Microchip Technology - PIC16LF18326-I/P Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18326-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC16(L)F18346 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0+/DAC1OUT/	RA0	TTL/ST	CMOS	General purpose I/O.
ICDDAT/ICSPDAT	ANA0	AN	_	ADC Channel A0 input.
	C1IN0+	AN	—	Comparator C1 positive input.
	DAC1OUT	—	AN	Digital-to-Analog Converter output.
	ICDDAT	TTL/ST	CMOS	In-Circuit Debug Data I/O.
	ICSPDAT	TTL/ST	CMOS	ICSP™ Data I/O.
RA1/ANA1/VREF+/C1IN0-/	RA1	TTL/ST	CMOS	General purpose I/O.
C2IN0-/ DAC1REF+/SS2 ⁽¹⁾)/	ANA1	AN	—	ADC Channel A1 input.
ICDCLK/ ICSPCLK	VREF+	AN	—	ADC positive voltage reference input.
	C1IN0-	AN	_	Comparator C1 negative input.
	C2IN0-	AN	_	Comparator C2 negative input.
	DAC1REF+	AN	—	Digital-to-Analog Converter positive reference input.
	SS2	TTL/ST	—	Slave Select 2 input.
	ICDCLK	TTL/ST	CMOS	In-Circuit Debug Clock I/O.
	ICSPCLK	TTL/ST	CMOS	ICSP Clock I/O.
RA2/ANA2/VREF-/ DAC1REF-/	RA2	TTL/ST	CMOS	General purpose I/O.
$TOCKI^{(1)}/CCP3^{(1)}/CWG1IN^{(1)}/CWG1IN^{(1)}/CUCUNU^{(1)}/CWG1IN^{(1)}/CWG1IN^{(1)}/CUCUNU^{(1)}/CWG1IN$	ANA2	AN	—	ADC Channel A2 input.
	VREF-	AN	—	ADC negative voltage reference input.
	DAC1REF-	AN	—	Digital-to-Analog Converter negative reference input.
	T0CKI	TTL/ST	—	TMR0 Clock input.
	CCP3	TTL/ST	CMOS	Capture/Compare/PWM 3 input.
	CWG1IN	TTL/ST		Complementary Waveform Generator 1 input.
	CWG2IN	TTL/ST		Complementary Waveform Generator 2 input.
	CLCIN0	TTL/ST	-	Configurable Logic Cell 0 input.
	INT	TTL/ST	—	External interrupt input.
RA3/MCLR/Vpp	RA3	TTL/ST	CMOS	General purpose I/O.
	MCLR	TTL/ST	—	Master Clear with internal pull-up.
	Vpp	HV	—	Programming voltage.
RA4/ANA4/T1G(1)/T3G ⁽¹⁾ /	RA4	TTL/ST	CMOS	General purpose I/O.
T5G(')/SOSCO/CCP4(')/	ANA4	AN		ADC Channel A4 input.
CEROUTIOSCZ	T1G	TTL/ST	—	TMR1 gate input.
	T3G	TTL/ST	—	TMR3 gate input.
	T5G	TTL/ST	—	TMR5 gate input.
	SOSCO	—	XTAL	Secondary Oscillator connection.
	CCP4	TTL/ST	CMOS	Capture/Compare/PWM 4 input.
	CLKOUT	—	CMOS	Fosc/4 output.
	OSC2	—	XTAL	Crystal/Resonator (LP, XT, HS modes).

Legend:AN= Analog input or outputCMOS= CMOS compatible input or outputOD= Open-DrainTTL = TTL compatible inputST= Schmitt Trigger input with CMOS levelsI²C= Schmitt Trigger input with I²CHV= High VoltageXTAL= Crystal levelsI²C= Schmitt Trigger input with I²C

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 13-2.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 13-2.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

3.0 ENHANCED MID-RANGE CPU

This family of devices contains an enhanced mid-range 8-bit CPU core. The CPU has 48 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16-levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative Addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

- · Automatic Interrupt Context Saving
- 16-level Stack with Overflow and Underflow
- File Select Registers
- Instruction Set

FIGURE 3-1: CORE BLOCK DIAGRAM

TABLE 4-4:	SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)
------------	--

Address	Name	PIC16(L)F18326 PIC16(L)F18346	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 1												

Dalik												
					CPU CORE R	EGISTERS; see]	Table 4-2 for spe	cifics				
08Ch	TRISA		—	_	TRISA5	TRISA4	_	TRISA2	TRISA1	TRISA0	11 -111	11 -111
08Dh	TRISB	X —				Unimple	mented				-	-
		— X	TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—	1111	1111
08Eh	TRISC	X —	—	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	11 1111
		— X	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
08Fh	—	—				Unimple	mented				—	—
090h	PIE0		—	_	TMR0IE	IOCIE	—	—	—	INTE	000	000
091h	PIE1		TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
092h	PIE2		TMR6IE	C2IE	C1IE	NVMIE	SSP2IE	BCL2IE	TMR4IE	NCO1IE	0000 0000	0000 0000
093h	PIE3		OSFIE	CSWIE	TMR3GIE	TMR3IE	CLC4IE	CLC3IE	CLC2IE	CLC1IE	0000 0000	0000 0000
094h	PIE4		CWG2IE	CWG1IE	TMR5GIE	TMR5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	0000 0000	0000 0000
095h	—	—				Unimple	mented				_	—
096h	_	—				Unimple	mented				_	—
097h	WDTCON		—	—			WDTPS<4:0>			SWDTEN	01 0110	01 0110
098h	_	—				Unimple	mented				_	—
099h	_	—		Unimplemented —						—		
09Ah	_	—		Unimplemented —						—		
09Bh	ADRESL			ADRES<7:0> XXXX X2						XXXX XXXX	uuuu uuuu	
09Ch	ADRESH			ADRES<9:8> XXXX XX						XXXX XXXX	uuuu uuuu	
09Dh	ADCON0				CHS	6<5:0>			GO/DONE	ADON	0000 0000	0000 0000
09Eh	ADCON1		ADFM		ADCS<2:0>		_	ADNREF	ADPRE	EF<1:0>	0000 -000	0000 -000

ADACT<4:0>

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

_

Note 1: Only on PIC16F18326/18346.

ADACT

2: Register accessible from both User and ICD Debugger.

_

_

09Fh

---0 0000 ---0 0000

R/W/HS-0/0	R/W/H	S-0/0	R/W/HS-0/0	R/W/HS-0	/0 R/W/HS-0/0	R/W/HS-0/	0 R/W/HS-0/0	R/W/HS-0/0
CWG2IF	CWG	1IF	TMR5GIF	TMR5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF
bit 7					ŀ		·	bit 0
Legend:								
R = Readable	bit		W = Writable	bit	U = Unimpler	mented bit, re	ad as '0'	
u = Bit is uncha	anged		x = Bit is unkr	nown	-n/n = Value a	at POR and E	3OR/Value at all o	other Resets
'1' = Bit is set			'0' = Bit is clea	ared	HS = Hardwa	ire set		
bit 7	CWG2I	F: CW	G 2 Interrupt F	lag bit				
	1 = CW	G2 ha	s gone into shu	utdown				
	0 = CW	G2 is (operating norm	hally, or inte	rrupt cleared			
bit 6	CWG1I	F: CW	G1 Interrupt F	lag bit				
	1 = CW	G1 ha	s gone into shi	utdown	www.unit.nlonwood			
	0 = CVV	GIIS (sperating norm	ally, or inte	rrupt cleared			
bit 5	TMR5G	IF: In	ner5 Gate Inte	rrupt Flag b	it			
		1 = Ih 	e TMR5 gate I	has gone in	active (the gate i	s closed).		
		0 = Ih	e TMR5 gate I	nas not gon	e inactive.			
bit 4	TMR5IF	: Time	er5 Overflow In	iterrupt Flag) bit			
		1 = TN	IR5 overflow c	occurred (mi	ust be cleared in	software)		
	0 = No TMR5 overflow occurred							
bit 3	CCP4IF	CCP	4 Interrupt Fla	g bit				
	Value				ССРМ М	ode		
	value		Capture		Compa	ire	PWI	N
		Canti	ire occurred		Compare match	occurred	Output trailing e	

REGISTER 8-11: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4

Valuo		CCPM Mode	
value	Capture	Compare	PWM
1	Capture occurred (must be cleared in software)	Compare match occurred (must be cleared in software)	Output trailing edge occurred (must be cleared in software)
0	Capture did not occur	Compare match did not occur	Output trailing edge did not occur

bit 2 CCP3IF: CCP3 Interrupt Flag bit

Value		CCPM Mode	
value	Capture	Capture Compare	
1	Capture occurred (must be cleared in software)	Compare match occurred (must be cleared in software)	Output trailing edge occurred (must be cleared in software)
0	Capture did not occur	Compare match did not occur	Output trailing edge did not occur

12.7 Register Definitions: PORTC

'1' = Bit is set

REGISTER 12-17: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
RC7 ⁽¹⁾	RC6 ⁽¹⁾	RC5	RC4	RC3	RC2	RC1	RC0		
bit 7			•	-			bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value at POR and BOR/Value at all other Resets					

bit 7-6	RC<7:6>: PORTC I/O Value bits ^(1,2)
	1 = Port pin is <u>></u> Vін
	0 = Port pin is <u><</u> VIL
bit 5-0	RC<5:0>: PORTC General Purpose I/O Pin bits ⁽²⁾
	1 = Port pin is <u>></u> Vін
	0 = Port pin is <u><</u> VIL

'0' = Bit is cleared

Note 1: PIC16(L)F18346 only; otherwise read as '0'.

2: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

REGISTER 12-18: TRISC: PORTC TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	TRISC<7:6> : PORTC Tri-State Control bits ⁽¹⁾ 1 = PORTC pin configured as an input (tri-stated) 0 = PORTC pin configured as an output
bit 5-0	TRISC<5:0>: PORTC Tri-State Control bits 1 = PORTC pin configured as an input (tri-stated) 0 = PORTC pin configured as an output

Note 1: PIC16(L)F18346 only; otherwise read as '0'.

© 2016-2017 Microchip Technology Inc.

20.0 COMPLEMENTARY WAVEFORM GENERATOR (CWG) MODULE

The Complementary Waveform Generator (CWGx) produces complementary waveforms with dead-band delay from a selection of input sources.

The CWGx module has the following features:

- · Selectable dead-band clock source control
- Selectable input sources
- Output enable control
- Output polarity control
- Dead-band control with independent 6-bit rising and falling edge dead-band counters
- · Auto-shutdown control with:
 - Selectable shutdown sources
 - Auto-restart enable
 - Auto-shutdown pin override control

20.1 Fundamental Operation

The CWG generates two output waveforms from the selected input source.

The off-to-on transition of each output can be delayed from the on-to-off transition of the other output, thereby, creating a time delay immediately where neither output is driven. This is referred to as dead time and is covered in **Section 20.6 "Dead-Band Control"**.

It may be necessary to guard against the possibility of circuit faults or a feedback event arriving too late or not at all. In this case, the active drive must be terminated before the Fault condition causes damage. This is referred to as auto-shutdown and is covered in **Section 20.7 "Auto-Shutdown Control"**.

20.2 Operating Modes

The CWGx module can operate in six different modes, as specified by the MODE<2:0> bits of the CWGxCON0 register:

- · Half-Bridge mode
- Push-Pull mode
- Asynchronous Steering mode
- Synchronous Steering mode
- Full-Bridge mode, Forward
- Full-Bridge mode, Reverse

All modes accept a single pulse data input, and provide up to four outputs as described in the following sections.

All modes include auto-shutdown control as described in Section 20.11 "Register Definitions: CWG Control"

Note:	Except as noted for Full-bridge mode
	(Section 20.2.4 "Full-Bridge Modes"),
	mode changes may only be performed
	while EN = 0 (Register 20-1).

20.2.1 HALF-BRIDGE MODE

In Half-Bridge mode, two output signals are generated as true and inverted versions of the input as illustrated in Figure 20-1. A non-overlap (dead-band) time is inserted between the two outputs as described in **Section 20.6 "Dead-Band Control"**. Steering modes are not used in Half-Bridge mode.

The unused outputs, CWGxC and CWGxD, drive similar signals with polarity independently controlled by POLC and POLD, respectively.

FIGURE 20-1: CWGx HALF-BRIDGE MODE OPERATION

21.0 CONFIGURABLE LOGIC CELL (CLC)

The Configurable Logic Cell (CLCx) provides programmable logic that operates outside the speed limitations of software execution. The logic cell takes up to 36 input signals and, through the use of configurable gates, reduces the 36 inputs to four logic lines that drive one of eight selectable single-output logic functions.

Input sources are a combination of the following:

- · I/O pins
- Internal clocks
- Peripherals
- · Register bits

The output can be directed internally to peripherals and to an output pin.

Refer to Figure 21-1 for a simplified diagram showing signal flow through the CLCx.

Possible configurations include:

- Combinatorial Logic
 - AND
 - NAND
 - AND-OR
 - AND-OR-INVERT
 - OR-XOR
 - OR-XNOR
- Latches
 - S-R
 - Clocked D with Set and Reset
- Transparent D with Set and Reset
- Clocked J-K with Reset

FIGURE 21-1: CLCx SIMPLIFIED BLOCK DIAGRAM

FIGURE 24-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

25.5 Carrier Source Polarity Select

The signal provided from any selected input source for the carrier high and carrier low signals can be inverted. Inverting the signal for the carrier high source is enabled by setting the MDCHPOL bit of the MDCARH register. Inverting the signal for the carrier low source is enabled by setting the MDCLPOL bit of the MDCARL register.

25.6 Programmable Modulator Data

The MDBIT of the MDCON register can be selected as the source for the modulator signal. This gives the user the ability to program the value used for modulation.

25.7 Modulated Output Polarity

The modulated output signal provided on the DSM pin can also be inverted. Inverting the modulated output signal is enabled by setting the MDOPOL bit of the MDCON register.

25.8 Slew Rate Control

The slew rate limitation on the output port pin can be disabled. The slew rate limitation can be removed by clearing the SLR bit of the SLRCON register associated with that pin. For example, clearing the slew rate limitation for pin RA5 would require clearing the SLRA5 bit of the SLRCONA register.

25.9 Operation in Sleep Mode

The DSM module is not affected by Sleep mode. The DSM can still operate during Sleep, if the Carrier and Modulator input sources are also still operable during Sleep.

25.10 Effects of a Reset

Upon any device Reset, the DSM module is disabled. The user's firmware is responsible for initializing the module before enabling the output. The registers are reset to their default values.

27.0 TIMER1/3/5 MODULE WITH GATE CONTROL

Timer1/3/5 modules are 16-bit timers/counters, each with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- Programmable internal or external clock source
- 2-bit prescaler
- Clock source for optional comparator synchronization
- · Multiple Timer1 gate (count enable) sources
- Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- Time base for the Capture/Compare function with the CCP modules
- Auto-Conversion Trigger (with CCP)
- Selectable Gate Source Polarity
- Gate Toggle mode
- Gate Single-Pulse mode
- Gate Value Status
- Gate Event Interrupt

Figure 27-1 is a block diagram of the Timer1 module.

- Note 1: In devices with more than one Timer module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the T1CON and T3CON control the same operational aspects of two completely different Timer modules.
 - 2: Throughout this section, generic references to Timer1 module in any of its operating modes may be interpreted as being equally applicable to Timerx module. Register names, module signals, I/O pins and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

© 2016-2017 Microchip Technology Inc.

27.6 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

27.6.1 TIMER1 GATE EVENT INTERRUPT

When Timer1 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of T1GVAL occurs, the TMR1GIF flag bit in the PIR1 register will be set. If the TMR1GIE bit in the PIE1 register is set, then an interrupt will be recognized.

The TMR1GIF flag bit operates even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

27.7 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous mode. In this mode, an external crystal or clock source can be used to increment the timer. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured
- T1SOSC bit of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Secondary oscillator will continue to operate in Sleep regardless of the T1SYNC bit setting.

27.8 CCP Capture/Compare Time Base

The CCP modules use the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be an Auto-conversion Trigger.

For more information, see Section 29.0 "Capture/Compare/PWM Modules".

27.9 CCP Auto-Conversion Trigger

When any of the CCP's are configured to trigger an auto-conversion, the trigger will clear the TMR1H:TMR1L register pair. This auto-conversion does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair becomes the period register for Timer1.

Timer1 should be synchronized and Fosc/4 should be selected as the clock source in order to utilize the Auto-conversion Trigger. Asynchronous operation of Timer1 can cause an Auto-conversion Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with an Auto-conversion Trigger from the CCP, the write will take precedence.

For more information, see Section 29.3.3 "Auto-Conversion Trigger".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TRISA	_	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	143
ANSELA	_	_	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0	144
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	—	_	—	149
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	—	_	_	—	150
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	155
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	100
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	107
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	102
PIR3	OSFIF	CSWIF	TMR3GIF	TMR3IF	CLC4IF	CLC3IF	CLC2IF	CLC1IF	109
PIE3	OSFIE	CSWIE	TMR3GIE	TMR3IE	CLC4IE	CLC3IE	CLC2IE	CLC1IE	104
PIR4	CWG2IF	CWG1IF	TMR5GIF	TMR5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	110
PIE4	CWG2IE	CWG1IE	TMR5GIE	TMR5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	105
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1SOSC	T1SYNC	_	TMR10N	292
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GS	S<1:0>	293
TMR1L				TMR	1L<7:0>				294
TMR1H				TMR	1H<7:0>				294
T1CKIPPS		—		- T1CKIPPS<4:0>					162
T1GPPS	_	—	_		T1G	PPS<4:0>			162
T3CON	TMR3C	S<1:0>	T3CKP	S<1:0>	T3SOSC	T3SYNC	—	TMR3ON	292
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/DONE	T3GVAL	T3GS	S<1:0>	293
TMR3L				TMR	3L<7:0>				294
TMR3H				TMR	3H<7:0>				294
T3CKIPPS	_	—	_		T3CK	IPPS<4:0>			162
T3GPPS	_	_	_		T3G	PPS<4:0>			162
T5CON	TMR5C	S<1:0>	T5CKP	S<1:0>	T5SOSC	T5SYNC	_	TMR5ON	292
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/DONE	T5GVAL	T5GSS	S<1:0>	293
TMR5L				TMR	5L<7:0>				294
TMR5H				TMR	5H<7:0>				294
T5CKIPPS	_	_	—		T5CK	IPPS<4:0>			162
T5GPPS	—	—	—		T5G	PPS<4:0>			162
T0CON0	T0EN	_	TOOUT	T016BIT		T0OUTPS-	<3:0>		280
CMxCON0	CxON	CxOUT	_	CxPOL	—	CxSP	CxHYS	CxSYNC	190
CCPTMRS	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSEL<	1:0>	C1TSE	L<1:0>	311
CCPxCON	CCPxEN	—	CCPxOUT	CCPxFMT	(CCPxMODE	<3:0>		308
CLCxSELy	_	_			LCxDyS<5	:0>			229
ADACT	_	_	_		ADA	CT<4:0>			246

TABLE 27-5:	SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1/3/5

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: PIC16(L)F18346 only.

2: Unimplemented, read as '1'.

31.3.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART1 module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RC1STA register and the received data as indicated by RC1REG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when:

- RCIF bit is set
- FERR bit is set
- RC1REG = 00h

The second method uses the Auto-Wake-up feature described in **Section 31.3.3** "**Auto-Wake-up on Break**". By enabling this feature, the EUSART1 will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUD1CON register before placing the EUSART1 in Sleep mode.

C	onfiguration B	lits	PPC/FUSAPT4 Made	Baud Pato Formula			
SYNC	BRG16	BRGH	BRG/EUSARTT Mode	Baud Kale Formula			
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]			
0	0	1	8-bit/Asynchronous				
0	1	0	16-bit/Asynchronous	FOSC/[16 (n+1)]			
0	1	1	16-bit/Asynchronous				
1	0	Х	8-bit/Synchronous	Fosc/[4 (n+1)]			
1	1	х	16-bit/Synchronous				

TABLE 31-3: BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SP1BRGH, SP1BRGL register pair.

TABLE 31-4: BAUD RATE FOR ASYNCHRONOUS MODES

	SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300		_	_	_	_	_	_	_	_	_	_	_
1200	—	—	—	1221	1.73	255	1200	0.00	239	1200	0.00	143
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8
57.6k	55.55k	-3.55	3	_	_	_	57.60k	0.00	7	57.60k	0.00	2
115.2k	—	—	—	—	_	—	—	—	—	—	—	—

	SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD	Fos	c = 8.00) MHz	Fosc = 4.000 MHz			Foso	: = 3.686	4 MHz	Fos	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_	_		300	0.16	207	300	0.00	191	300	0.16	51	
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12	
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	—	—	
9600	9615	0.16	12	—	_	—	9600	0.00	5	—	_	_	
10417	10417	0.00	11	10417	0.00	5	—	_	—	—	_	_	
19.2k	—	_	—	—		—	19.20k	0.00	2	—	_	—	
57.6k	—	_	_	—	_	—	57.60k	0.00	0	—	—	_	
115.2k	—	—	—	—	—	—	—	—	—	—	—	—	

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	$\begin{array}{l} (PC)+1 \rightarrow TOS, \\ k \rightarrow PC<10:0>, \\ (PCLATH<6:3>) \rightarrow PC<14:11> \end{array}$
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	$\tt CLRWDT$ instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits \overline{TO} and \overline{PD} are set.

CALLW	Subroutine Call With W
Syntax:	[label] CALLW
Operands:	None
Operation:	(PC) +1 \rightarrow TOS, (W) \rightarrow PC<7:0>, (PCLATH<6:0>) \rightarrow PC<14:8>
Status Affected:	None
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{f}) \\ 1 \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

DECF	Decrement f			
Syntax:	[<i>label</i>] DECF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(f) - 1 \rightarrow (destination)			
Status Affected:	Z			
Description:	Decrement register 'f'. If 'd' is ' $^{\circ}$ ', the result is stored in the W register. If 'd' is ' 1 ', the result is stored back in register 'f'.			

CLRW	Clear W					
Syntax:	[label] CLRW					
Operands:	None					
Operation:	$00h \rightarrow (W)$ 1 $\rightarrow Z$					
Status Affected:	Z					
Description:	W register is cleared. Zero bit (Z) is set.					

DECFSZ	Decrement f, Skip if 0 [label] DECFSZ f,d				
Syntax:					
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0				
Status Affected:	None				
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.				

GOTO	Unconditional Branch					
Syntax:	[<i>label</i>] GOTO k					
Operands:	$0 \leq k \leq 2047$					
Operation:	$k \rightarrow PC < 10:0>$ PCLATH<6:3> $\rightarrow PC < 14:11>$					
Status Affected:	None					
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.					

INCFSZ	Increment f, Skip if 0					
Syntax:	[<i>label</i>] INCFSZ f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0					
Status Affected:	None					
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.					

IORLW	Inclusive OR literal with W				
Syntax:	[<i>label</i>] IORLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .OR. $k \rightarrow$ (W)				
Status Affected:	Z				
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.				

INCF	Increment f				
Syntax:	[label] INCF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(f) + 1 \rightarrow (destination)				
Status Affected:	Z				
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.				

IORWF	Inclusive OR W with f					
Syntax:	[<i>label</i>] IORWF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$					
Operation:	(W) .OR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					

TRIS	Load TRIS Register with W				
Syntax:	[<i>label</i>] TRIS f				
Operands:	$5 \leq f \leq 7$				
Operation:	(W) \rightarrow TRIS register 'f'				
Status Affected:	None				
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.				

XORLW	Exclusive OR literal with W				
Syntax:	[<i>label</i>] XORLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .XOR. $k \rightarrow (W)$				
Status Affected:	Z				
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.				

XORWF	Exclusive OR W with f					
Syntax:	[<i>label</i>] XORWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) .XOR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					

TABLE 35-8: OSCILLATOR PARAMETERS⁽¹⁾

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Min.	Typ.†	Max.	Units	Conditions
OS20	FHFOSC	Precision Calibrated HFINTOSC Frequency	3.92	4	4.08	MHz	25°C
OS20	FHFOSC	Precision Calibrated HFINTOSC Frequency		4 8 12 16 32		MHz	-40°C to 125°C (2)
OS21	FHFOSCLP	Low-Power Optimized HFINTOSC Frequency	0.93 1.86	1 2	1.07 2.14	MHz MHz	
OS23	FLFOSC	Internal LFINTOSC Frequency	_	31	—	kHz <	
OS24	THFOSCST	HFINTOSC Wake-up from Sleep Start-up Time	_	11 50	20	μS μS	VREĞPM = 0 VREGPM = 1
OS26	TLFOSCST	LFINTOSC Wake-up from Sleep Start-up Time	_	0.2	$-\langle$	ms	

* These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

2: See Figure 35-6.

FIGURE 35-6: PRECISION CALIBRATED HEINTOSC FREQUENCY ACCURACY OVER DEVICE

37.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
 - MPLAB[®] X IDE Software
 - MPLAB Xpress IDE Software
 - Microchip Code Configurator (MCC)
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

37.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- · Multiple configurations
- Simultaneous debugging sessions
- File History and Bug Tracking:
- · Local file history feature
- Built-in support for Bugzilla issue tracker

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X20)	Х			0.60
Contact Pad Length (X20)	Y			1.95
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.45		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A