a typical daisy-chain connection when operating in SPI mode.

In a daisy-chain configuration, only the most recent byte on the bus is required by the slave. Setting the BOEN bit of the SSPxCON3 register will enable writes to the SSPxBUF register, even if the previous byte has not been read. This allows the software to ignore data that may not apply to it.

30.2.5 SLAVE SELECT SYNCHRONIZATION

The Slave Select can also be used to synchronize communication. The Slave Select line is held high until the master device is ready to communicate. When the Slave Select line is pulled low, the slave knows that a new transmission is starting.

If the slave fails to receive the communication properly, it will be reset at the end of the transmission, when the Slave Select line returns to a high state. The slave is then ready to receive a new transmission when the Slave Select line is pulled low again. If the Slave Select line is not used, there is a risk that the slave will eventually become out of sync with the master. If the slave misses a bit, it will always be one bit off in future transmissions. Use of the Slave Select line allows the slave and master to align themselves at the beginning of each transmission.

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPxCON1<3:0> = 0100).

When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven.

When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

Note 1:	When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPxCON1<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
2:	When the SPI is used in Slave mode with CKE set; the user must enable SS pin control.

3: While operated in SPI Slave mode the SMP bit of the SSPxSTAT register must remain clear.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit.

PIC16(L)F18326/18346

31.1.2 EUSART1 ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 31-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART1 receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RC1REG register.

31.1.2.1 Enabling the Receiver

The EUSART1 receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART1 control bits are assumed to be in their default state.

Setting the CREN bit of the RC1STA register enables the receiver circuitry of the EUSART1. Clearing the SYNC bit of the TX1STA register configures the EUSART1 for asynchronous operation. Setting the SPEN bit of the RC1STA register enables the EUSART1. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

31.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 31.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART1 receive FIFO and the RCIF interrupt flag bit of the PIR1 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RC1REG register.

Note: If the receive FIFO is overrun, no additional characters will be received until the Overrun condition is cleared. See Section 31.1.2.5 "Receive Overrun Error" for more information on overrun errors.

31.4.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART1 for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TX1STA register configures the device for synchronous operation. Clearing the CSRC bit of the TX1STA register configures the device as a slave. Clearing the SREN and CREN bits of the RC1STA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RC1STA register enables the EUSART1.

31.4.2.1 EUSART1 Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see Section 31.4.1.3 "Synchronous Master Transmission"), except in the case of the Sleep mode.

If two words are written to the TX1REG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in the TX1REG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TX1REG register will transfer the second character to the TSR and the TXIF bit will now be set.
- 5. If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.

31.4.2.2 Synchronous Slave Transmission Setup

- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TX1REG register.

31.4.2.3 EUSART1 Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 31.4.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never idle
- · SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RC1REG register. If the RCIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

31.4.2.4 Synchronous Slave Reception Setup

- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CK and DT pins (if applicable).
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RCIF bit will be set when reception is complete. An interrupt will be generated if the RCIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RC1STA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RC1REG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RC1STA register or by clearing the SPEN bit which resets the EUSART1.

34.2 Instruction Descriptions

ADDFSR	Add Literal to FSRn
Syntax:	[label] ADDFSR FSRn, k
Operands:	$-32 \le k \le 31$ n \in [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.
	FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to

ANDLW	AND literal with W					
Syntax:	[<i>label</i>] ANDLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .AND. (k) \rightarrow (W)					
Status Affected:	Z					
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.					

ADDLW	Add literal and W					
Syntax:	[<i>label</i>] ADDLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$(W) + k \to (W)$					
Status Affected:	C, DC, Z					
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.					

wrap-around.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ADDWF	Add W and f					
Syntax:	[<i>label</i>] ADDWF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(W) + (f) \rightarrow (destination)					
Status Affected:	C, DC, Z					
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					

ASRF	Arithmetic Right Shift						
Syntax:	[<i>label</i>]ASRF f{,d}						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	$\begin{array}{l} (f<7>) \rightarrow dest<7>\\ (f<7:1>) \rightarrow dest<6:0>,\\ (f<0>) \rightarrow C, \end{array}$						
Status Affected:	C, Z						
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.						

ADDWFC ADD W and CARRY bit to f

Syntax:	[<i>label</i>] ADDWFC f {,d}				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(W) + (f) + (C) \rightarrow dest$				
Status Affected:	C, DC, Z				
Description:	Add W, the Carry flag and data mem ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.				

TABLE 35-3:POWER-DOWN CURRENTS (IPD)

PIC16LF18326/18346		Standard Operating Conditions (unless otherwise stated)							
PIC16F18326/18346		Standard Operating Conditions (unless otherwise stated) VREGPM = 1							
Param.				True	Max.	Max.	11	Conditions	
No.	Symbol	Device Characteristics	win.	тур.т	+85°C	+125°C	Units	Vdd	Note
D200	IPD	IPD Base	—	0.05	2	9	μA	3.0V	
D200	IPD	IPD Base		0.8	4	12	μA	3.0V	
				13	22	27	μA	3.0V	VREGPM = Q
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	-	0.8	5	13	μA	3.0V	\sim
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	—	0.9	5	13	μA	3.0V	
D202	IPD_SOSC	Secondary Oscillator (SOSC)	—	0.6	5	13	μA	3.0V	
D202	IPD_SOSC	Secondary Oscillator (SOSC)	—	0.8	9	15~	μA	3.00	\searrow
D203	IPD_FVR	FVR	—	40	47	4۲ ۲	μA	3.0V	V
D203	IPD_FVR	FVR		33	44	44	∖µA∕	3.0V	
D204	IPD_BOR	Brown-out Reset (BOR)	—	12	17	19 \	μÁ	3.0V	
D204	IPD_BOR	Brown-out Reset (BOR)	—	12	18	20	\μA	3.0V	
D205	IPD_LPBOR	Low Power Brown-out Reset (LPBOR)	-	3 <	5	13	μĂ >	3.0V	
D205	IPD_LPBOR	Low Power Brown-out Reset (LPBOR)	-		5	13	μΑ	3.0V	
D207	IPD_ADCA	ADC - Active	\nearrow	0.9	5	[√] 13	μA	3.0V	ADC is converting ⁽⁴⁾
D207	IPD_ADCA	ADC - Active	$\neq \prime$	9.0	5	13	μA	3.0V	ADC is converting ⁽⁴⁾
D208	IPD_CMP	Comparator	$\langle - \rangle$	\32	43	45	μA	3.0V	
D208	IPD_CMP	Comparator		4 31	42	44	μA	3.0V	

These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	Dimension Limits			MAX	
Contact Pitch	1.27 BSC				
Contact Pad Spacing	С		9.40		
Contact Pad Width (X20)	Х			0.60	
Contact Pad Length (X20)	Y			1.95	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.45			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A