E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18346-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3:20-PIN ALLOCATION TABLE (PIC16(L)F18346) (CONTINUED)

IADLL	•.																		
I/O ⁽²⁾	20-Pin PDIP/SOIC/SSOP	20-Pin UQFN	ADC	Reference	Comparator	NCO	DAC	WSQ	Timers	ссь	PWM	CWG	ASSM	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RC3	7	4	ANC3	—	C1IN3- C2IN3-	—	_	MDMIN ⁽¹⁾	_	CCP2 ⁽¹⁾	_	_	—	_	CLCIN1 ⁽¹⁾	—	IOC	Y	—
RC4	6	3	ANC4	—	—	—	_	_	_	_	_	_	—	_	_	—	IOC	Y	_
RC5	5	2	ANC5	_	—	—	_	MDCIN2 ⁽¹⁾	_	CCP1 ⁽¹⁾	_	_	_	_	_	—	IOC	Y	_
RC6	8	5	ANC6	—	—	—	_	—	_	—	—	_	SS1 ⁽¹⁾	—	—	—	IOC	Y	_
RC7	9	6	ANC7	—	—	—	_	—	_	—	_	—	—	_	—	—	IOC	Y	_
Vdd	1	18	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	Vdd
Vss	20	17	—	—	—	—	_	—	_	—	_	—	—	_	—	—	_	—	Vss
	_	_	—	—	C1OUT	NCO1	—	DSM	TMR0	CCP1	PWM5	CWG1A CWG2A	SDO1 SDO2	DT	CLC1OUT	CLKR	_	—	—
OUT ⁽²⁾	_	—	—	—	C2OUT	_	_	—	_	CCP2	PWM6	CWG1B CWG2B	SCK1 SCK2	СК	CLC2OUT	—	_	_	—
0010	_	_	_	_	_	_	_	_	_	CCP3	-	CWG1C CWG2C	SCL1 ⁽³⁾ SCL2 ⁽³⁾	ТΧ	CLC3OUT	_	_	_	_
	_	_	_	—	_	_	_	_	_	CCP4	_	CWG1D CWG2D	SDA1 ⁽³⁾ SDA2 ⁽³⁾	—	CLC4OUT	—	_	_	—

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: These pins are configured for I²C logic levels; clock and data signals may be assigned to any of these pins. Assignments to other pins (e.g., RA5) will operate, but logic levels will be standard TTL/ST as selected by the INLVL register.

Name	Function	Input Type	Output Type	Description
RA5/ANA5/T1CKI ⁽¹⁾ / T3CKI ⁽¹⁾ /	RA5	TTL/ST	CMOS	General purpose I/O.
T5CKI ⁽¹⁾ / SOSCIN/SOSCI/ CLKIN/OSC1	ANA5	AN	—	ADC Channel A5 input.
CERIN/OSC1	T1CKI	TTL/ST	—	TMR1 Clock input.
	T3CKI	TTL/ST	_	TMR3 Clock input.
	T5CKI	TTL/ST		TMR5 Clock input.
	SOSCIN	TTL/ST	—	Secondary Oscillator input connection.
	SOSCI	XTAL	_	Secondary Oscillator connection.
	CLKIN	TTL/ST	_	External clock input.
	OSC1	XTAL	—	Crystal/Resonator (LP, XT, HS modes).
RB4/ANB4/SDI1 ⁽¹⁾ / SDA1 ^(1,3) /	RB4	TTL/ST	CMOS	General purpose I/O.
CLCIN2 ⁽¹⁾	ANB4	AN	—	ADC Channel B4 input.
	SDI1	TTL/ST	CMOS	SPI Data input 1.
	SDA1	I ² C	OD	I ² C Data 1.
	CLCIN2	TTL/ST	_	Configurable Logic Cell 2 input.
RB5/ANB5/SDI2 ⁽¹⁾ / SDA2 ^(1,3) /	RB5	TTL/ST	CMOS	General purpose I/O.
RX ⁽¹⁾ /DT/CLCIN3 ⁽¹⁾	ANB5	AN	_	ADC Channel B5 input.
	SDI2	TTL/ST	CMOS	SPI Data input 2.
	SDA2	l ² C	OD	I ² C Data 2.
	RX	TTL/ST	CMOS	EUSART asynchronous input.
	DT	TTL/ST	CMOS	EUSART synchronous data output.
	CLCIN3	TTL/ST	_	Configurable Logic Cell 3 input.
RB6/ANB6/SCK1 ⁽¹⁾ / SCL1 ^(1,3)	RB6	TTL/ST	CMOS	General purpose I/O.
	ANB6	AN	_	ADC Channel B6 input.
	SCK1	TTL/ST	CMOS	SPI Clock 1.
	SCL1	l ² C	OD	I ² C Clock 1.
RB7/ANB7/SCK2 ⁽¹⁾ / SCL2 ^(1,3)	RB7	TTL/ST	CMOS	General purpose I/O.
	ANB7	AN	_	ADC Channel B7 input.
	SCK2	TTL/ST	CMOS	SPI Clock 2.
	SCL2	l ² C	OD	I ² C Clock 2.
RC0/ANC0/C2IN0+	RC0	TTL/ST	CMOS	General purpose I/O.
	ANC0	AN	_	ADC Channel C0 input.
	C2IN0+	AN	_	Comparator C2 positive input.
RC1/ANC1/C1IN1-/C2IN1-	RC1	TTL/ST	CMOS	General purpose I/O.
	ANC1	AN	_	ADC Channel C1 input.
	C1IN1-	AN	_	Comparator C1 negative input.
	C2IN1-	AN		Comparator C2 negative input.
RC2/ANC2/C1IN2-/C2IN2-/	RC2	TTL/ST	CMOS	General purpose I/O.
MDCIN1 ⁽¹⁾	ANC2	AN	_	ADC Channel C2 input.
	C1IN2-	AN	_	Comparator C1 negative input.
	C2IN2-	AN	_	Comparator C2 negative input.
	MDCIN1	TTL/ST	_	Modular Carrier input 1.

TABLE 1-3: PIC16(L)F18346 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output CMOS= CMOS compatible input or output OD = Open-Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C HV = High Voltage XTAL = Crystal levels

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 13-2.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 13-2.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
NCOMD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD	
bit 7			•				bit (
Logondy								
Legend:	e bit	\\/ \\/##abla	L :4		anted bit read			
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other								
	•	x = Bit is unkr					ither Resets	
'1' = Bit is se	t	'0' = Bit is clea	ared	q = value dep	ends on condit	ion		
bit 7	1 = NCO1 m	able Numerical odule disabled odule enabled	ly Control Osci	llator bit				
bit 6	TMR6MD: Disable Timer TMR6 bit 1 = TMR6 module disabled 0 = TMR6 module enabled							
bit 5	1 = TMR5 mo	sable Timer TM odule disabled odule enabled	IR5 bit					
bit 4	1 = TMR4 mo	sable Timer TM odule disabled odule enabled	IR4 bit					
bit 3	1 = TMR3 mo	sable Timer TM odule disabled odule enabled	IR3 bit					
bit 2	1 = TMR2 m	sable Timer TM odule disabled odule enabled	IR2 bit					
bit 1	1 = TMR1 m	sable Timer TM odule disabled odule enabled	IR1 bit					
bit 0	1 = TMR0 m	sable Timer TM odule disabled odule enabled	IR0 bit					

REGISTER 14-2: PMD1: PMD CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	
IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable I	bit	U = Unimpler	nented bit, read	as '0'		
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 15-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER⁽¹⁾

bit 7-4	IOCBN<7:4>: Interrupt-on-Change PORTB Negative Edge Enable bits 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCAFx bit and IOCIF flag will
	be set upon detecting an edge.0 = Interrupt-on-Change disabled for the associated pin
bit 3-0	Unimplemented: Read as '0'

Note 1: PIC16(L)F18346 only.

REGISTER 15-6: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER⁽¹⁾

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	U-0
IOCBF7	IOCBF6	IOCBF5	IOCBF4	_	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-4 **IOCBF<7:4>:** Interrupt-on-Change PORTB Flag bits 1 = An enabled change was detected on the associated pin

Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was detected on RBx.

0 = No change was detected, or the user cleared the detected change.

bit 3-0 Unimplemented: Read as '0'

Note 1: PIC16(L)F18346 only.

18.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:

- · Programmable input selection
 - Selectable voltage reference
- Programmable output polarity
- Rising/falling output edge interrupts
- · Wake-up from Sleep
- CWG Auto-shutdown source

18.1 Comparator Overview

A single comparator is shown in Figure 18-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

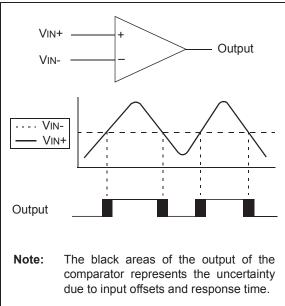

The comparators available for this device are located in Table 18-1.

TABLE 18-1: AVAILABLE COMPARATORS

Device	C1	C2
PIC16(L)F18326	•	•
PIC16(L)F18346	٠	•

FIGURE 18-1:

SINGLE COMPARATOR

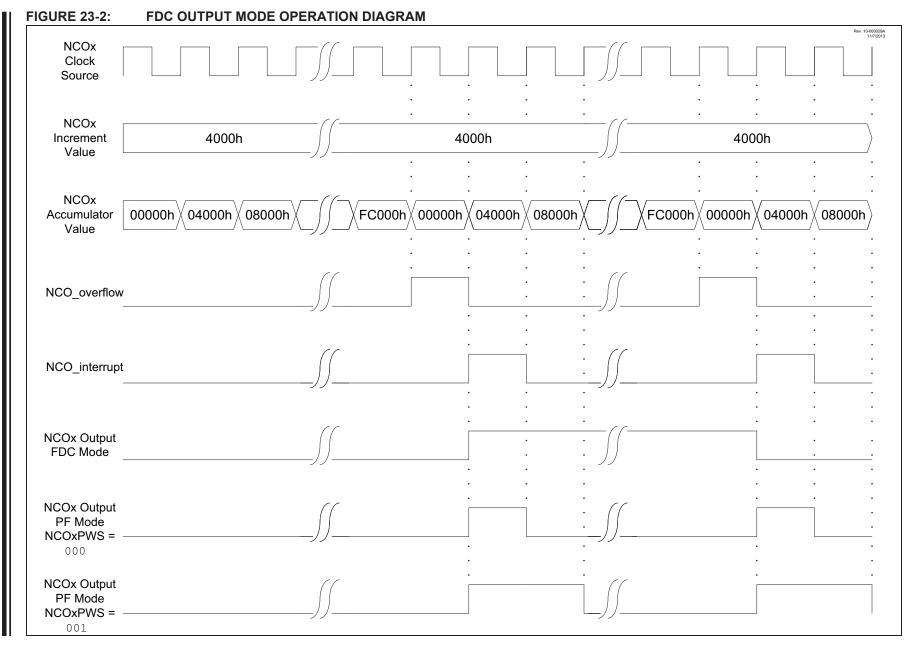

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE		—	—	—		INTEDG	100
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	102
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	107
TRISA	—	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	143
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	—	_	_	149
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	155
ANSELA	—	—	ANSA5	ANSA4		ANSA2	ANSA1	ANSA0	144
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4		_	_		150
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
ADCON0			CHS<	5:0>			GO/DONE	ADON	244
ADCON1	ADFM	A	ADCS<2:0>	•		ADNREF	ADPRE	F<1:0>	245
ADACT	—	—				ADACT<4:)>		246
ADRESH				ADRES	SH<7:0>				247
ADRESL				ADRES	SL<7:0>				247
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	/R<1:0>	ADFVR	<1:0>	180
DAC1CON1	—	—				DAC1R<4:	0>		264
OSCSTAT1	EXTOR	HFOR		LFOR	SOR	ADOR	_	PLLR	91

TABLE 22-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: -= unimplemented read as '0'. Shaded cells are not used for the ADC module.

Note 1: PIC16(L)F18346 only.

2: Unimplemented, read as '1'.

U

S

F18326/18346

DS40001839B-page 254

Preliminary

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
			NCO1I	NC<15:8>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	it	U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unkno	own	-n/n = Value at POR and BOR/Value at all other Res					
'1' = Bit is set		'0' = Bit is clear	red						

REGISTER 23-7: NCO1INCH⁽¹⁾: NCO1 INCREMENT REGISTER – HIGH BYTE

bit 7-0 NCO1INC<15:8>: NCO1 Increment, high byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

REGISTER 23-8: NCO1INCU⁽¹⁾: NCO1 INCREMENT REGISTER – UPPER BYTE

			• • • • • • • • • • • • • • • • • • • •						
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
—	—	—	—	NCO1INC<19:16>					
bit 7							bit 0		

Legend:

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 NCO1INC<19:16>: NCO1 Increment, upper byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

25.11 Register Definitions: Modulation Control

	-R 25-1. WDCC								
R/W-0/	/0 U-0	U-0	R/W-0/0	R-0/0	U-0	U-0	R/W-0/0		
MDEN	v —	_	MDOPOL	MDOUT	_	_	MDBIT ⁽²⁾		
bit 7	·				•		bit 0		
Legend:									
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'									
u = Bit is	unchanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets		
'1' = Bit is	set	'0' = Bit is cle	ared						
bit 7 bit 6-5	1 = Modulate 0 = Modulate	ulator Module E or module is en or module is dis n ted: Read as '	abled and mix abled and has	• • •	als				
bit 4		lodulator Outpu		ct hit					
	1 = Modulat	or output signal	is inverted; id	le high output					
bit 3	MDOUT: Mo	dulator Output	oit						
	Displays the	current output	alue of the mo	odulator modu	le ⁽¹⁾				
bit 2-1	bit 2-1 Unimplemented: Read as '0'								
bit 0	MDBIT: Allow	vs software to r	nanually set m	odulation sour	rce input to mod	ule ⁽²⁾			
Note 1: The modulated output frequency can be greater and asynchronous from the clock that updates this register bit, the bit value may not be valid for higher speed modulator or carrier signals.									

REGISTER 25-1: MDCON: MODULATION CONTROL REGISTER

2: MDBIT must be selected as the modulation source in the MDSRC register for this operation.

U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
	—	—	—		MDMS	S<3:0>	
bit 7	•	·					bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set	Ū.	'0' = Bit is clea	ared				
bit 7-4	Unimple	mented: Read as '	∩ '				
bit 3-0		3:0> Modulation Sou		n hita			
DIL 3-0				IT DILS			
		CLC4 output					
		CLC3 output					
		CLC2 output					
		CLC1 output					
		NCO1 output					
		EUSART1 TX outp					
		MSSP2 SDO2 outp					
		MSSP1 SDO1 outp					
		C2 (Comparator 2)					
	0110 =	C1 (Comparator 1)	output				
	0101 =	PWM6 output					
		PWM5 output					
	0011 =	CCP2 output (PWN	1 Output mod	de only)			
	0010 =	CCP1 output (PWN	1 Output mod	de only)			
	0001 =	MDMINPPS					
	0000 =	MDBIT bit of MDCC	ON register is	s modulation sou	urce		

REGISTER 25-2: MDSRC: MODULATION SOURCE CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TRISA	_		TRISA5	TRISA4	TRISA4 — ⁽²⁾ TRISA2 TRISA1 TRISA0				
ANSELA		_	ANSA5	ANSA4	ANSA4 — ANSA2 ANSA1 ANSA0				
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	—	_	—	149
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	_	—		—	150
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4 TRISC3 TRISC2 TRISC1 TRISC0					
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
TMR0L	TMR0L<7:0>								279
TMR0H			TN	/IR0H<7:0>	or TMR0<15:8>				279
T0CON0	T0EN	—	T0OUT	T016BIT	Т	00UTPS<	:3:0>		280
T0CON1	7	F0CS<2:0>		TOASYNC		T0CKPS<	3:0>		281
T0CKIPPS	_	_	_		TOCKIF	PS<4:0>			162
TMR0PPS					TMR0F	PS<4:0>			162
ADACT	_	_	_	ADACT<4:0>					
CLCxSELy	_	_		LCxDyS<5:0>					
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS	S<1:0>	293
INTCON	GIE	PEIE		_	_	_	_	INTEDG	100
PIR0			TMR0IF	IOCIF	—	_		INTF	106
PIE0	_	_	TMR0IE	IOCIE	_	—	—	INTE	101

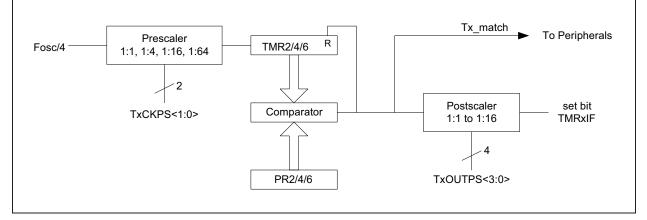
TABLE 26-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

Note 1: PIC16(L)F18346 only.

2: Unimplemented, read as '1'.

28.0 TIMER 2/4/6 MODULE


Timer2/4/6 modules are 8-bit timers that incorporate the following features:

- 8-bit Timer and Period registers (TMR2/4/6 and PR2/4/6, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2/4/6 match with PR2/4/6
- Optional use as the shift clock for the MSSPx module

See Figure 28-1 for a block diagram of Timer2/4/6.

- Note 1: In devices with more than one Timer module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the T2CON and T4CON control the same operational aspects of two completely different Timer modules.
 - 2: Throughout this section, generic references to Timer2 module in any of its operating modes may be interpreted as being equally applicable to Timerx module. Register names, module signals, I/O pins and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

30.4.9 ACKNOWLEDGE SEQUENCE

The ninth SCL pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDA line low indicates to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an \overline{ACK} is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, the clock is stretched, allowing the slave time to change the \overrightarrow{ACK} value before it is sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

There are certain conditions where an \overline{ACK} will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPOV bit of the SSPxCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCL on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

30.5 I²C SLAVE MODE OPERATION

The MSSP Slave mode operates in one of four modes selected by the SSPM bits of SSPxCON1 register. The modes can be divided into 7-bit and 10-bit Addressing mode. 10-bit Addressing modes operate the same as 7-bit with some additional overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operate the same as the other modes with SSPxIF additionally getting set upon detection of a Start, Restart, or Stop condition.

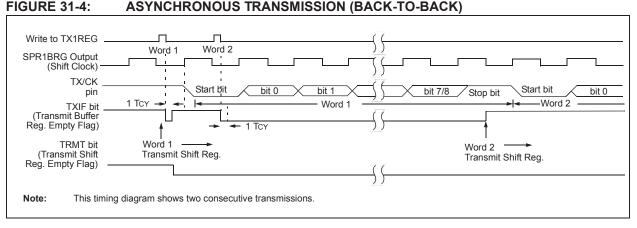
30.5.1 SLAVE MODE ADDRESSES

The SSPxADD register (Register 30-6) contains the Slave mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPxBUF register and an interrupt is generated. If the value does not match, the module goes idle and no indication is given to the software that anything happened.

The SSP Mask register (Register 30-5) affects the address matching process. See **Section 30.5.9** "SSP **Mask Register**" for more information.

30.5.1.1 I²C Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.


30.5.1.2 I²C Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is compared to the binary value of '1 1 1 1 0 A9 A8 0'. A9 and A8 are the two MSb's of the 10-bit address and stored in bits 2 and 1 of the SSPxADD register.

After the acknowledge of the high byte the UA bit is set and SCL is held low until the user updates SSPxADD with the low address. The low address byte is clocked in and all eight bits are compared to the low address value in SSPxADD. Even if there is not an address match; SSPIF and UA are set, and SCL is held low until SSPxADD is updated to receive a high byte again. When SSPxADD is updated the UA bit is cleared. This ensures the module is ready to receive the high address byte on the next communication.

A high and low address match as a write request is required at the start of all 10-bit addressing communication. A transmission can be initiated by issuing a Restart once the slave is addressed, and clocking in the high address with the R/W bit set. The slave hardware will then acknowledge the read request and prepare to clock out data. This is only valid for a slave after it has received a complete high and low address byte match.

PIC16(L)F18326/18346

31.1.2 EUSART1 ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 31-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART1 receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RC1REG register.

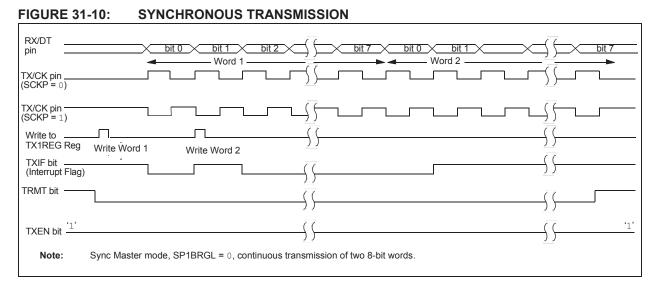
31.1.2.1 Enabling the Receiver

The EUSART1 receiver is enabled for asynchronous operation by configuring the following three control bits:

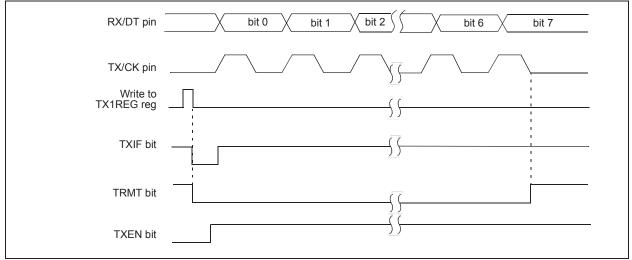
- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART1 control bits are assumed to be in their default state.

Setting the CREN bit of the RC1STA register enables the receiver circuitry of the EUSART1. Clearing the SYNC bit of the TX1STA register configures the EUSART1 for asynchronous operation. Setting the SPEN bit of the RC1STA register enables the EUSART1. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.


Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

31.1.2.2 Receiving Data


The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 31.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART1 receive FIFO and the RCIF interrupt flag bit of the PIR1 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RC1REG register.

Note: If the receive FIFO is overrun, no additional characters will be received until the Overrun condition is cleared. See Section 31.1.2.5 "Receive Overrun Error" for more information on overrun errors.

31.4.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART1 is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RC1STA register) or the Continuous Receive Enable bit (CREN of the RC1STA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence. To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RC1REG. The RCIF bit remains set as long as there are unread characters in the receive FIFO.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

PIC16(L)F18326/18346

FIGURE 34-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations
OPCODE d f (FILE #)
d = 0 for destination W d = 1 for destination f f = 7-bit file register address
Bit-oriented file register operations
OPCODE b (BIT #) f (FILE #)
b = 3-bit bit address f = 7-bit file register address
Literal and control operations
General
13 8 7 0
OPCODE k (literal)
k = 8-bit immediate value
CALL and GOTO instructions only
OPCODE k (literal)
k = 11-bit immediate value
13 7 6 0
OPCODE k (literal)
k = 7-bit immediate value
MOVLB instruction only 13 54 0
OPCODE k (literal)
k = 5-bit immediate value
BRA instruction only 13 9 8 0
OPCODE k (literal)
k = 9-bit immediate value
FSR Offset instructions 13 7 6 5 0
OPCODE n k (literal)
n = appropriate FSR k = 6-bit immediate value
FSR Increment instructions133210
OPCODE n m (mode)
n = appropriate FSR m = 2-bit mode value
OPCODE only 13 0
OPCODE

Standar	rd Operating	g Conditions (unless otherwise sta	ted)		
Param. No.	Sym.	Characteristic	Тур.	Units	Conditions
TH01	θJA	Thermal Resistance Junction to	70.0	°C/W	14-pin PDIP package
		Ambient	95.3	°C/W	14-pin SOIC package
			100.0	°C/W	14-pin TSSOP package
			51.5	°C/W	16-pin UQFN 4x4mm package
			62.2	°C/W	20-pin PDIP package
			87.3	°C/W	20-pin SSOP package
			77.7	°C/W	20-pin SOIC package
			43.0	°C/W	20-pin UQFN 4x4mm package
TH02	θJC	Thermal Resistance Junction to	32.75	°C/W	14-pin PDIR package
		Case	31.0	°C/W	14-pin SOIC package
			24.4	°C/W	14-pin-ISSOP package
			5.4	°C/W	16-ph UQFN 4x4mm package
			27.5	°C/W	20-pin PDIP package
			31.1	°CTW	20-pin SSOP package
			23.1	°C/W	20-pin SOIC package
			5,3	°C/W	20-pin UQFN 4x4mm package
TH03	TJMAX	Maximum Junction Temperature	_150	Q	
TH04	PD	Power Dissipation	0.800	/W/	PD = PINTERNAL + PI/O
TH05	PINTERNAL	Internal Power Dissipation		$\mathbb{V}^{\mathbb{V}}$	PINTERNAL = IDD x VDD ⁽¹⁾
TH06	Pi/o	I/O Power Dissipation		Ŵ	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$
TH07	Pder	Derated Power	\searrow	Ŵ	Pder = PDmax (Τj - Ta)/θja ⁽²⁾

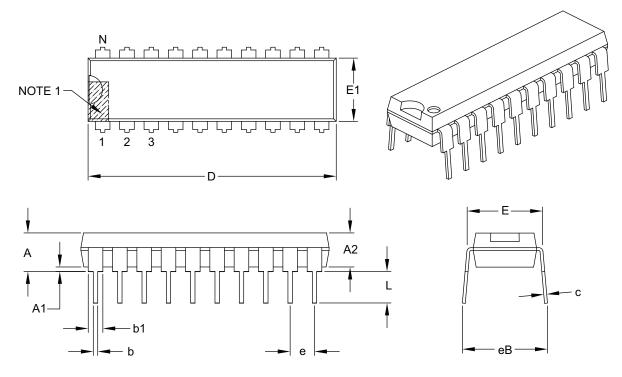

TABLE 35-6: THERMAL CHARACTERISTICS

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature, TJ = Junction Temperature

PIC16(L)F18326/18346

FIGURE 35-12: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS


TABLE 35-17: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Standa	rd Operating	g Conditions (un	less otherwis	se stated) 🖉 🦯		\sim			
Param. No.	Sym.	Characteristic			Min.	Typ.†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High Pulse	Width No Prescaler		0.5 TCY + 20	—	—	ns	
				With Rrescaler	10	—	—	ns	
41*	TT0L	T0CKI Low Pulse	Width	No Rrescaler	0.5 TCY + 20	—	—	ns	
			\sim	With Prescaler	10	—	—	ns	
42*	Тт0Р	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value
45*	T⊤1H	T1CKI High Time	Synchronou	s, No Prescaler	0.5 Tcy + 20	—	—	ns	
			Synchronou	s, with Prescaler	15	—	—	ns	
			Asynchrono	us	30	—	—	ns	
46*	TT1L	T1CKI Low Time	Synchronou	s, No Prescaler	0.5 Tcy + 20	—	—	ns	
			Synchronou	s, with Prescaler	15	—	—	ns	
			Asynchrono	us	30	_		ns	
47*	Тт1Р	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value
					60	—	—	ns	
48	FT1		itor Input Frequency Range I by setting bit T10SCEN)		32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from External Clock Edge to Timer Increment			2 Tosc	—	7 Tosc	—	Timers in Sync mode
/ (*	These paran	eters are character	rized but not t	ested.	1	1	1	1	ı

Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

20-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

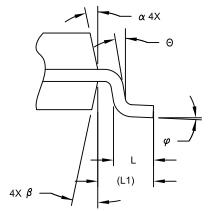
	Units			INCHES			
Dimension	n Limits	MIN	NOM	MAX			
Number of Pins	Ν	20					
Pitch	е		.100 BSC				
Top to Seating Plane	Α	-	-	.210			
Molded Package Thickness	A2	.115	.130	.195			
Base to Seating Plane	A1	.015	-	_			
Shoulder to Shoulder Width	E	.300	.310	.325			
Molded Package Width	E1	.240	.250	.280			
Overall Length	D	.980	1.030	1.060			
Tip to Seating Plane	L	.115	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.045	.060	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	_	_	.430			

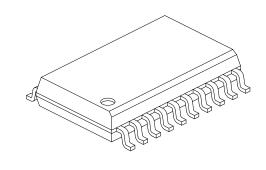
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-019B

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	MILLIMETERS					
Dimension Lim	nits	MIN	NOM	MAX		
Number of Pins	N		20			
Pitch	е		1.27 BSC			
Overall Height	A	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E		10.30 BSC			
Molded Package Width	E1	7.50 BSC				
Overall Length D			12.80 BSC			
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.20	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2