

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18326t-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

							• • • •	, ,											
I/O(²)	20-Pin PDIP/SOIC/SSOP	20-Pin UQFN	ADC	Reference	Comparator	NCO	DAC	MSQ	Timers	ссь	PWM	CWG	MSSP	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RA0	19	16	ANA0	—	C1IN0+	—	DAC1OUT	_	_	—	—	_	—	—	—	_	IOC	Y	ICDDAT ICSPDAT
RA1	18	15	ANA1	VREF+	C1IN0- C2IN0-	—	DAC1REF+	_	_	—	_	_	SS2	_	—	—	IOC	Y	ICDCLK ICSPCLK
RA2	17	14	ANA2	VREF-	_	—	DAC1REF-	_	T0CKI ⁽¹⁾	CCP3 ⁽¹⁾	_	CWG1IN ⁽¹⁾ CWG2IN ⁽¹⁾	—	_	CLCIN0 ⁽¹⁾	_	IOC INT ⁽¹⁾	Y	_
RA3	4	1	_	_	—	_	—	—	—	—	_	-	—	_	—	_	IOC	Y	MCLR VPP
RA4	3	20	ANA4	—	_	_	_	_	T1G ⁽¹⁾ T3G ⁽¹⁾ T5G ⁽¹⁾ SOSCO	CCP4 ⁽¹⁾	_	_	_	—	_	_	IOC	Y	CLKOUT OSC2
RA5	2	19	ANA5	_	_	_	_	_	T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T5CKI ⁽¹⁾ SOSCIN SOSCI		_	_	_	_			IOC	Y	CLKIN OSC1
RB4	13	10	ANB4	_	_	_	_	_	_	_	_	_	SDI1 ⁽¹⁾ SDA1 ^(1,3,4)	_	CLCIN2 ⁽¹⁾	_	IOC	Y	_
RB5	12	9	ANB5	_		_				—	—	_	SDI2 ⁽¹⁾ SDA2 ^(1,3,4)	RX ⁽¹⁾	CLCIN3 ⁽¹⁾	_	IOC	Y	
RB6	11	8	ANB6	_		_			-	—	—	_	SCK1 ⁽¹⁾ SCL1 ^(1,3,4)	—	—	_	IOC	Y	
RB7	10	7	ANB7	_		_				—	—	_	SCK2 ⁽¹⁾ SCL2 ^(1,3,4)	—	—	_	IOC	Y	
RC0	16	13	ANC0	—	C2IN0+	—	_	_	_	—	_	_	—	—	—	—	IOC	Υ	—
RC1	15	12	ANC1	-	C1IN1- C2IN1-		_	_	_	_	_	_	_	_	_	—	IOC	Y	_
RC2	14	11	ANC2	—	C1IN2- C2IN2-	—	—	MDCIN1 ⁽¹⁾	—	—	_	-	—	_	—	—	IOC	Y	_
Note 1	: De	fault p	eriphera	l input. Ir	nput can be	moved to a	any other pin wit	h the PPS inc	ut selection	n reaisters.									

TABLE 3: 20-PIN ALLOCATION TABLE (PIC16(L)F18346)

1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers.

All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. 2:

These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections. 3:

These pins are configured for I²C logic levels; clock and data signals may be assigned to any of these pins. Assignments to other pins (e.g., RA5) will operate, but logic levels will be standard 4: TTL/ST as selected by the INLVL register.

Name	Function	Input Type	Output Type	Description
RC4/ANC4/T3G ⁽¹⁾ / SCK2 ⁽¹⁾ /	RC4	TTL/ST	CMOS	General purpose I/O.
SCL2 ^(1,3) / CLCIN1 ⁽¹⁾	ANC4	AN	—	ADC Channel C4 input.
	T3G	TTL/ST	—	TMR3 gate input.
	SCK2	TTL/ST	CMOS	SPI Clock 2.
	SCL2	I ² C	OD	I ² C Clock 2.
	CLCIN1	TTL/ST	—	Configurable Logic Cell 1 input.
RC5/ANC5/MDCIN2 ⁽¹⁾ /	RC5	TTL/ST	CMOS	General purpose I/O.
$T3CKI^{(1)}/CCP1^{(1)}/SDI2^{(1)}/$	ANC5	AN	—	ADC Channel C5 input.
SDAZ WIRK IDT	MDCIN2	TTL/ST	—	Modular Carrier input 2.
	T3CKI	TTL/ST	—	TMR3 Clock input.
	CCP1	TTL/ST	CMOS	Capture/Compare/PWM 1 input.
	SDI2	TTL/ST	CMOS	SPI Data 2.
	SDA2	I ² C	OD	I ² C Data 2.
	RX	TTL/ST	CMOS	EUSART asynchronous input.
	DT	TTL/ST	CMOS	EUSART synchronous data output.
VDD	VDD	Power	_	Positive supply.
Vss	Vss	Power	—	Ground reference.

TABLE 1-2:PIC16(L)F18326 PINOUT DESCRIPTION (CONTINUED)

 Legend: AN = Analog input or output
 CMOS=CMOS compatible input or output
 OD
 = Open-Drain

 TTL = TTL compatible input
 ST
 = Schmitt Trigger input with CMOS levels
 I²C
 = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL
 = Crystal levels
 I
 I
 I
 I

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 13-1.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 13-2.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

4.5 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into four memory regions:

- · Traditional/Banked Data Memory
- Linear Data Memory
- Program Flash Memory
- EEPROM

FIGURE 4-8: INDIRECT ADDRESSING PIC16(L)F18326/18346

4.5.1 TRADITIONAL/BANKED DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

FIGURE 7-6: CLOCK SWITCH (CSWHOLD = 0) OSCCON1 WRITTEN OSC #1 OSC #2 ORDY Note 2 NOSCR Note '1 CSWIF USER CLEAR **CSWHOLD**

Note 1: CSWIF is asserted coincident with NOSCR; interrupt is serviced at OSC#2 speed. 2: The assertion of NOSCR is hidden from the user because it appears only for the duration of the switch.

FIGURE 7-7: CLOCK SWITCH (CSWHOLD = 1)

13.3 Bidirectional Pins

PPS selections for peripherals with bidirectional signals on a single pin must be made so that the PPS input and PPS output select the same pin. This requires configuring both the appropriate xxxPPS input and RxyPPS output registers. For example, if the SCL1 line is routed to pin RC0, the SSP1SCLPPS input register would be set to '10000' (routes to RC0) and the RC0PPS output register would be set to '11000' (routes the SCL1 internal connection to RC0). Peripherals that have bidirectional signals are:

- EUSART1 (synchronous operation)
- MSSP (I²C)
 - **Note:** The I²C default input pins are I²C and SMBus compatible and are the only pins on the PIC16(L)F18326 with this compatibility. For the PIC16(L)F18346, in addition to the default pins as described above, RC0, RC1, RC4, and RC5 are also I²C and SMBus compatible. Clock and data signals can be routed to any pin, however pins without I²C compatibility will operate at standard TTL/ST logic levels as selected by the INVLV register.

13.4 PPSLOCKED Bit

The PPS includes a mode in which all input and output selections can be locked to prevent inadvertent changes. PPS selections are locked by setting the PPSLOCKED bit of the PPSLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PPSLOCKED bit are shown in Example 13-1.

EXAMPLE 13-1: PPS LOCK/UNLOCK SEQUENCE

;	suspend	interrupts
	bcf	INTCON, GIE
;	BANKSEI	PPSLOCK ; set bank
;	required	sequence, next 5 instructions
	movlw	0x55
	movwf	PPSLOCK
	movlw	OxAA
	movwf	PPSLOCK
;	Set PPSL	OCKED bit to disable writes or
;	Clear PP	SLOCKED bit to enable writes
	bsf	PPSLOCK, PPSLOCKED
;	restore	interrupts
	bsf	INTCON, GIE

13.5 PPS1WAY Bit

The PPS can be locked by setting the PPS1WAY bit of Configuration Word 2.

When the PPS1WAY bit is set, the PPSLOCKED bit of the PPSLOCK register can be cleared and set only one time after a device Reset. Once the PPS registers are configured, user software sets the PPSLOCKED bit, preventing any further writes to the PPS registers. the PPS registers can be read at any time, regardless of the PPS1WAY or PPSLOCKED settings.

When the PPS1WAY bit is clear, the PPSLOCKED bit of the PPSLOCK register can be cleared and set multiple times during code execution, but requires the PPS lock/unlock sequence to be performed each time modifications to the PPS registers are made.

13.6 Operation During Sleep

PPS input and output selections are unaffected by Sleep.

13.7 Effects of a Reset

A device Power-On-Reset (POR) clears all PPS input and output selections to their default values, and clears the PPSLOCKED bit of the PPSLOCK register. All other Resets leave the selections unchanged. Default input selections are shown in pin allocation Table 2 and Table 3.

TABLE 19-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWMx

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
TRISA		_	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	143	
ANSELA		_	ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	144	
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_	—	149	
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	—	—	_	—	150	
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	155	
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157	
PWM5CON	PWM5EN	_	PWM5OUT	PWM5POL	_	_		—	196	
PWM5DCH				PWM5DC<	9:2>				196	
PWM5DCL	PWM5	DC<1:0>	—	—	—	—		—	196	
PWM6CON	PWM6EN	—	PWM6OUT	PWM6POL	—	_	_	—	196	
PWM6DCH	PWM6DC<9:2>									
PWM6DCL	PWM6	DC<1:0>	—	—	—	—				
PWMTMRS			_	—	P6TSE	L<1:0>	P5TSEL<1:0>		197	
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	100	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	107	
PIR2	TMR6IF	C2IF	C1IF	NVMIF	SSP2IF	BCL2IF	TMR4IF	NCO1IF	108	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	102	
PIE2	TMR6IE	C2IE	C1IE	NVMIE	SSP2IE	BCL2IE	TMR4IE	NCO1IE	103	
T2CON			T2OUTPS	S<3:0>		TMR2ON	T2CKP	'S<1:0>	298	
T4CON			T4OUTPS	S<3:0>		TMR4ON	T4CKP	'S<1:0>	292	
T6CON			T6OUTPS	S<3:0>		TMR6ON	T6CKP	'S<1:0>	292	
TMR2				TMR2<7:0)>				299	
TMR4				TMR4<7:0)>				299	
TMR6				TMR6<7:0)>				299	
PR2				PR2<7:0	>				299	
PR4				PR4<7:0	>				299	
PR6				PR6<7:0	>				299	
CWGxDAT	—	—	—	—		DAT<	<3:0>		215	
CLCxSELy					LCxDyS<	5:0>			229	
MDSRC	—	—	—	—		MDMS	\$<3:0>		272	
MDCARH	—	MDCHPOL	MDCHSYNC	—		MDCH	<3:0>		273	
MDCARL		MDCLPOL	MDCLSYNC	—		MDCL	<3:0>		274	

Legend: - = Unimplemented locations, read as '0'. Shaded cells are not used by the PWM module.

Note 1: PIC16(L)F18346 only.

2: Unimplemented, read as '1'.

20.2.3.1 Synchronous Steering Mode

In Synchronous Steering mode (MODE<2:0> bits = 001, Register 20-1), changes to steering selection registers take effect on the next rising edge of the modulated data input (Figure 20-3). In Synchronous Steering mode, the output will always produce a complete waveform.

20.2.3.2 Asynchronous Steering Mode

In Asynchronous mode (MODE<2:0> bits = 000, Register 20-1), steering takes effect at the end of the instruction cycle that writes to WGxSTR. In Asynchronous Steering mode, the output signal may be an incomplete waveform (Register 20-4). This operation may be useful when the user firmware needs to immediately remove a signal from the output pin.

FIGURE 20-4: EXAMPLE OF ASYNCHRONOUS STEERING (MODE<2:0> = 000)

20.2.3.3 Start-up Considerations

The application hardware must use the proper external pull-up and/or pull-down resistors on the CWG output pins. This is required because all I/O pins are forced to high-impedance at Reset.

The POLy bits (Register 20-2) allow the user to choose whether the output signals are active-high or active-low.

© 2016-2017 Microchip Technology Inc.

REGISTER Z	J-4. CWGA		DATAINFUT	SELECTION	I KLOISTEK					
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
	—	—	—	DAT<3:0>						
bit 7							bit 0			
Legend:										

REGISTER 20-4: CWGxDAT: CWGx DATA INPUT SELECTION REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-4 Unimplemented: Read as '0'

bit 3-0 DAT<3:0>: CWG Data Input Selection bits

DAT	Data Source
0000	CWGxPPS
0001	C1OUT
0010	C2OUT
0011	CCP1
0100	CCP2
0101	CCP3
0110	CCP4
0111	PWM5
1000	PWM6
1001	NCO1
1010	CLC1
1011	CLC2
1100	CLC3
1101	CLC4
1110	Reserved
1111	Reserved

21.2 CLCx Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR3 register will be set when either edge detector is triggered and its associated enable bit is set. The LCxINTP bit enables rising edge interrupts and the LCxINTN bit enables falling edge interrupts. Both are located in the CLCxCON register.

To fully enable the interrupt, set the following bits:

- CLCxIE bit of the PIE3 register
- LCxINTP bit of the CLCxCON register (for a rising edge detection)
- LCxINTN bit of the CLCxCON register (for a falling edge detection)
- PEIE and GIE bits of the INTCON register

The CLCxIF bit of the PIR3 register, must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

21.3 Output Mirror Copies

Mirror copies of all LCxCON output bits are contained in the CLCDATA register. Reading this register samples the outputs of all CLCs simultaneously. This prevents any timing skew introduced by testing or reading the LCxOUT bits in the individual CLCxCON registers.

21.4 Effects of a Reset

The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged.

21.5 Operation During Sleep

The CLC module operates independently from the system clock and will continue to run during Sleep, provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the CLC module is enabled and the HFINTOSC is selected as an input source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLC input source, when the CLC is enabled, the CPU will go idle during Sleep, but the CLC will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

21.6 CLCx Setup Steps

The following steps will be followed when setting up the CLCx:

- Disable CLCx by clearing the LCxEN bit.
- Select desired inputs using CLCxSEL0 through CLCxSEL3 registers (See Table 21-1).
- · Clear any associated ANSEL bits.
- Set all TRIS bits associated with external CLC inputs.
- Enable the chosen inputs through the four gates using CLCxGLS0, CLCxGLS1, CLCxGLS2, and CLCxGLS3 registers.
- Select the gate output polarities with the LCxGyPOL bits of the CLCxPOL register.
- Select the desired logic function with the LCxMODE<2:0> bits of the CLCxCON register.
- Select the desired polarity of the logic output with the LCxPOL bit of the CLCxPOL register. (This step may be combined with the previous gate output polarity step).
- If driving a device pin, set the desired pin PPS control register and also clear the TRIS bit corresponding to that output.
- If interrupts are desired, configure the following bits:
 - Set the LCxINTP bit in the CLCxCON register for rising event.
 - Set the LCxINTN bit in the CLCxCON register for falling event.
 - Set the CLCxIE bit of the PIE3 register.
 - Set the GIE and PEIE bits of the INTCON register.
- Enable the CLCx by setting the LCxEN bit of the CLCxCON register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	100
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	102
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	107
TRISA	—	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	143
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—	149
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	155
ANSELA	—	—	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0	144
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	—	—	_	_	150
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
ADCON0		•	CHS<	5:0>			GO/DONE	ADON	244
ADCON1	ADFM	A	ADCS<2:0>	>	—	ADNREF	ADPREI	F<1:0>	245
ADACT	—	—	—			ADACT<4:	0>		246
ADRESH				ADRES	SH<7:0>				247
ADRESL				ADRES	SL<7:0>				247
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFVR	<1:0>	180
DAC1CON1	_	_	_			DAC1R<4:	0>		264
OSCSTAT1	EXTOR	HFOR	_	LFOR	SOR	ADOR	_	PLLR	91

TABLE 22-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: -= unimplemented read as '0'. Shaded cells are not used for the ADC module.

Note 1: PIC16(L)F18346 only.

2: Unimplemented, read as '1'.

U-0	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u				
	MDCLPOL	MDCLSYNC	—		MDCL<	<3:0>(1)					
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is unch	anged	x = Bit is unkr	R/Value at all o	ther Resets							
'1' = Bit is set		'0' = Bit is clea	ared								
bit 7	bit 7 Unimplemented: Read as '0'										
bit 6	MDCLPOL:	Modulator Low	Carrier Polari	ity Select bit							
	1 = Selected low carrier signal is inverted										
	0 = Selected low carrier signal is not inverted										
bit 5	5 MDCLSYNC: Modulator Low Carrier Synchronization Enable bit										
	1 = Modulat	or waits for a fail	ing eage on t	ne low time carr	ier signal before	e allowing a swi	tch to the high				
	0 = Modulat	or output is not :	synchronized	to the low time	carrier signal ⁽¹)					
bit 4	Unimpleme	nted: Read as ')'		Ũ						
bit 3-0	MDCL<3:0>	Modulator Data	High Carrier	Selection bits (1)						
	1111 = CLC	C4 output	U								
	1110 = CL0	C3 output									
	1101 = CL(C2 output									
	1100 = CLC	C1 output									
	1011 = HFI	NIOSC									
	1010 = F0	served No chan	nel connecte	h							
	1000 = NC	O1 output		<i>.</i>							
	0111 = PW	M6 output									
	0110 = PW	M5 output									
0101 = CCP2 output (PWM Output mode only)											
	0100 = CC	P1 output (PWN	1 Output mod	le only)							
	0011 = Ref	erence clock mo	odule signal (CLKR)							
	0010 = MD										
	0001 - MD										
		•									

REGISTER 25-4: MDCARL: MODULATION LOW CARRIER CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

REGISTER 27-3: TMRxL⁽¹⁾: TIMERx LOW BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			TMRx	L<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value at POR and BOR/Value at all other			
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 TMRxL<7:0>: TMRx Low Byte bits

Note 1: 'x' refers to either '1', '3' or '5' for the respective Timer1/3/5 registers.

REGISTER 27-4: TMRxH⁽¹⁾: TIMERx HIGH BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			TMRxH	 <7:0>			
bit 7							bit 0
L a manual.							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TMRxH<7:0>: TMRx High Byte bits

Note 1: 'x' refers to either '1', '3' or '5' for the respective Timer1/3/5 registers.

31.5 EUSART1 Operation During Sleep

The EUSART1 will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

31.5.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RC1STA and TX1STA Control registers must be configured for Synchronous Slave Reception (see Section 31.4.2.4 "Synchronous Slave Reception Setup").
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RC1REG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF interrupt flag bit of the PIR1 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

31.5.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- The RC1STA and TX1STA Control registers must be configured for synchronous slave transmission (see Section 31.4.2.2 "Synchronous Slave Transmission Setup").
- The TXIF interrupt flag must be cleared by writing the output data to the TX1REG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.
- Interrupt enable bits TXIE of the PIE1 register and PEIE of the INTCON register must set.

Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TX1REG will transfer to the TSR and the TXIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TX1REG is available to accept another character for transmission, which will clear the TXIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit is also set then the Interrupt Service Routine at address 0004h will be called.

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions				
	VIL	Input Low Voltage									
		I/O PORT:					Λ				
D300		with TTL buffer			0.8	V	$4.5V \le VDD \le 5.5V$				
D301					0.15 VDD	V	$1.8V \leq VDD \leq 4.5V$				
D302		with Schmitt Trigger buffer			0.2 Vdd	V	2.0V ≤ VDD ≤ 5.5 V				
D303		with I ² C levels			0.3 Vdd	V	\frown				
D304		with SMBus levels	—	—	0.8	V	$2.7V \leq VDD \leq 5.5V$				
D305		MCLR	—	_	0.2 Vdd	\checkmark					
	VIH	Input High Voltage					$\overline{\langle \langle }$				
		I/O PORT:			\frown						
D320		with TTL buffer	2.0		`	K	4.5V ≤ VDD ≤ 5.5V				
D321			0.25 VDD + 0.8		\	$\mathbb{W}/$	$1.8V \le VDD \le 4.5V$				
D322		with Schmitt Trigger buffer	0.8 VDD	_<	<u> </u>	$\sqrt{}$	$2.0V \leq V\text{DD} \leq 5.5V$				
D323		with I ² C levels	0.7 VDD		<u> </u>	\vee					
D324		with SMBus levels	2.1	2-2		> v	$2.7V \leq V\text{DD} \leq 5.5V$				
D325		MCLR	0.7 VDD		<u> </u>	V					
	lı∟	Input Leakage Current ⁽²⁾		$\underline{\ }$	\searrow						
D340		I/O Ports		±5	> ± 125	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C				
D341		<		₹5	± 1000	nA	$\label{eq:VSS} \begin{split} Vss \leq V \text{PIN} \leq V \text{DD}, \\ \text{Pin at high-impedance, } 125^\circ\text{C} \end{split}$				
D342		MCLR ⁽²⁾		± 50	± 200	nA	$\label{eq:VSS} \begin{split} &V\text{SS} \leq V\text{PIN} \leq V\text{DD}, \\ &P\text{in at high-impedance, 85}^\circ\text{C} \end{split}$				
	Ipur	Weak Pull-up Current									
D350			25	120	200	μA	VDD = 3.0V, VPIN = VSS				
	Vol	Output Low Voltage ⁽³⁾									
D360		I/O ports		—	0.6	V	IOL = 10.0 mA, VDD = 3.0V				
	Vон	Output High Voltage									
D370		IXQ ports	Vdd - 0.7			V	IOH = 6.0 mA, VDD = 3.0V				
D380	Сю	All VO pins		5	50	pF					

TABLE 35-4: I/O PORTS⁽¹⁾

These parameters are characterized but not tested. €

Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined as current sourced by the pin.

The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. Excluding OSC2 in CLKOUT mode.

2;

3⁄.

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions	
AD01	Nr	Resolution		_	10	bit		
AD02	EIL	Integral Error	—	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF- = 0V	
AD03	Edl	Differential Error	—	±0.1	±1.0	LSb	ADCREFT = 3.0V, ADCREF-= 0V	
AD04	EOFF	Offset Error	—	0.5	2	LSb	ADCREFt = 3:0V, ADCREF- = 0V	
AD05	Egn	Gain Error	—	±0.2	±1.0	LSb~	ADCREF+ = 3.0V, ADCREF- = 0V	
AD06	VADREF	ADC Reference Voltage (ADREF+) ⁽³⁾	1.8	_	Vdd	Ń		
AD07	VAIN	Full-Scale Range	Vss	_	ADREF+	V		
AD06	VADREF	ADC Reference Voltage (ADREF+ - ADREF-) ⁽³⁾	1.8	_	VDD	V		
AD07	VAIN	Full-Scale Range	ADREF-	<	ADREF+	\rightarrow		
AD08	Zain	Recommended Impedance of Analog Voltage Source	—	10	F	kΩ		
AD09	RVREF	ADC Voltage Reference Ladder Impedance			\searrow	×kΩ		

TABLE 35-12: ANALOG-TO-DIGITAL CONVERTER (ADC) CHARACTERISTICS^(1,2)

These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25° (unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.

2: The ADC conversion result never decreases with an increase in the input and has no missing codes.

FIGURE 35-21: I²C BUS START/STOP BITS TIMING

TABLE 35-23: I²C BUS START/STOP BITS CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)							\bigwedge	\sim
Param. No.	Symbol	Characteristic		Min.	Тур.	Max.	Units	Conditions
SP90*	TSU:STA	Start condition	100 kHz mode	4700	·	$\langle \mathcal{A} \rangle$	ns	Only relevant for Repeated
		Setup time	400 kHz mode	600		$ \searrow $		Start condition
SP91*	THD:STA	Start condition	100 kHz mode	4000	K— ,	1	ns	After this period, the first
		Hold time	400 kHz mode	600	\searrow	1		clock pulse is generated
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700	X		ns	
		Setup time	400 kHz mode	600		$\langle - \rangle$		
SP93	THD:STO	Stop condition	100 kHz mode	4000		\searrow	ns	
		Hold time	400 kHz mode	600	\searrow	_		

* These parameters are characterized but not tested.

FIGURE 35-22: I²C BUS DATA TIMING

37.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

37.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradeable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

37.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

37.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

37.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.