

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18346-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of an FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that read the program memory via the FSR require one extra instruction cycle to complete. Example 4-2 demonstrates accessing the program memory via an FSR.

The HIGH directive will set bit 7 if a label points to a location in the program memory.

EXAMPLE 4-2: ACCESSING PROGRAM MEMORY VIA FSR

constants			
RETLW	DATA0	;Index0	data
RETLW	DATA1	;Index1	data
RETLW	DATA2		
RETLW	DATA3		
my_functi	on		
; LO	IS OF CODE		
MOVLW	LOW constan	nts	
MOVWF	FSR1L		
MOVLW	HIGH consta	ants	
MOVWF	FSR1H		
MOVIW	0[FSR1]		
; THE PROG	RAM MEMORY IS	S IN W	

4.1.1.3 NVMREG Access

The NVMREG interface allows read/write access to all locations accessible by the FSRs, User ID locations, and EEPROM. The NVMREG interface also provides read-only access to Device ID, Revision ID, and Configuration data. See **Section 11.4** "NVMREG Access" for more information.

4.2 Data Memory Organization

The data memory is partitioned into 32 memory banks with 128 bytes in each bank. Each bank consists of (Figure 4-2):

- 12 core registers
- Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

4.2.1 BANK SELECTION

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See Section 4.5 "Indirect Addressing" for more information. Data memory uses a 12-bit address. The upper five bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

FIGURE 4-2: BANKED-MEMORY PARTITIONING

4.2.2 CORE REGISTERS

The core registers contain the registers that directly affect basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x80h through x0Bh/x8Bh). These registers are listed below in Table 4-2. For detailed information, see Table 4-4.

TABLE 4-2: CORE REGISTERS

Addresses	BANKx
x00h or x80h	INDF0
x01h or x81h	INDF1
x02h or x82h	PCL
x03h or x83h	STATUS
x04h or x84h	FSR0L
x05h or x85h	FSR0H
x06h or x86h	FSR1L
x07h or x87h	FSR1H
x08h or x88h	BSR
x09h or x89h	WREG
x0Ah or x8Ah	PCLATH
x0Bh or x8Bh	INTCON

TABLE 4-4:	SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)
------------	--

Address	Name	PIC16(L)F18326	PIC16(L)F18346 L 18346	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 2)											
					CPU CORE R	EGISTERS; see	Table 4-2 for spe	ecifics				
E8Dh	—					Unimple	emented				—	_
E8Eh	—					Unimple	emented				—	_
E8Fh	—	_				Unimple	emented				_	_
E90h	RA0PPS		—	_	-			RA0PPS<4:0>			0 0000	u uuuu
E91h	RA1PPS		—	_	-			RA1PPS<4:0>			0 0000	u uuuu
E92h	RA2PPS		—	_	-			RA2PPS<4:0>			0 0000	u uuuu
E93h	—	_		•	·	Unimple	Unimplemented				_	_
E94h	RA4PPS		—	_	_			RA4PPS<4:0>			0 0000	u uuuu
E95h	RA5PPS		—	_	_		RA5PPS<4:0>			0 0000	u uuuu	
E96h	—	_		Unimplemented						_	—	
E97h	—	_		Unimplemented						_	—	
E98h	—	_		Unimplemented					—	_		
E99h	_	_		Unimplemented					_	_		
E9Ah	—	_				Unimple	emented				_	—
E9Bh	_	_				Unimple	emented				_	_
E9Ch	RB4PPS	X	_			Unimple	emented				—	—
		_	× –	_	_			RB4PPS<4:0>			0 0000	u uuuu
E9Dh	RB5PPS	Х	-		·	Unimple	emented				—	—
		_	× –	_	_			RB5PPS<4:0>			0 0000	u uuuu
E9Eh	RB6PPS	Х	_			Unimple	emented				_	_
		_	× –	_	_			RB6PPS<4:0>			0 0000	u uuuu
E9Fh	RB7PPS	X	_			Unimple	emented				—	_
		_	× –	_	_			RB7PPS<4:0>			0 0000	u uuuu

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Only on PIC16F18326/18346.

2: Register accessible from both User and ICD Debugger.

REGISTER 5-4:	CONFIGURATION WORD 4: CODE PROTECTION
---------------	--

		U-1	U-1	U-1	U-1	U-1	U-1
		_	_	_	_	_	—
		bit 13					bit 8
U-1	U-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1
_	_	_	_	_	—	CPD	CP
bit 7							bit 0

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '1'
'0' = Bit is cleared	'1' = Bit is set	n = Value when blank or after Bulk Erase

bit 13-2 Unimplemented: Read as '1'

bit 1

CPD: Data EEPROM Memor	y Code Protection bit

- 1 = OFF Data EEPROM code protection disabled
 - 0 = ON Data EEPROM code protection enabled

bit 0 **CP**: Program Memory Code Protection bit

- 1 = OFF **Program Memory code protection disabled**
- 0 = ON Program Memory code protection enabled

PIC16(L)F18326/18346

7.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 7-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

- LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals) but can operate up to 100 kHz.
- XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to crystals and resonators with a frequency rang up to 4 MHz.
- HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require operating frequencies up to 20 MHz.

Figure 7-3 and Figure 7-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.

- **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
- **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices (DS00826)
 - AN849, Basic PIC[®] Oscillator Design (DS00849)
 - AN943, Practical PIC[®] Oscillator Analysis and Design (DS00943)
 - AN949, Making Your Oscillator Work (DS00949)

CERAMIC RESONATOR OPERATION (XT OR HS MODE)

12.2.6 ANALOG CONTROL

The ANSELA register (Register 12-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELA bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

12.2.7 WEAK PULL-UP CONTROL

The WPUA register (Register 12-5) controls the individual weak pull-ups for each PORT pin.

PORTA pin RA3 includes the $\overline{\text{MCLR}}/\text{VPP}$ input. The MCLR input allows the device to be reset, and can be disabled by the MCLRE bit of Configuration Word 2. A weak pull-up is present on the RA3 port pin. This weak pull-up is enabled when $\overline{\text{MCLR}}$ is enabled ($\overline{\text{MCLRE}} = 1$) or the WPUA3 bit is set. The weak pull-up is disabled when the $\overline{\text{MCLR}}$ is disabled and the WPUA3 bit is clear.

12.2.8 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions.

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic. See **Section 13.0 "Peripheral Pin Select (PPS) Module**" for more information.

Analog input functions, such as ADC and comparator inputs are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
WPUB7	WPUB6	WPUB5	WPUB4		—	—	
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets			ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 12-13: WPUB: WEAK PULL-UP PORTB REGISTER

bit 7-4	WPUB<7:4>: Weak Pull-up Register bits
	1 = Weak Pull-up enabled
	0 = Weak Pull-up disabled
bit 3-0	Unimplemented: Read as '0'

REGISTER 12-14: ODCONB: PORTB OPEN-DRAIN CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
ODCB7	ODCB6	ODCB5	ODCB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 **ODCB<7:4>:** PORTB Open-Drain Configuration bits For RB<7:4> pins, respectively: 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)

bit 3-0 Unimplemented: Read as '0'

23.2 Fixed Duty Cycle (FDC) Mode

In Fixed Duty Cycle (FDC) mode, every time the accumulator overflows (NCO_overflow), the output is toggled. This provides a 50% duty cycle with a constant frequency, provided that the increment value remains constant.

The FDC frequency can be calculated using Equation 23-2. The FDC frequency is half of the overflow frequency since it takes two overflow events to generate one FDC clock period. For more information, see Figure 23-2.

EQUATION 23-2: FDC FREQUENCY

$$F_{fdc} = F_{overflow}/2$$

The FDC mode is selected by clearing the N1PFM bit in the NCO1CON register.

23.3 Pulse Frequency (PF) Mode

In Pulse Frequency (PF) mode, every time the accumulator overflows (NCO_overflow), the output becomes active for one or more clock periods. Once the clock period expires, the output returns to an inactive state. This provides a pulsed output. The output becomes active on the rising clock edge immediately following the overflow event. For more information, see Figure 23-2.

The value of the active and inactive states depends on the polarity bit, N1POL, in the NCO1CON register.

The PF mode is selected by setting the N1PFM bit in the NCO1CON register.

23.3.1 OUTPUT PULSE-WIDTH CONTROL

When operating in PF mode, the active state of the output can vary in width by multiple clock periods. Various pulse widths are selected with the N1PWS<2:0> bits in the NCO1CLK register.

When the selected pulse width is greater than the accumulator overflow time frame, the output of the NCO1 does not toggle.

23.4 Output Polarity Control

The last stage in the NCO1 module is the output polarity. The N1POL bit in the NCO1CON register selects the output polarity. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

The NCO1 output can be used internally by source code or other peripherals. Accomplish this by reading the N1OUT (read-only) bit of the NCO1CON register.

The NCO1 output signal is available to the following peripherals:

• CWG

25.5 Carrier Source Polarity Select

The signal provided from any selected input source for the carrier high and carrier low signals can be inverted. Inverting the signal for the carrier high source is enabled by setting the MDCHPOL bit of the MDCARH register. Inverting the signal for the carrier low source is enabled by setting the MDCLPOL bit of the MDCARL register.

25.6 Programmable Modulator Data

The MDBIT of the MDCON register can be selected as the source for the modulator signal. This gives the user the ability to program the value used for modulation.

25.7 Modulated Output Polarity

The modulated output signal provided on the DSM pin can also be inverted. Inverting the modulated output signal is enabled by setting the MDOPOL bit of the MDCON register.

25.8 Slew Rate Control

The slew rate limitation on the output port pin can be disabled. The slew rate limitation can be removed by clearing the SLR bit of the SLRCON register associated with that pin. For example, clearing the slew rate limitation for pin RA5 would require clearing the SLRA5 bit of the SLRCONA register.

25.9 Operation in Sleep Mode

The DSM module is not affected by Sleep mode. The DSM can still operate during Sleep, if the Carrier and Modulator input sources are also still operable during Sleep.

25.10 Effects of a Reset

Upon any device Reset, the DSM module is disabled. The user's firmware is responsible for initializing the module before enabling the output. The registers are reset to their default values.

26.8 Register Definitions: Timer0 Register

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			TMRC)L<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unchanged x = Bit is unknown		own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clear	red				

REGISTER 26-1: TMR0L: TIMER0 COUNT REGISTER

bit 7-0 TMR0L<7:0>:TMR0 Counter bits 7..0

REGISTER 26-2: TMR0H: TIMER0 PERIOD REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
			TMR0H<7:0> 0	or TMR0<15:8>	>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 When T016BIT = 0 TMR0H<7:0>:TMR0 Period Register Bits 7..0 When T016BIT = 1 TMR0<15:8>: TMR0 Counter bits 15..8

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TRISA	—	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	143
ANSELA	—	—	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0	144
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	—	_	—	149
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	—	_	_	—	150
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	155
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
TMR0L	TMR0L<7:0>								279
TMR0H	TMR0H<7:0> or TMR0<15:8>								279
T0CON0	T0EN	—	TOOUT	T016BIT	Т	00UTPS<	:3:0>		280
T0CON1	٦	T0CS<2:0>		TOASYNC	281				
T0CKIPPS	—	—	—		TOCKIF	PS<4:0>			162
TMR0PPS	—	—	—		TMR0P	PS<4:0>			162
ADACT	—	—	—		ADAC	CT<4:0>			246
CLCxSELy	_	_			LCxDyS<5	:0>			229
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS	S<1:0>	293
INTCON	GIE	PEIE	_	—	—	—	—	INTEDG	100
PIR0	—	—	TMR0IF	IOCIF	—	—	—	INTF	106
PIE0	—	—	TMR0IE	IOCIE	—	—	—	INTE	101

TABLE 26-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

Note 1: PIC16(L)F18346 only.

2: Unimplemented, read as '1'.

R/W-0/ι	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u				
TMRxG	E TxGPOL	TxGTM	TxGSPM	TxGGO/DONE	TxGVAL	TxGSS	6<1:0>				
bit 7							bit 0				
r											
Legend:											
R = Reada	ble bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value at P	OR and BOR/\	/alue at all oth	ner Resets				
'1' = Bit is :	set	'0' = Bit is clea	ared	HC = Bit is cleare	ed by hardware	;					
bit 7 TMRxGE: Timer1 Gate Enable bit <u>If TMRxON = 0</u> : This bit is ignored <u>If TMRxON = 1</u> : 1 = Timerx counting is controlled by the Timer1 gate function 0 = Timerx is always counting											
bit 6	bit 6 TxGPOL: Timerx Gate Polarity bit 1 = Timerx gate is active-high (Timerx counts when gate is high) 0 = Timerx gate is active-low (Timerx counts when gate is low)										
bit 5	TxGTM: Time 1 = Timerx G 0 = Timerx G Timerx gate fl	erx Gate Toggle ate Toggle mo ate Toggle mo ip-flop toggles	e Mode bit de is enabled de is disabled on every risin	and toggle flip-flop g edge.	is cleared						
bit 4	TxGSPM: Tin 1 = Timerx G 0 = Timerx G	nerx Gate Sing ate Single-Pul ate Single-Pul	le-Pulse Mode se mode is en se mode is dis	e bit abled and is contro sabled	lling Timerx ga	ite					
bit 3	TxGGO/DON	E: Timerx Gate	e Single-Pulse	Acquisition Status	bit						
	1 = Timerx ga 0 = Timerx ga This bit is	ate single-pulse ate single-pulse s automatically	e acquisition is e acquisition h cleared when	s ready, waiting for has completed or ha TxGSPM is cleare	an edge as not been sta d	irted					
bit 2	TxGVAL: Tim	erx Gate Value	e Status bit								
	Indicates the Unaffected by	current state o / Timerx Gate I	f the Timerx ga Enable (TMRx	ate, latched at Q1, GE)	provided to TN	IRxH:TMRxL					
bit 1-0	TxGSS<1:0>	TxGSS<1:0>: Timerx Gate Source Select bits									
	 11 = Comparator 2 optionally synchronized output 10 = Comparator 1 optionally synchronized output 01 = Timer0 overflow output 00 = Timerx gate pin 										
Note 1:	'x' refers to either	'1', '3' or '5' for	the respective	e Timer1/3/5 registe	ers.						

REGISTER 27-2: TxGCON⁽¹⁾: TIMERx GATE CONTROL REGISTER

PIC16(L)F18326/18346

FIGURE 30-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

DS40001839B-page 322

30.5.8 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the $I^{2}C$ protocol, defined as address 0x00. When the GCEN bit of the SSPxCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPxADD. After the slave clocks in an address of all zeros with

the R/W bit clear, an interrupt is generated and slave software can read SSPxBUF and respond. Figure 30-24 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPxCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the eighth falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

FIGURE 30-24: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE

30.5.9 SSP MASK REGISTER

An SSP Mask (SPPxMSK) register (Register 30-5) is available in I²C Slave mode as a mask for the value held in the SSPxSR register during an address comparison operation. A zero ('0') bit in the SSPxMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

					SYNC	C = 0, BRG	I = 0, BRO	616 = 1				
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	—
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—	_	—
57.6k	55556	-3.55	8	—		—	57.60k	0.00	3	—	_	—
115.2k	—	—		—	_		115.2k	0.00	1	—	—	

TABLE 31-4: BAUD RATE FOR ASYNCHRONOUS MODES (CONTINUED)

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1												
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215		
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303		
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151		
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287		
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264		
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143		
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47		
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23		

				SYNC = 0	, BRGH	= 1, BRG16) = 1 or Sነ	/NC = 1,	BRG16 = 1				
BAUD	Fosc = 8.000 MHz			Fos	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832	
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207	
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103	
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25	
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23	
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12	
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_	
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	_	_	

34.2 Instruction Descriptions

ADDFSR	Add Literal to FSRn
Syntax:	[label] ADDFSR FSRn, k
Operands:	$-32 \le k \le 31$ n \in [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.
	FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.

ADDLW	Add literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.

wrap-around.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ADDWF	Add W and f					
Syntax:	[<i>label</i>] ADDWF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(W) + (f) \rightarrow (destination)					
Status Affected:	C, DC, Z					
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					

ASRF	Arithmetic Right Shift
Syntax:	[<i>label</i>]ASRF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$\begin{array}{l} (f<7>) \rightarrow dest<7>\\ (f<7:1>) \rightarrow dest<6:0>,\\ (f<0>) \rightarrow C, \end{array}$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

ADDWFC ADD W and CARRY bit to f

Syntax:	[<i>label</i>] ADDWFC f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) + (C) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.

PIC16LF18326/18346 Standard Operating Conditions (unless otherwise stated)									
PIC16F1	8326/18346	Standard Operating Conditions (unless otherwise stated)							
Param.	Symbol		Min	T +	Mox	L lucita		Conditions	
No.	Symbol	Device Characteristics	IVIIII.	тур.т	IVIAX.	Units	Vdd	Note	
D100	IDDxt4	XT = 4 MHz	—	321	455	uA	3.0V	\wedge	
D100	IDDxt4	XT = 4 MHz	—	332	479	uA	3.0V		
D101	IDDHF016	HFINTOSC = 16 MHz	—	1.3	1.8	mA	3.0V		
D101	IDDHF016	HFINTOSC = 16 MHz	_	1.4	1.9	mA	3.0V		
D102	IDDHFOPLL	HFINTOSC = 32 MHz	—	2.2	2.8	mA	3.0V	\sim	
D102	IDDHFOPLL	HFINTOSC = 32 MHz	—	2.3	2.9	mA	⁄3.0Y)	
D103	IDDHSPLL32	HS+PLL = 32 MHz	—	2.2	2.8	mA∖	3 <i>∕</i> 0V		
D103	IDDHSPLL32	HS+PLL = 32 MHz	—	2.3	2.9	mÀ	3.QV		
D104	IDDIDLE	IDLE Mode, HFINTOSC = 16 MHz	—	804	1283	uA	3.QV	>	
D104	IDDIDLE	IDLE Mode, HFINTOSC = 16 MHz	—	816	1284	/tA	3.0V		
D105	IDDDOZE ⁽³⁾	DOZE mode, HFINTOSC = 16 MHz, DOZE Ratio = 16	_	863	\neq	/uA/	3.0V		
D105	IDDDOZE ⁽³⁾	DOZE mode, HFINTOSC = 16 MHz, DOZE Ratio = 16	_ <	875		A	3.0V		

TABLE 35-2: SUPPLY CURRENT (IDD)^(1,2)

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: IDDDOZE = [IDDIDLE*(N-1)/N] + IDDHFO16/N where N = DOZE Ration (see Register 9-2).

TABLE 35-3:POWER-DOWN CURRENTS (IPD)

PIC16LF18326/18346				Standard Operating Conditions (unless otherwise stated)						
PIC16F18326/18346				Standard Operating Conditions (unless otherwise stated) VREGPM = 1						
Param.	Symbol	Device Characteristics	Min	-	Max.	Max.		Conditions		
No.	Symbol	Device Characteristics	win.	тур.т	+85°C	+125°C	Units	Vdd	Note	
D200	IPD	IPD Base	—	0.05	2	9	μA	3.0V		
D200	IPD	IPD Base		0.8	4	12	μA	3.0V		
				13	22	27	μA	3.0V	VREGPM = Q	
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	-	0.8	5	13	μA	3.0V	\sim	
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	—	0.9	5	13	μA	3.0V		
D202	IPD_SOSC	Secondary Oscillator (SOSC)	—	0.6	5	13	μA	3.0V		
D202	IPD_SOSC	Secondary Oscillator (SOSC)		0.8	9	15~	μA	3.00	\searrow	
D203	IPD_FVR	FVR	—	40	47	4۲ ۲	μA	3.0V	V	
D203	IPD_FVR	FVR		33	44	44	∖µA∕	3.0V		
D204	IPD_BOR	Brown-out Reset (BOR)	—	12	17	19 \	μÁ	3.0V		
D204	IPD_BOR	Brown-out Reset (BOR)	—	12	18	20	\μA	3.0V		
D205	IPD_LPBOR	Low Power Brown-out Reset (LPBOR)	-	3 <	5	13	μĂ >	3.0V		
D205	IPD_LPBOR	Low Power Brown-out Reset (LPBOR)	-		5	13	μΑ	3.0V		
D207	IPD_ADCA	ADC - Active	\nearrow	0.9	5	[√] 13	μA	3.0V	ADC is converting ⁽⁴⁾	
D207	IPD_ADCA	ADC - Active	$\neq \prime$	9.0	5	13	μA	3.0V	ADC is converting ⁽⁴⁾	
D208	IPD_CMP	Comparator	$\langle - \rangle$	\32	43	45	μA	3.0V		
D208	IPD_CMP	Comparator		4 31	42	44	μA	3.0V		

These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.

TABLE 35-20: EUSART SYNCHRONOUS TRANSMISSION CHARACTERISTICS

Standard	d Operating C					
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US120	TCKH2DTV	SYNC XMIT (Master and Slave)	_	80	ns	$3.0V \le V\text{DD} \le 5.5V$
	Clock high to data-out valid	—	100	ns	$1.8V \leq V\text{DD} \leq 5.5V$	
US121	TCKRF	Clock out rise time and fall time	—	45	ns	$3.0V \le VDD \le 5.5V$
	(Master mode)	—	50	ns	$1.8V \le VDD \le 5.5V$	
US122	TDTRF	Data-out rise time and fall time	_	45	ns	3.0V ≤ VØD ≤ 5.5V
			—	50	ns	$1.8V \le VDD \le 5.5V$

FIGURE 35-16: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIM/NG

TABLE 35-21: EUSART SYNCHRONOUS RECEIVE CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Symbol	Characteristic	Max.	Units	Conditions		
US125	TDTV2CKL	SYNC RCV (Master and Slave)		ne			
US126	TCKL2DTL	Data-setup before $Cit \neq (DT hold time)$ 10 Data-hold after $CK \neq (DT hold time)$ 15		ns			

\sim
$\langle \setminus \rangle$
\land \land \land \land \land
\sim
\frown
$\langle \langle \rangle$
$\langle \rangle$

16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at

Microchip Technology Drawing C04-257A Sheet 1 of 2

© 2016-2017 Microchip Technology Inc.

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Terminals	N		20			
Pitch	е		0.50 BSC			
Overall Height	Α	0.45	0.50	0.55		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.127 REF				
Overall Width	E	4.00 BSC				
Exposed Pad Width	E2	2.60 2.70 2.80				
Overall Length	D	4.00 BSC				
Exposed Pad Length	D2	2.60	2.70	2.80		
Terminal Width	b	0.20 0.25 0.30				
Terminal Length	L	0.30 0.40 0.50				
Terminal-to-Exposed-Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-255A Sheet 2 of 2