

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18326-e-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(0)		Туре	Output Type	Description
OUT ⁽²⁾	C1	_	CMOS	Comparator C1 output.
	C2	_	CMOS	Comparator C2 output.
	NCO1	_	CMOS	Numerically Controlled Oscillator output.
	DSM	_	CMOS	Digital Signal Modulator output.
	TMR0	—	CMOS	TMR0 clock output.
	CCP1	—	CMOS	Capture/Compare/PWM 1 output.
	CCP2	_	CMOS	Capture/Compare/PWM 2 output.
	CCP3		CMOS	Capture/Compare/PWM 3 output.
	CCP4	—	CMOS	Capture/Compare/PWM 4 output.
	PWM5	_	CMOS	Pulse-Width Modulator 5 output.
	PWM6		CMOS	Pulse-Width Modulator 6 output.
	CWG1A		CMOS	Complementary Waveform Generator 1 output A.
	CWG2A	_	CMOS	Complementary Waveform Generator 2 output A.
	CWG1B		CMOS	Complementary Waveform Generator 1 output B.
	CWG2B	—	CMOS	Complementary Waveform Generator 2 output B.
	CWG1C		CMOS	Complementary Waveform Generator 1 output C.
	CWG2C		CMOS	Complementary Waveform Generator 2 output C.
	CWG1D	_	CMOS	Complementary Waveform Generator 1 output D.
	CWG2D	_	CMOS	Complementary Waveform Generator 2 output D.
	SDA1 ⁽³⁾	l ² C	OD	I ² C data output.
	SDA2 ⁽³⁾	l ² C	OD	I ² C data output.
	SCL1 ⁽³⁾	l ² C	OD	I ² C clock output.
	SCL2 ⁽³⁾	l ² C	OD	I ² C clock output.
	SDO1	_	CMOS	SPI1 data output.
	SD02	_	CMOS	SPI2 data output.
	SCK1	_	CMOS	SPI1 clock output.
	SCK2	_	CMOS	SPI2 clock output.
	TX/CK	_	CMOS	Asynchronous TX data/synchronous clock output.
	DT	_	CMOS	EUSART synchronous data output.
	CLC1OUT		CMOS	Configurable Logic Cell 1 source output.
	CLC2OUT	_	CMOS	Configurable Logic Cell 2 source output.
	CLC3OUT	_	CMOS	Configurable Logic Cell 3 source output.
	CLC4OUT	—	CMOS	Configurable Logic Cell 4 source output.
	CLKR	_	CMOS	Clock Reference output.

TABLE 1-2: PIC16(L)F18326 PINOUT DESCRIPTION (CONTINUED)

 Legend:
 AN = Analog input or output
 CMOS=CMOS compatible input or output
 OD
 = Open-Drain

 TTL = TTL compatible input
 ST
 = Schmitt Trigger input with CMOS levels
 I²C
 = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL
 = Crystal levels
 I
 = Schmitt Trigger input with I²C

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 13-1.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 13-2.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

PIC16(L)F18326/18346

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR PIC16(L)F18326/18346

	PC<14:0>]
CAL RETUR Interrup	L, CALLW N, RETLW Dt, RETFIE	
On-chip Program { Memory {	ot, RETFIE	0000h 0004h 0005h 3FFFh 4000h
	Rollover to Page 0	7FFFh

4.1.1 READING PROGRAM MEMORY AS DATA

There are three methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory. The third method is to use the NVMCON registers to access the program memory.

4.1.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 4-1.

EXAMPLE 4-1:	RETLW INSTRUCTION
constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CO	DE
MOVLW DA	TA_INDEX
call constants	S
; THE CONSTAN	NT IS IN W
1	

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, the computed GOTO method must be used because the BRW instruction is not available in some devices, such as the PIC16F6XX, PIC16F7XX, PIC16F8XX, and PIC16F9XX devices.

TABLE	4-4: SPEC		UNCTION RE	GISTER S	UMMARY B	ANKS 0-31 (CONTINUE))				
Address	Name	PIC16(L)F18326 PIC16(L)F18346	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 1	3											
					CPU CORE RE	EGISTERS; see 1	Table 4-2 for spe	cifics				
68Ch	-	—		Unimplemented					_	_		
68Dh	-	—		Unimplemented — —					_			
68Eh	-	—		Unimplemented — —								
68Fh	-	—		Unimplemented — —					_			
690h	-	—		Unimplemented				_	_			
691h	CWG1CLKCON		—	—	—	—	—	—	—	CS	0	0
692h	CWG1DAT		_	—	—	—		DAT	<3:0>		0000	0000
693h	CWG1DBR		_	DBR<5:0>00 0000				00 0000				
694h	CWG1DBF			DBF<5:0>0 00000 0				00 0000				
695h	CWG1CON0		EN	LD	_	_	_		MODE<2:0>		00000	00000
696h	CWG1CON1			_	IN	_	POLD	POLC	POLB	POLA	x- 0000	x- 0000
697h	CWG1AS0		SHUTDOWN	REN	LSBE)<1:0>	LSAC	<1:0>	_	_	0001 01	0001 01

AS4E

OVRA

Unimplemented

AS2E

STRC

AS3E

STRD

AS1E

STRB

AS0E

STRA

---0 0000

0000 0000 0000 0000

---0 0000

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

_

OVRB

Only on PIC16F18326/18346. Note 1:

CWG1AS1

CWG1STR

Register accessible from both User and ICD Debugger. 2:

_

_

OVRD

_

OVRC

698h

699h

69Fh

69Ah to

6.0 RESETS

There are multiple ways to reset this device:

- Power-On Reset (POR)
- Brown-Out Reset (BOR)
- Low-Power Brown-Out Reset (LPBOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- · Stack Overflow
- · Stack Underflow
- Programming mode exit

To allow VDD to stabilize, an optional Power-up Timer can be enabled to extend the Reset time after a BOR or POR event.

A simplified block diagram of the on-chip Reset circuit is shown in Figure 6-1.

FIGURE 6-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

12.2.6 ANALOG CONTROL

The ANSELA register (Register 12-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELA bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

12.2.7 WEAK PULL-UP CONTROL

The WPUA register (Register 12-5) controls the individual weak pull-ups for each PORT pin.

PORTA pin RA3 includes the $\overline{\text{MCLR}}/\text{VPP}$ input. The MCLR input allows the device to be reset, and can be disabled by the MCLRE bit of Configuration Word 2. A weak pull-up is present on the RA3 port pin. This weak pull-up is enabled when $\overline{\text{MCLR}}$ is enabled ($\overline{\text{MCLRE}} = 1$) or the WPUA3 bit is set. The weak pull-up is disabled when the $\overline{\text{MCLR}}$ is disabled and the WPUA3 bit is clear.

12.2.8 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions.

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic. See **Section 13.0 "Peripheral Pin Select (PPS) Module**" for more information.

Analog input functions, such as ADC and comparator inputs are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

U-0	U-0	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
	_	SLRA5	SLRA4	—	SLRA2	SLRA1	SLRA0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-4	SLRA<5:4>:	PORTA Slew F	Rate Enable b	its			
	For RA<5:4> pins, respectively						
	1 = Port pin slew rate is limited						
L:1 0	0 = Port pin s	te de De ed es (
DIT 3	Unimplemen	ted: Read as	0.				
bit 2-0	SLRA<2:0>:	PORTA Slew F	Rate Enable b	its			
	For RA<2:0>	pins, respectiv	ely				
	1 = Port pin s	lew rate is limit	ed				
	0 = Port pin s	lews at maxim	um rate				

REGISTER 12-7: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

REGISTER 12-8: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 INLVLA<5:0>: PORTA Input Level Select bits

For RA<5:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

14.0 PERIPHERAL MODULE DISABLE

The PIC16(L)F18326/18346 provides the ability to disable selected modules, placing them into the lowest possible power mode.

For legacy reasons, all modules are ON by default following any Reset.

14.1 Disabling a Module

Disabling a module has the following effects:

- All clock and control inputs to the module are suspended; there are no logic transitions, and the module will not function.
- The module is held in Reset.
- Writing to the SFRs is disabled
- Reads return 00h
- Analog outputs are disabled; Digital outputs read '0'

14.2 Enabling a Module

When the register bit is cleared, the module is reenabled and will be in its Reset state; SFR data will reflect the POR Reset values.

Depending on the module, it may take up to one full instruction cycle for the module to become active. There should be no interaction with the module (e.g., writing to registers) for at least one instruction after it has been re-enabled.

14.3 System Clock Disable

Setting SYSCMD (PMD0, Register 14-1) disables the system clock (Fosc) distribution network to the peripherals. Not all peripherals make use of SYSCLK, so not all peripherals are affected. Refer to the specific peripheral description to see if it will be affected by this bit.

REGISTER 14-1: PMD0: PMD CONTROL REGISTER 0

R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
SYSCMD	FVRMD	—	—	—	NVMMD	CLKRMD	IOCMD
7							0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	 SYSCMD: Disable Peripheral System Clock Network bit See description in Section 14.3 "System Clock Disable". 1 = System Clock network disabled (a.k.a. Fosc) 0 = System Clock network enabled
bit 6	FVRMD: Disable Fixed Voltage Reference FVR bit 1 = FVR module disabled 0 = FVR module enabled
bit 5-3	Unimplemented: Read as '0'
bit 2	 NVMMD: NVM Module Disable bit⁽¹⁾ 1 = Data EEPROM (a.k.a. user memory, EEPROM) reading and writing is disabled; NVMCON registers cannot be written; FSR access to EEPROM returns zero. 0 = NVM module enabled
bit 1	CLKRMD: Disable Clock Reference CLKR bit 1 = CLKR module disabled 0 = CLKR module enabled
bit 0	IOCMD: Disable Interrupt-on-Change bit, All Ports 1 = IOC module(s) disabled 0 = IOC module(s) enabled
Note 1:	When enabling NVM, a delay of up to 1 μ s may be required before accessing data.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
IOCCP7 ⁽¹⁾	IOCCP6 ⁽¹⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 15-7: IOCCP: INTERRUPT-ON-CHANGE PORTC POSITIVE EDGE REGISTER

bit 7-6	 IOCCP<7:6>: Interrupt-on-change PORTC Positive Edge Enable bits⁽¹⁾ 1 = Interrupt-on-change enabled on the pin for a positive going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge. 0 = Interrupt-on-change disabled for the associated pin
bit 5-0	 IOCCP<5:0>: Interrupt-on-change PORTC Positive Edge Enable bits 1 = Interrupt-on-change enabled on the pin for a positive going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge. 0 = Interrupt-on-change disabled for the associated pin

Note 1: PIC16(L)F18346 only.

REGISTER 15-8: IOCCN: INTERRUPT-ON-CHANGE PORTC NEGATIVE EDGE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
IOCCN7 ⁽¹⁾	IOCCN6 ⁽¹⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	 IOCCN<7:6>: Interrupt-on-change PORTC Negative Edge Enable bits⁽¹⁾ 1 = Interrupt-on-change enabled on the pin for a negative going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge. 0 = Interrupt-on-change disabled for the associated pin
bit 5-0	 IOCCN<5:0>: Interrupt-on-change PORTC Negative Edge Enable bits 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge. 0 = Interrupt-on-Change disabled for the associated pin
Mada di	

Note 1: PIC16(L)F18346 only.

20.2.4.4 Dead-Band Delay in Full-Bridge Mode

Dead-band delay is important when either of the following conditions is true:

- 1. The direction of the CWG output changes when the duty cycle of the data input is at or near 100%, or
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than the turn-on time.

The dead-band delay is inserted only when changing directions, and only the modulated output is affected. The statically-configured outputs (CWGxA and CWGxC) are not afforded dead band, and switch essentially simultaneously.

Figure 20-7 shows an example of the CWG outputs changing directions from forward to reverse, at near 100% duty cycle. In this example, at time t1, the output of CWGxA and CWGxD become inactive, while output CWGxC becomes active. Since the turn-off time of the power devices is longer than the turn-on time, a shootthrough current will flow through power devices QC and QD for the duration of 't'. The same phenomenon will occur to power devices QA and QB for the CWG direction change from reverse to forward.

If changing the CWG direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are:

- 1. Reduce the CWG duty cycle for one period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

FIGURE 20-7: EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE

21.2 CLCx Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR3 register will be set when either edge detector is triggered and its associated enable bit is set. The LCxINTP bit enables rising edge interrupts and the LCxINTN bit enables falling edge interrupts. Both are located in the CLCxCON register.

To fully enable the interrupt, set the following bits:

- CLCxIE bit of the PIE3 register
- LCxINTP bit of the CLCxCON register (for a rising edge detection)
- LCxINTN bit of the CLCxCON register (for a falling edge detection)
- PEIE and GIE bits of the INTCON register

The CLCxIF bit of the PIR3 register, must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

21.3 Output Mirror Copies

Mirror copies of all LCxCON output bits are contained in the CLCDATA register. Reading this register samples the outputs of all CLCs simultaneously. This prevents any timing skew introduced by testing or reading the LCxOUT bits in the individual CLCxCON registers.

21.4 Effects of a Reset

The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged.

21.5 Operation During Sleep

The CLC module operates independently from the system clock and will continue to run during Sleep, provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the CLC module is enabled and the HFINTOSC is selected as an input source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLC input source, when the CLC is enabled, the CPU will go idle during Sleep, but the CLC will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

21.6 CLCx Setup Steps

The following steps will be followed when setting up the CLCx:

- Disable CLCx by clearing the LCxEN bit.
- Select desired inputs using CLCxSEL0 through CLCxSEL3 registers (See Table 21-1).
- · Clear any associated ANSEL bits.
- Set all TRIS bits associated with external CLC inputs.
- Enable the chosen inputs through the four gates using CLCxGLS0, CLCxGLS1, CLCxGLS2, and CLCxGLS3 registers.
- Select the gate output polarities with the LCxGyPOL bits of the CLCxPOL register.
- Select the desired logic function with the LCxMODE<2:0> bits of the CLCxCON register.
- Select the desired polarity of the logic output with the LCxPOL bit of the CLCxPOL register. (This step may be combined with the previous gate output polarity step).
- If driving a device pin, set the desired pin PPS control register and also clear the TRIS bit corresponding to that output.
- If interrupts are desired, configure the following bits:
 - Set the LCxINTP bit in the CLCxCON register for rising event.
 - Set the LCxINTN bit in the CLCxCON register for falling event.
 - Set the CLCxIE bit of the PIE3 register.
 - Set the GIE and PEIE bits of the INTCON register.
- Enable the CLCx by setting the LCxEN bit of the CLCxCON register.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG3D4T: O	Gate 2 Data 4 1	rue (non-inve	rted) bit			
	1 = CLCIN3 ((true) is gated i	nto CLCx Gat	e 2			
	0 = CLCIN3	(true) is not gat	ed into CLCX	Gate 2			
bit 6	LCxG3D4N: (Gate 2 Data 4	Negated (Invel	rted) bit			
	1 = CLCIN3 (0 = CLCIN3 ((inverted) is ga	t gated into CLCX	Cx Gate 2			
bit 5	LCxG3D3T: 0	Gate 2 Data 3 1	rue (non-inve	rted) bit			
	1 = CLCIN2 ((true) is gated i	nto CLCx Gat	e 2			
	0 = CLCIN2	(true) is not gat	ed into CLCx	Gate 2			
bit 4	LCxG3D3N:	Gate 2 Data 3 I	Negated (inver	rted) bit			
	1 = CLCIN2 ((inverted) is ga	ted into CLCx	Gate 2			
	0 = CLCIN2((inverted) is no	t gated into CL	Cx Gate 2			
bit 3	LCxG3D2T: (Sate 2 Data 2 1	rue (non-inve	rted) bit			
	I = CLCIN1 (0 = CLCIN1 ((true) is gated i	nto CLCX Gate	e z Gate 2			
bit 2	LCxG3D2N: (Gate 2 Data 2 I	Negated (inve	rted) bit			
5112	1 = CLCIN1((inverted) is ga	ted into CLCx	Gate 2			
	0 = CLCIN1 ((inverted) is no	t gated into CL	Cx Gate 2			
bit 1	LCxG3D1T: G	Gate 2 Data 1 T	rue (non-inve	rted) bit			
	1 = CLCIN0 ((true) is gated i	nto CLCx Gat	e 2			
	0 = CLCIN0 ((true) is not gat	ed into CLCx	Gate 2			
bit 0	LCxG3D1N: (Gate 2 Data 1	Negated (inver	rted) bit			
	1 = CLCINO((inverted) is ga	ted into CLCx	Gate 2			

REGISTER 21-9: CLCxGLS2: GATE 2 LOGIC SELECT REGISTER

ADC Clock Period (TAD)		Device Frequency (Fosc)					
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽²⁾
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽²⁾	64.0 μs ⁽²⁾
ADCRC	x11	1.0-6.0 μs ^(1,4)					

TABLE 22-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.

Note 1: See TAD parameter for ADCRC source typical TAD value.

2: These values violate the required TAD time.

3: Outside the recommended TAD time.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the ADCRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 22-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

REGISTER 28-2: TMRx⁽¹⁾: TIMERx COUNT REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			TMR×	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 TMRx<7:0>: TMRx Counter bits 7..0

Note 1: 'x' refers to either '2,' 4' or '6' for the respective Timer2/4/6 registers.

REGISTER 28-3: PRx: TIMERx PERIOD REGISTER⁽¹⁾

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
			PRx<	<7:0>			
bit 7							bit 0
Legend:							
P - Poadable b	it	M = M/ritable bi	+	II – I Inimpler	nontod hit road	1 26 '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 PRx<7:0>: TMRx Counter bits 7..0

When TMRx = PRx, the next clock will reset the counter; counter period is (PRx+1)

Note 1: 'x' refers to either '2,' 4' or '6' for the respective Timer2/4/6 registers.

© 2016-2017 Microchip Technology Inc.

30.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK line. The master determines when the slave (Processor 2, Figure 30-5) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPxCON1 register and the CKE bit of the SSPxSTAT register. This then, would give waveforms for SPI communication as shown in Figure 30-6, Figure 30-8, Figure 30-9 and Figure 30-10, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- Timer2 output/2
- Fosc/(4 * (SPPxADD + 1))

Figure 30-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

PIC16(L)F18326/18346

31.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART1)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART1) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART1, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/\overline{A} integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART1 module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- · One-character output buffer
- Programmable 8-bit or 9-bit character length
- Address detection in 9-bit mode
- Input buffer overrun error detection
- Received character framing error detection
- · Half-duplex synchronous master
- Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- Sleep operation

The EUSART1 module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- Automatic detection and calibration of the baud rate
- · Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART1 transmitter and receiver are shown in Figure 31-1 and Figure 31-2.

The EUSART1 transmit output (TX_out) is available to the TX/CK pin and internally to the following peripherals:

Configurable Logic Cell (CLC)

FIGURE 31-1: EUSART1 TRANSMIT BLOCK DIAGRAM

33.0 IN-CIRCUIT SERIAL PROGRAMMING™ (ICSP™)

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process, allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- Vdd
- Vss

In Program/Verify mode the program memory, data EEPROM, User IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSP, refer to the *"PIC16(L)F183XX Memory Programming Specification"* (DS40001738).

33.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

33.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'. The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, MCLR must be held at VIL for as long as Program/Verify mode is to be maintained.

If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 6.4 "MCLR**" for more information.

33.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 33-1.

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 33-2.

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 33-3 for more information.

34.2 Instruction Descriptions

ADDFSR	Add Literal to FSRn			
Syntax:	[label] ADDFSR FSRn, k			
Operands:	$-32 \le k \le 31$ n \in [0, 1]			
Operation:	$FSR(n) + k \rightarrow FSR(n)$			
Status Affected:	None			
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.			
	FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to			

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.

ADDLW	Add literal and W					
Syntax:	[<i>label</i>] ADDLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$(W) + k \to (W)$					
Status Affected:	C, DC, Z					
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.					

wrap-around.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ADDWF	Add W and f					
Syntax:	[<i>label</i>] ADDWF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(W) + (f) \rightarrow (destination)					
Status Affected:	C, DC, Z					
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					

ASRF	Arithmetic Right Shift						
Syntax:	[<i>label</i>]ASRF f{,d}						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	$\begin{array}{l} (f<7>) \rightarrow dest<7>\\ (f<7:1>) \rightarrow dest<6:0>,\\ (f<0>) \rightarrow C, \end{array}$						
Status Affected:	C, Z						
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.						

ADDWFC ADD W and CARRY bit to f

Syntax:	[label] ADDWFC f {,d}					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	$(W) + (f) + (C) \rightarrow dest$					
Status Affected:	C, DC, Z					
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.					

PIC16(L)F18326/18346

TRIS	Load TRIS Register with W				
Syntax:	[<i>label</i>] TRIS f				
Operands:	$5 \leq f \leq 7$				
Operation:	(W) \rightarrow TRIS register 'f'				
Status Affected:	None				
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.				

XORLW	Exclusive OR literal with W					
Syntax:	[<i>label</i>] XORLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .XOR. $k \rightarrow (W)$					
Status Affected:	Z					
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.					

XORWF	Exclusive OR W with f						
Syntax:	[<i>label</i>] XORWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(W) .XOR. (f) \rightarrow (destination)						
Status Affected:	Z						
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.						

PIC16(L)F18326/18346

FIGURE 35-12: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 35-17: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic			Min.	Typ.†	Max.	Units	Conditions
40*	Т⊤0Н	T0CKI High Pulse Width No P		No Prescaler	0.5 TCY + 20	—	—	ns	
				With Rrescaler	10	—	—	ns	
41*	T⊤0L	TOCKI Low Pulse Width No Rrescaler		No Rrescaler	0.5 TCY + 20	—	—	ns	
			\sim	With Prescaler	10	—	—	ns	
42*	Тт0Р	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value
45*	T⊤1H	T1CKI High Time	Synchronous	s, No Prescaler	0.5 Tcy + 20		—	ns	
			Synchronou	s, with Prescaler	15		—	ns	
			Asynchrono	us	30			ns	
46*	TT1L	T1CKI Low Time	Time Synchronous, No Prescaler		0.5 Tcy + 20		—	ns	
		\land	Synchronou	s, with Prescaler	15		—	ns	
			Asynchronou	us	30		—	ns	
47*	Тт1Р	T1CKI Input Period	Synchronou	S	Greater of: 30 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value
			Asynchronou	us	60	—	—	ns	
48	F71	Secondary Oscillator Input Frequency Range (oscillator enabled by setting bit T1OSCEN)			32.4	32.768	33.1	kHz	
49*	TCKEŽTMR1	Delay from External Clock Edge to Timer Increment			2 Tosc	—	7 Tosc	_	Timers in Sync mode
/ (*	These paran	neters are character	rized but not t	ested					

Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.