

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18346-e-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description		
RA5/ANA5/T1CKI ⁽¹⁾ / T3CKI ⁽¹⁾ /	RA5	TTL/ST	CMOS	General purpose I/O.		
T5CKI ⁽¹⁾ / SOSCIN/SOSCI/	ANA5	AN	—	ADC Channel A5 input.		
CLKIN/OSC1	T1CKI	TTL/ST	—	TMR1 Clock input.		
	T3CKI	TTL/ST	—	TMR3 Clock input.		
	T5CKI	TTL/ST	—	TMR5 Clock input.		
	SOSCIN	TTL/ST	—	Secondary Oscillator input connection.		
	SOSCI	XTAL	—	Secondary Oscillator connection.		
	CLKIN	TTL/ST	—	External clock input.		
	OSC1	XTAL	—	Crystal/Resonator (LP, XT, HS modes).		
RB4/ANB4/SDI1 ⁽¹⁾ / SDA1 ^(1,3) /	RB4	TTL/ST	CMOS	General purpose I/O.		
CLCIN2 ⁽¹⁾	ANB4	AN	—	ADC Channel B4 input.		
	SDI1	TTL/ST	CMOS	SPI Data input 1.		
	SDA1	l ² C	OD	I ² C Data 1.		
	CLCIN2	TTL/ST	_	Configurable Logic Cell 2 input.		
RB5/ANB5/SDI2 ⁽¹⁾ / SDA2 ^(1,3) /	RB5	TTL/ST	CMOS	General purpose I/O.		
RX ⁽¹⁾ /DT/CLCIN3 ⁽¹⁾	ANB5	AN	_	ADC Channel B5 input.		
	SDI2	TTL/ST	CMOS	SPI Data input 2.		
	SDA2	l ² C	OD	I ² C Data 2.		
	RX	TTL/ST	CMOS	EUSART asynchronous input.		
	DT	TTL/ST	CMOS	EUSART synchronous data output.		
	CLCIN3	TTL/ST	—	Configurable Logic Cell 3 input.		
RB6/ANB6/SCK1 ⁽¹⁾ / SCL1 ^(1,3)	RB6	TTL/ST	CMOS	General purpose I/O.		
	ANB6	AN	_	ADC Channel B6 input.		
	SCK1	TTL/ST	CMOS	SPI Clock 1.		
	SCL1	l ² C	OD	I ² C Clock 1.		
RB7/ANB7/SCK2 ⁽¹⁾ / SCL2 ^(1,3)	RB7	TTL/ST	CMOS	General purpose I/O.		
	ANB7	AN	—	ADC Channel B7 input.		
	SCK2	TTL/ST	CMOS	SPI Clock 2.		
	SCL2	I ² C	OD	I ² C Clock 2.		
RC0/ANC0/C2IN0+	RC0	TTL/ST	CMOS	General purpose I/O.		
	ANC0	AN	_	ADC Channel C0 input.		
	C2IN0+	AN	_	Comparator C2 positive input.		
RC1/ANC1/C1IN1-/C2IN1-	RC1	TTL/ST	CMOS	General purpose I/O.		
	ANC1	AN	_	ADC Channel C1 input.		
	C1IN1-	AN	_	Comparator C1 negative input.		
	C2IN1-	AN	_	Comparator C2 negative input.		
RC2/ANC2/C1IN2-/C2IN2-/	RC2	TTL/ST	CMOS	General purpose I/O.		
MDCIN1 ⁽¹⁾	ANC2	AN	_	ADC Channel C2 input.		
	C1IN2-	AN	—	Comparator C1 negative input.		
	C2IN2-	AN	_	Comparator C2 negative input.		
	MDCIN1	TTL/ST	—	Modular Carrier input 1.		

TABLE 1-3: PIC16(L)F18346 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output CMOS= CMOS compatible input or output OD = Open-Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C HV = High Voltage XTAL = Crystal levels

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 13-2.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 13-2.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

2.0 GUIDELINES FOR GETTING STARTED WITH PIC16(L)F183XX MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC16(L)F183XX family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and VSS pins
 (see Section 2.2 "Power Supply Pins")
- MCLR pin (when configured for external operation)

(see Section 2.3 "Master Clear (MCLR) Pin")

These pins must also be connected if they are being used in the end application:

- ICSPCLK/ICSPDAT pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.4 "ICSP[™] Pins")
- OSC1 and OSC2 pins when an external oscillator source is used

(see Section 2.5 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

The minimum mandatory connections are shown in Figure 2-1.

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins (VDD and Vss) is required. All VDD and Vss pins must be connected. None can be left floating.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-25V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

							•	,				
Address	Name	PIC16(L)F18326 PIC16(L)F18346	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 8												
					CPU CORE RI	EGISTERS; see 1	Table 4-2 for spe	cifics				
40Ch to 410h	-	-		Unimplemented								
411h	TMR3L			TMR3L<7:0>							XXXX XXXX	uuuu uuuu
412h	TMR3H			TMR3H<7:0>							XXXX XXXX	uuuu uuuu
413h	T3CON		TMR3CS	TMR3CS<1:0> T3CKPS<1:0> T3SOSC T3SYNC — TMR3ON						0000 00-0	uuuu uu-u	
414h	T3GCON		TMR3GE	R3GE T3GPOL T3GTM T3GSPM T3GGO/ T3GVAL T3GSS<1:0>					0000 0x00	uuuu uxuu		
415h	TMR4				•	TMR4	<7:0>	•			0000 0000	0000 0000
416h	PR4					PR4<	<7:0>				1111 1111	1111 1111
417h	T4CON		_		T4OU	TPS<3:0>		TMR4ON	T4CKF	°S<1:0>	-000 0000	-000 0000
418h	TMR5L					TMR5I	_<7:0>				XXXX XXXX	uuuu uuuu
419h	TMR5H					TMR5H	H<7:0>				XXXX XXXX	uuuu uuuu
41Ah	T5CON		TMR5CS	S<1:0>	T5CK	PS<1:0>	T5SOSC	T5SYNC	—	TMR50N	0000 00-0	uuuu uu-u
41Bh	T5GCON		TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/ DONE	T5GVAL	T5GS	S<1:0>	0000 0x00	uuuu uxuu
41Ch	TMR6					TMR6	<7:0>				0000 0000	0000 0000
41Dh	PR6					PR6<	<7:0>				1111 1111	1111 1111

TMR6ON

T6CKPS<1:0>

-000 0000 -000 0000

_

PIC16(L)F18326/18346

TABLE 4-4: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

DS40001839B-page 41

41Eh

41Fh

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

T6OUTPS<3:0>

Unimplemented

Note 1: Only on PIC16F18326/18346.

T6CON

2: Register accessible from both User and ICD Debugger.

TABLE	4-4: SPEC		UNCTION RE	GISTER S	UMMARY B	ANKS 0-31 (CONTINUE))					
Address	Name	PIC16(L)F18326 PIC16(L)F18346	Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on: Value on: all oth Rese							
Bank 13													
					CPU CORE RE	EGISTERS; see 1	Table 4-2 for spe	cifics					
68Ch	-	—	Unimplemented — —								_		
68Dh	-	—		Unimplemented — —								_	
68Eh	-	—				Unimple	mented				_	_	
68Fh	-	—				Unimple	mented				_	_	
690h	-	—				Unimple	mented				_	_	
691h	CWG1CLKCON		—	—	—	—	—	—	—	CS	0	0	
692h	CWG1DAT		_	—	—	—		DAT	<3:0>		0000	0000	
693h	CWG1DBR		_	_			DBR	<5:0>			00 0000	00 0000	
694h	CWG1DBF			_			DBF<	<5:0>			00 0000	00 0000	
695h	CWG1CON0		EN	LD	_	_	_		MODE<2:0>		00000	00000	
696h	CWG1CON1			_	IN	_	POLD	POLC	POLB	POLA	x- 0000	x- 0000	
697h	CWG1AS0		SHUTDOWN	REN	LSBE)<1:0>	LSAC	<1:0>	_	_	0001 01	0001 01	

AS4E

OVRA

Unimplemented

AS2E

STRC

AS3E

STRD

AS1E

STRB

AS0E

STRA

---0 0000

0000 0000 0000 0000

---0 0000

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

_

OVRB

Only on PIC16F18326/18346. Note 1:

CWG1AS1

CWG1STR

Register accessible from both User and ICD Debugger. 2:

_

_

OVRD

_

OVRC

698h

699h

69Fh

69Ah to

IABLE	4-4: SPE			GISTER S		ANKS 0-31		(ט					
Address	Name	PIC16(L)F18326 PIC16(L)F18346	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets	
Bank 28	3												
					CPU CORE R	EGISTERS; see	Table 4-2 for sp	ecifics					
E21h	SSP1DATPPS	X —	_	—	—		S	SP1DATPPS<4:()>		1 0001	u uuuu	
		— X	—	_	—		S	SP1DATPPS<4:()>		0 1100	u uuuu	
E22h	SSP1SSPPS	X —	—	_	_		SSP1SSPPS<4:0>						
		— X	—	_	—		SSP1SSPPS<4:0>						
E23h	—	—				Unimple	Unimplemented						
E24h	RXPPS	X —	—	—	—	RXPPS<4:0>					1 0101	u uuuu	
		— X	—	—	—		RXPPS<4:0>						
E25h	TXPPS	X —	—	—	—		TXPPS<4:0>						
		— X	_	—	—		TXPPS<4:0>						
E26h	—	—				Unimple	emented				-	-	
E27h	—	—				Unimple	emented				-	—	
E28h	CLCIN0PPS	X —	_	_	_		(CLCIN0PPS<4:0	>		1 0011	u uuuu	
		— X	_				(CLCIN0PPS<4:0	>		0 0010	u uuuu	
E29h	CLCIN1PPS	× —	_				(CLCIN1PPS<4:0	>		0 0100	u uuuu	
		— X	_	_	—		(CLCIN1PPS<4:0	>		1 0011	u uuuu	
E2Ah	CLCIN2PPS	X —	—	_	_		(CLCIN2PPS<4:0	>		1 0001	u uuuu	
		— X	_	—	—		(CLCIN2PPS<4:0	>		0 1100	u uuuu	
E2Bh	CLCIN3PPS	X —	_	_	_		(CLCIN3PPS<4:0	>		0 0101	u uuuu	
		— X		_	_		(CLCIN3PPS<4:0	>		0 1101	u uuuu	
E2Ch	T3CKIPPS	X —	_	—	—		T3CKIPPS<4:0>1 0001u u						

T3CKIPPS<4:0>

T3GPPS<4:0>

T3GPPS<4:0>

T5CKIPPS<4:0>

T5CKIPPS<4:0>

T5GPPS<4:0>

T5GPPS<4:0>

DECICIER OUNDARY DANKS A AL (CONTINUED)

E2Dh

E2Eh

E2Fh

T3GPPS

T5CKIPPS

T5GPPS

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

—

_

_

_

_

_

—

_

_

_

_

_

Only on PIC16F18326/18346. Note 1:

> Register accessible from both User and ICD Debugger. 2:

Х

Х

Х

Х

Х –

Χ.

Х -

—

_

_

_

_

_

---0 0101

---1 0001

---1 0100

---1 0001

---0 0101

---1 0001

---u uuuu

---u uuuu

---u uuuu

---u uuuu

---u uuuu

---u uuuu

---1 0100 ---u uuuu

4.4 Stack

All devices have a 16-level x 15-bit wide hardware stack (refer to Figure 4-4 through Figure 4-7). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer and does not cause a Reset when either a Stack Overflow or Underflow occur if the STVREN bit is programmed to '0' (Configuration Words). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

If the STVREN bit in Configuration Words is programmed to '1', the device will be Reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

Note 1:	There are no instructions/mnemonics
	called PUSH or POP. These are actions
	that occur from the execution of the
	CALL, CALLW, RETURN, RETLW and
	RETFIE instructions or the vectoring to
	an interrupt address.

4.4.1 ACCESSING THE STACK

The stack is accessible through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is five bits to allow detection of Overflow and Underflow.

Note:	Care should be taken when modifying the
	STKPTR while interrupts are enabled.

During normal program operation, CALL, CALLW and Interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. At any time, STKPTR can be read to see how much stack is left. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC and then decrement the STKPTR.

Reference Figure 4-4 through Figure 4-7 for examples of accessing the stack.

FIGURE 4-4: ACCESSING THE STACK EXAMPLE 1

TOSH:TOSL 0x0F	STKPTR = 0x1F Stack Reset Disabled (STVREN = 0)
0x0C	
0x0B	
0x0A	Initial Steels Configurations
0x09	Initial Stack Configuration.
0x08	After Reset, the stack is empty. The empty stack is initialized so the Stack
0x07	Pointer is pointing at 0x1F. If the Stack Overflow/Underflow Reset is enabled, the
0x06	TOSH/TOSL registers will return '0'. If
0x05	disabled, the TOSH/TOSL registers will
0x04	return the contents of stack address uxur.
0x03	
0x02	
0x01	
0x00	
TOSH:TOSL 0x1F 0x0000	STKPTR = 0x1F Stack Reset Enabled (STVREN = 1)

6.13 Register Definitions: Power Control

R/W/HS-0/q	R/W/HS-0/q	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u				
STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR				
bit 7							bit 0				
Legend:											
HC = Bit is clea	ared by hardwa	are		HS = Bit is set by hardware							
R = Readable b	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'					
u = Bit is uncha	anged	x = Bit is unkr	iown	-m/n = Value	at POR and BC	R/Value at all o	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	pends on condit	ion					
bit 7	STKOVF: Sta 1 = A Stack C 0 = A Stack C	ick Overflow Fla Overflow occurr Overflow has no	ag bit ed ot occurred or	has been clea	red by firmware						
bit 6	STKUNF: Stack Underflow Flag bit 1 = A Stack Underflow occurred 0 = A Stack Underflow has not occurred or has been cleared by firmware										
bit 5	Unimplement	ted: Read as '	כ'								
bit 4	RWDT : Watch 1 = A Watchc 0 = A Watchc	ndog Timer Res dog Timer Rese dog Timer Rese	set Flag bit et has not occu et has occurre	urred or set to d (cleared by h	ʻ1' by firmware hardware)						
bit 3	$\frac{\mathbf{RMCLR:} \overline{\mathbf{MCL}}}{1 = A \underline{\mathbf{MCLR}}}$ $0 = A \underline{\mathbf{MCLR}}$	Reset Flag Reset has not Reset has occ	bit occurred or se urred (cleared	et to '1' by firm by hardware)	ware						
bit 2	RI: RESET Instruction Flag bit 1 = A RESET instruction has not been executed or set to '1' by firmware 0 = A RESET instruction has been executed (cleared by hardware)										
bit 1	 POR: Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) 										
bit 0	BOR: Brown- 1 = No Brown 0 = A Brown- occurs)	out Reset Statu n-out Reset occu out Reset occu	us bit curred irred (must be	set in software	e after a Power-	on Reset or Bro	own-out Reset				

REGISTER 6-2: PCON0: POWER CONTROL REGISTER 0

TABLE 0-3. SUMMANT OF REGISTERS ASSOCIATED WITH REGERS	TABLE 6-5:	SUMMARY OF REGISTERS ASSOCIATED WITH RESETS
--	------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN		_	_	—		_	BORRDY	76
PCON0	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	77
STATUS	—	—	_	TO	PD	Z	DC	С	30
WDTCON				V		SWDTEN	121		

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

© 2016-2017 Microchip Technology Inc.

7.0 OSCILLATOR MODULE

7.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 7-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz-crystal resonators and ceramic resonators. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, ECH, ECM, ECL) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources.

The RSTOSC bits of Configuration Word 1 determine the type of oscillator that will be used when the device is reset, including when it is first powered-up.

The internal clock modes, LFINTOSC, HFINTOSC (set at 1 MHz), or HFINTOSC (set at 32 MHz) can be set through the RSTOSC bits.

If an external clock source is selected, the FEXTOSC bits of Configuration Word 1 must be used in conjunction with the RSTOSC bits to select the External Clock mode.

The external oscillator module can be configured in one of the following clock modes by setting the FEXTOSC<2:0> bits of Configuration Word 1:

- 1. ECL External Clock Low-Power mode (<= 100 kHz)
- ECM External Clock Medium-Power mode (<= 8 MHz)
- 3. ECH External Clock High-Power mode (above 8 MHz)
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (between 100 kHz and 4 MHz)
- 6. HS High Gain Crystal or Ceramic Resonator mode (above 4 MHz)

The ECH, ECM, and ECL Clock modes rely on an external logic level signal as the device clock source. The LP, XT, and HS Clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The INTOSC internal oscillator block produces low and high-frequency clock sources, designated LFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 7-1).

7.2.2.3 Internal Oscillator Frequency Adjustment

The HFINTOSC and LFINTOSC internal oscillators are both factory-calibrated. TH HFINTOSC oscillator can be adjusted in software by writing to the OSCTUNE register (Register 7-3). OSCTUNE does not affect the LFINTOSC frequency.

The default value of the OSCTUNE register is 00h. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the HFINTOSC oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

7.2.2.4 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is a factory-calibrated 31 kHz internal clock source.

The LFINTOSC is the clock source for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM). The LFINTOSC can also be used as the system clock, or as a clock or input source to certain peripherals.

The LFINTOSC is selected as the clock source through one of the following methods:

- Programming the RSTOSC<2:0> bits of Configuration Word 1 to enable LFINTOSC.
- Write to the NOSC<2:0> bits of the OSCCON1 register.

7.2.2.5 Oscillator Status and Manual Enable

The 'ready' status of each oscillator is displayed in the OSCSTAT1 register (Register 7-4). The oscillators can also be manually enabled through the OSCEN register (Register 7-5). Manual enables make it possible to verify the operation of the EXTOSC or SOSC crystal oscillators. This can be achieved by enabling the selected oscillator, then watching the corresponding 'ready' state of the oscillator in the OSCSTAT1 register.

REGISTER 7-6: OSCFRQ: HFINTOSC FREQUENCY SELECTION REGISTER										
U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0			
—	_	_	—	HFFRQ<3:0>						
bit 7							bit 0			
Legend:										
D - Doodabla	hit	M = M/ritoblo	hit	=						

Logonan		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 HFFRQ<3:0>: HFINTOSC Frequency Selection bits

HFFRQ<3:0>	Nominal Freq. (MHz) (NOSC = 110)	2x PLL Freq. (MHz) (NOSC = 000)		
0000	1			
0001	2	Reserved		
0010	Reserved			
0011	4			
0100	8	16		
0101	12	24		
0110	16	32		
0111	32	Reserved		
1xxx	32	Reserved		

8.6 Register Definitions: Interrupt Control

R/W/HS/HC	R/W-0/0	U-0	U-0	U-0	U-0	U-0	R-1/1
GIE	PEIE	—	—	—	—	—	INTEDG
bit 7					•	·	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set	t	'0' = Bit is clea	ared	HS = Hardwa	are set	HC = Hardwa	ire clear
bit 7	GIE: Global II 1 = Enables a 0 = Disables	nterrupt Enable all active interru all interrupts	e bit ipts				
bit 6	PEIE: Peripho 1 = Enables a 0 = Disables	eral Interrupt E all active periph all peripheral ir	nable bit eral interrupts iterrupts				
bit 5-1	Unimplemen	ted: Read as '	0'				
bit 0	INTEDG: Inte 1 = Interrupt (0 = Interrupt (errupt Edge Sel on rising edge on falling edge	ect bit of INT pin of INT pin				
Note: In cc its En Us ap pr	terrupt flag bits a ondition occurs, r corresponding nable bit, GIE, c ser software opropriate interre- ior to enabling a	re set when an egardless of the enable bit or the f the INTCON should ensu upt flag bits a n interrupt.	interrupt e state of le Global register. ure the are clear				

REGISTER 8-1: INTCON: INTERRUPT CONTROL REGISTER

11.0 NONVOLATILE MEMORY (NVM) CONTROL

NVM is separated into two types: Program Flash Memory and Data EEPROM.

NVM is accessible by using both the FSR and INDF registers, or through the NVMREG register interface.

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the operating voltage range of the device.

NVM can be protected in two ways; by either code protection or write protection.

Code protection (CP and CPD bits in Configuration Word 4) disables access, reading and writing, to both the Program Flash Memory and EEPROM via external device programmers. Code protection does not affect the self-write and erase functionality. Code protection can only be Reset by a device programmer performing a Bulk Erase to the device, clearing all nonvolatile memory, Configuration bits, and User IDs.

Write protection prohibits self-write and erase to a portion or all of the Program Flash Memory, as defined by the WRT<1:0> bits of Configuration Word 3. Write protection does not affect a device programmer's ability to read, write, or erase the device.

11.1 Program Flash Memory

Program Flash Memory consists of 16,384 14-bit words as user memory, with additional words for User ID information, Configuration Words, and interrupt vectors. Program Flash Memory provides storage locations for:

- User program instructions
- User defined data

Program Flash Memory data can be read and/or written to through:

- CPU instruction fetch (read-only)
- FSR/INDF indirect access (read-only) (Section 11.3 "FSR and INDF Access")
- NVMREG access (Section 11.4 "NVMREG Access"
- In-Circuit Serial Programming[™] (ICSP[™])

Read operations return a single word of memory. When write and erase operations are done on a row basis, the row size is defined in Table 11-1. Program Flash Memory will erase to a logic '1' and program to a logic '0'.

TABLE 11-1: FLASH MEMORY ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)		
PIC16(L)F18326	22	20		
PIC16(L)F18346	52	52		

It is important to understand the Program Flash Memory structure for erase and programming operations. Program Flash Memory is arranged in rows. A row consists of 32 14-bit program memory words. A row is the minimum size that can be erased by user software.

All or a portion of a row can be programmed. Data to be written into the program memory row is written to 14-bit wide data write latches. These latches are not directly accessible to the user, but may be loaded via sequential writes to the NVMDATH:NVMDATL register pair.

Note:	To modify only a portion of a previously
	programmed row, then the contents of the
	entire row must be read and saved in
	RAM prior to the erase. Then, the new
	data and retained data can be written into
	the write latches to reprogram the row of
	Program Flash Memory. Any
	unprogrammed locations can be written
	without first erasing the row. In this case,
	it is not necessary to save and rewrite the
	other previously programmed locations

11.1.1 PROGRAM MEMORY VOLTAGES

The Program Flash Memory is readable and writable during normal operation over the full VDD range.

11.1.1.1 Programming Externally

The program memory cell and control logic support write and Bulk Erase operations down to the minimum device operating voltage.

11.1.1.2 Self-Programming

The program memory cell and control logic will support write and row erase operations across the entire VDD range. Bulk Erase is not supported when self-programming.

PIC16(L)F18326/18346

EXAMPLE 11-3: ERASING ONE ROW OF PROGRAM FLASH MEMORY

; This sample row erase routine assumes the following: ; 1.A valid address within the erase row is loaded in variables ADDRH:ADDRL ; 2.ADDRH and ADDRL are located in common RAM (locations 0x70 - 0x7F) NVMADRL BANKSEL MOVF ADDRL,W MOVWF NVMADRL ; Load lower 8 bits of erase address boundary MOVF ADDRH,W ; Load upper 6 bits of erase address boundary MOVWF NVMADRH NVMCON1, NVMREGS ; Choose Program Flash Memory area BCF ; Specify an erase operation BSF NVMCON1, FREE ; Enable writes NVMCON1,WREN BSF BCF INTCON, GIE ; Disable interrupts during unlock sequence ; -----REQUIRED UNLOCK SEQUENCE:-----MOVLW 55h ; Load 55h to get ready for unlock sequence MOVWF NVMCON2 ; First step is to load 55h into NVMCON2 ; Second step is to load AAh into W AAh MOVLW NVMCON2 MOVWF ; Third step is to load AAh into NVMCON2 BSF NVMCON1,WR ; Final step is to set WR bit ; Re-enable interrupts, erase is complete BSF INTCON, GIE NVMCON1,WREN BCF ; Disable writes

TABLE 11-2: NVM ORGANIZATION AND ACCESS INFORMATION

	Master Values	NVMREG Access			FSR Access			
Memory Function	Program Counter (PC), ICSP™ Address	Memory Type	NVMREGS bit (NVMCON1)	NVMADR <14:0>	Allowed Operations	FSR Address	FSR Programming Address	
Reset Vector	0000h		0	0000h		8000h		
User Memory	0001h	Program	0	0001h		8001h		
	0003h	Flash		0003h	READ	8003h		
INT Vector	0004h	Memory	0	0004h	WRITE	8004h	READ-ONET	
User Memory	0005h		0	0005h		8005h		
	3FFFh			3FFFh		BFFFh		
User ID		Program	1	0000h				
		Flash Memory		0003h	READ			
Reserved		_	—	0004h	_			
Rev ID			1	0005h		No	Access	
Device ID	No PC Address		1	0006h		110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
CONFIG1		Program	1	0007h				
CONFIG2		Memory	1	0008h	READ			
CONFIG3			1	0009h				
CONFIG4				000Ah				
User Memory		EEPROM	1	7000h	READ	7000h	READ-ONLY	
				70FFh	WRITE	70FFh		

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		_	ADNREF	ADPRE	F<1:0>
bit 7							bit 0
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
u = Bit is ur	nchanged	x = Bit is unkr	iown	-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is s	set	'0' = Bit is clea	ared				
bit 7	ADFM: ADC 1 = Right ju loaded. 0 = Left jus loaded.	C Result Format Istified. Six Most tified. Six Least	Select bit Significant bit Significant bit	ts of ADRESH s of ADRESL	are set to '0' w are set to '0' w	when the conve	ersion result is rsion result is
bit 6-4 ADCS<2:0>: ADC Conversion Clock Select bits 111 = ADCRC (dedicated RC oscillator) 110 = Fosc/64 101 = Fosc/16 100 = Fosc/4 011 = ADCRC (dedicated RC oscillator) 010 = Fosc/32 001 = Fosc/8							
bit 3	Unimpleme	nted: Read as '	с'				
bit 2	ADNREF: A When ADO 0 = VREF- is 1 = VREF- is	/D Negative Volt N = 0, all multipl connected to A connected to es	age Reference exer inputs are Vss «ternal VREF-	e Configuratior e disconnecteo	n bit 1.		
bit 1-0	ADPREF<1 11 = VREF+ 10 = VREF+ 01 = Resen 00 = VREF+	:0>: ADC Positiv is connected to is connected to ved is connected to	re Voltage Ref internal Fixed external VREF VDD	erence Configi Voltage Refere + pin ⁽¹⁾	uration bits ence (FVR) mod	dule ⁽¹⁾	
Noto 1:	When colocting t	ha Vorrt nin aa	the source of	the positive re-	foronoo ho owo	vro that a minin	

REGISTER 22-2: ADCON1: ADC CONTROL REGISTER 1

Note 1: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See Table 35-13 for details.

27.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

The module can be used with either internal or external clock sources, and has the Timer1 Gate Enable function. When Timer1 is used with the Timer1 Gate Enable, the timer can measure time intervals or count signal pulses between two points of interest. When used without the Timer1 Gate Enable, the timer simply measures time intervals.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 27-1 displays the Timer1 enable selections.

TABLE 27-1: TIMER1 ENABLE SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

27.2 Clock Source Selection

The TMR1CS<1:0> and T1OSC bits of the T1CON register are used to select the clock source for Timer1. Table 27-2 displays the clock source selections. The TMR1H:TMR1L register pair will increment on multiples of the clock source as determined by the Timer1 prescaler.

When either the Fosc or LFINTOSC clock source is selected, the TMR1H:TMR1L register pair will increment every rising clock edge. Reading from the TMR1H:TMR1L register pair when either the Fosc or LFINTOSC is the clock source will cause a 2 LSb loss in resolution, which can be mitigated by using an asynchronous input signal to gate the Timer1 clock input (see Section 26.5 "Operation During Sleep" for more information on the Timer1 Gate Enable).

When the Fosc/4 clock source is selected, the TMR1H:TMR1L register pair increments every instruction cycle (once every four Fosc pulses).

In addition to the internal clock sources, Timer1 has a dedicated external clock input pin, T1CKI. T1CKI can be either synchronized to the system clock or can run asynchronously via the T1SYNC bit of the T1CON register. When the T1CKI pin is used as the clock source, the TMR1H:TMR1L register pair increments on the rising edge of the T1CKI clock input.

Note:	When using Timer1 to count events, a
	falling edge must be registered by the
	counter prior to the first incrementing
	rising edge after any one or more of the
	following conditions:

- Timer1 enabled after POR
- Write to TMR1H or TMR1L
- · Timer1 is disabled
- Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.

TABLE 27-2: CLOCK SOURCE SELECTIONS

TMR1CS<1:0>	Clock Source		
11	LFINTOSC		
10	External Clocking on T1CKI Pin		
01	System Clock (Fosc)		
00	Instruction Clock (Fosc/4)		

30.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSPx module configured as an I^2C slave in 10-bit Addressing mode.

Figure 30-20 is used as a visual reference for this description.

This is a step-by-step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts Idle.
- Master sends Start condition; S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Master sends matching high address with R/\overline{W} bit clear; UA bit of the SSPxSTAT register is set.
- 4. Slave sends ACK and SSPxIF is set.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. Slave loads low address into SSPxADD, releasing SCL.
- 8. Master sends matching low address byte to the slave; UA bit is set.

Note: Updates to the SSPxADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSPxIF is set.

Note: If the low address does not match, SSPxIF and UA are still set so that the slave software can set SSPxADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSPxIF.
- 11. Slave reads the received matching address from SSPxBUF clearing BF.
- 12. Slave loads high address into SSPxADD.
- 13. Master clocks a data byte to the slave and clocks out the slaves ACK on the ninth SCL pulse; SSPxIF is set.
- 14. If SEN bit of SSPxCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSPxIF.
- 16. Slave reads the received byte from SSPxBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCL.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

30.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPxADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCL line is held low are the same. Figure 30-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 30-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

				14-hit Oncode						
Mnem Oper	nonic, ands	Description	Cycles					Status Affected	Notes	
	unuo			MSb			LSb	/		
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS					
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2	
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2	
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2	
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2	
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2	
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2	
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2	
CLRW	_	Clear W	1	00	0001	0000	00xx	Z		
COMF	t, d	Complement f	1	00	1001	dfff	ffff	2	2	
DECF	t, d	Decrement f	1	00	0011	dfff	ffff	2	2	
INCF	t, d	Increment f	1	00	1010	dfff	ffff	2	2	
IORWF	t, d	Inclusive OR W with f	1	00	0100	dfff	ffff	2	2	
MOVE	t, d	Movef	1	00	1000	dfff	ffff	Z	2	
MOVWF	t	Move W to f	1	00	0000	1fff	ffff		2	
RLF	t, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	C	2	
RRF	t, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	C	2	
SUBWF	t, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	2	
SUBWEB	t, d	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C, DC, Z	2	
SWAPF	t, d	Swap nibbles in f	1	00	1110	dfff	ffff	_	2	
XORWF	t, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Ζ	2	
		BYTE ORIENTED SKIP	OPERATIO	ONS						
DECESZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2	
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2	
		BIT-ORIENTED FILE REGIST	ER OPEF	RATION	IS			I		
DOF	fb	Bit Clear f	1	01	00bb	bfff	ffff		2	
BCF	f b	Bit Set f	1	01	01bb	bfff	ffff		2	
	, -									
		BIT-ORIENTED SRIP O	PERAIIO	61						
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2	
BIFSS	t, b	Bit lest f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2	
		LITERAL OPERA	TIONS							
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z		
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z		
MOVLB	k	Move literal to BSR	1	00	0000	001k	kkkk			
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk			
MOVLW	k	Move literal to W	1	11	0000	kkkk	kkkk			
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z		
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z		
		CONTROL OPERA	ATIONS							
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk			
BRW	_	Relative Branch with W	2	00	0000	0000	1011			
CALL	k	Call Subroutine	2	10	0 k k k	kkkk	kkkk			
CALLW	_	Call Subroutine with W	2	00	0000	0000	1010			
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk			
RETFIE	k	Return from interrupt	2	00	0000	0000	1001			
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk			
RETURN	_	Return from Subroutine	2	00	0000	0000	1000			
Note 1:	If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second									

TABLE 34-3: PIC16(L)F18326/18346 INSTRUCTION SET

cycle is executed as a NOP.
 2: If this instruction addresses an INDE register and the MSh of the corresponding ESP is set, this instruction will require

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Section 34.2 "Instruction Descriptions" for detailed MOVIW and MOVWI instruction descriptions.

PIC16(L)F18326/18346

FIGURE 35-13: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 35-18: CAPTURE/COMPARE/PWM CHARACTERISTICS (CCP)

Standar	Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Character	Min.	Тур.†	Max.	Units	Conditions		
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	—		ns		
			With Prescaler	20	—	—	ns		
CC02*	ТссН	CCPx Input High Time	No Prescaler	0.5Tcy + 20	—	<i>,</i>	ns		
			With Prescaler	20	—	_/	ns	\sim	
CC03*	TccP	CCPx Input Period		<u>3Tcy + 40</u> N	\langle		ns	N = prescale value	
*	These	a ramatana ana abaraata		in d			\overline{X}		

* These parameters are characterized but not tested.

+ Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		5.40	
Contact Pad Width	X			0.60
Contact Pad Length	Y			1.50
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	3.90		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065A

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N	14			
Pitch	е	0.65 BSC			
Overall Height	A	-	-	1.20	
Molded Package Thickness	A2	0.80	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Overall Width	E	6.40 BSC			
Molded Package Width	E1	4.30	4.40	4.50	
Molded Package Length	D	4.90	5.00	5.10	
Foot Length	L	0.45	0.60	0.75	
Footprint	(L1)	1.00 REF			
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.19	-	0.30	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or
- protrusions shall not exceed 0.15mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2