

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 014110	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18346-i-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-4:	SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)
------------	--

Address	Name	PIC16(L)F18326 PIC16(L)F18346	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 7												
					CPU CORE RE	EGISTERS; see 1	Table 4-2 for spe	cifics				
38Ch	INLVLA		—	—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	11 1111	11 111
38Dh	INLVLB	X —				Unimple	mented				-	—
		— X	INLVLB7	INLVLB6	INLVLB5	INLVLB4	—	—	_	—	1111	1111
38Eh	INLVLC	X —	—	—	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	11 1111	11 111
		— X	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 111
38Fh	—	—				Unimple	mented				-	—
390h	—	-				Unimple	mented				-	_
391h	IOCAP		—	_	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 000
392h	IOCAN		—	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 000
393h	IOCAF		_	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 000
394h	IOCBP	X —		•		Unimple	mented			•	_	_
		— X	IOCBP7	IOCBP6	IOCBP5	IOCBP4	—	—	—	_	0000	0000
395h	IOCBN	X —		•		Unimple	mented			•	_	_
		— X	IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	—	—	_	0000	0000
396h	IOCBF	X —		-		Unimple	mented			· · · · · · · · · · · · · · · · · · ·	-	—
		— X	IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	_			0000	0000
397h	IOCCP	× —	—	_	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	00 0000	00 000
		— X	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	0000 0000	0000 000
398h	IOCCN	X —	—	—	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	00 0000	00 000

IOCCN3

IOCCF3

IOCCF3

IOCCN2

IOCCF2

IOCCF2

IOCCN1

IOCCF1

IOCCF1

IOCCN0

IOCCF0

IOCCF0

0000 0000

--00 0000

0000 0000 0000 0000

0000 0000

--00 0000

399h

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

IOCCN4

IOCCF4

IOCCF4

IOCCN5

IOCCF5

IOCCF5

Note 1: Only on PIC16F18326/18346.

IOCCF

2: Register accessible from both User and ICD Debugger.

Х

Х

X —

IOCCN7

_

IOCCF7

IOCCN6

_

IOCCF6

7.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the RSTOSC<2:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the NOSC<2:0> bits in the OSCCON1 register to switch the system clock source to the internal oscillator during run-time. See Section 7.3 "Clock Switching" for more information.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators that can produce two internal system clock sources.

- 1. The HFINTOSC (High-Frequency Internal Oscillator) is factory-calibrated and operates up to 32 MHz.
- The LFINTOSC (Low-Frequency Internal Oscillator) is factory-calibrated and operates at 31 kHz.

7.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a precision digitally-controlled internal clock source that produces a stable clock up to 32 MHz. The HFINTOSC can be enabled through one of the following methods:

- Programming the RSTOSC<2:0> bits in Configuration Word 1 to '110' (1 MHz) or '000' (32 MHz) to set the oscillator upon device Power-up or Reset
- Write to the NOSC<2:0> bits of the OSCCON1 register during run-time

The HFINTOSC frequency can be selected by setting the HFFRQ<3:0> bits of the OSCFRQ register.

The NDIV<3:0> bits of the OSCCON1 register allow for division of the output of the selected clock source by a range between 1:1 and 1:512.

7.2.2.2 2x PLL

The oscillator module contains a PLL that can be used with the HFINTOSC clock source to provide a system clock source. The input frequency to the PLL is limited to 8, 12, or 16 MHz, which will yield a system clock source of 16, 24, or 32 MHz, respectively.

The PLL may be enabled for use by one of two methods:

- Program the RSTOSC bits in the Configuration Word 1 to '000' to enable the HFINTOSC (32 MHz). This setting configures the HFFRQ<3:0> bits to '110' (16 MHz) and activates the 2x PLL.
- Write '000' to the NOSC<2:0> bits in the OSCCON1 register to enable the 2x PLL, and write the correct value into the HFFRQ<3:0> bits of the OSCFRQ register to select the desired system clock frequency. See Register 6-6 for more information.

FIGURE 9-2	2: WAP	KE-UP FROM	I SLEEP	THRC	UGH INTER	RUPT		
CLKIN ⁽¹ CLKOUT ⁽²		Q1 Q2 Q3 Q4		Tost(3)		Q1 Q2 Q3 Q4 /~_/~_/~_/ //	Q1 Q2 Q3 Q4 	Q1 Q2 Q3 Q4 ~
Interrupt flag			/	ı I	Interrupt Laten	CV ⁽⁴⁾		
GIE bit (INTCON reg.).	I I I I	Processor in		· · · · · · · · · · · · · · · · · · ·	·	·	
nstruction Flow PC	/ XPC	X PC + 1	ХРС	+ 2	X PC + 2	PC + 2	X 0004h	X 0005h
Instruction { Fetched	Inst(PC) = Sleep	Inst(PC + 1)	I I		Inst(PC + 2)	i i	Inst(0004h)	Inst(0005h)
Instruction { Executed {	Inst(PC - 1)	Sleep	1 1 1		Inst(PC + 1)	Forced NOP	Forced NOP	Inst(0004h)
 External clock. High, Medium, Low mode assumed. CLKOUT is shown here for timing reference. Tost = 1024 Tosc. This delay does not apply to EC and INTOSC Oscillator modes. GIE = 1 assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line. 								

11.4.7 NVMREG EEPROM, USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS

Instead of accessing Program Flash Memory, the EEPROM, the User ID's, Device ID/Revision ID and Configuration Words can be accessed when NVMREGS = 1 in the NVMCON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 11-3.

When read access is initiated on an address outside the parameters listed in Table 11-3, the NVMDATH: NVMDATL register pair is cleared, reading back '0's.

TABLE 11-3:EEPROM, USER ID, DEV/REV ID AND CONFIGURATION WORD ACCESS
(NVMREGS = 1)

Address	Function	Read Access	Write Access
8000h-8003h	User IDs	Yes	Yes
8005h-8006h	Device ID/Revision ID	Yes	No
8007h-800Ah	Configuration Words 1-4	Yes	No
F000h-F0FFh	EEPROM	Yes	Yes

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	
WPUB7	WPUB6	WPUB5	WPUB4		—	—	—	
bit 7		•			•		bit 0	
Legend:								
R = Readable	bit	W = Writable	N = Writable bit		U = Unimplemented bit, read as '0'			
u = Bit is unchanged x = Bit is		x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is cleared						

REGISTER 12-13: WPUB: WEAK PULL-UP PORTB REGISTER

bit 7-4	WPUB<7:4>: Weak Pull-up Register bits
	1 = Weak Pull-up enabled
	0 = Weak Pull-up disabled
bit 3-0	Unimplemented: Read as '0'

REGISTER 12-14: ODCONB: PORTB OPEN-DRAIN CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
ODCB7	ODCB6	ODCB5	ODCB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 **ODCB<7:4>:** PORTB Open-Drain Configuration bits For RB<7:4> pins, respectively: 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)

bit 3-0 Unimplemented: Read as '0'

U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	U-0
_	DACMD	ADCMD		_	CMP2MD	CMP1MD	
bit 7	· · · · · · · · · · · · · · · · · · ·	·		•		•	bit 0
Legend:							
R = Readal	ble bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
u = Bit is ur	nchanged	x = Bit is unkn	own	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets
'1' = Bit is s	et	'0' = Bit is clea	ared	q = Value dep	ends on condit	ion	
bit 7	Unimpleme	nted: Read as 'o)'				
bit 6	DACMD: Dis	able DAC bit					
		odule disabled					
		odule enabled					
bit 5		able ADC bit					
		odule enabled					
bit 4-3	Unimpleme	nted: Read as '0)'				
bit 2	-	isable Compara					
	1 = C2 module disabled						
	0 = C2 mod	ule enabled					
bit 1							
1 = C1 module disabled 0 = C1 module enabled							
bit 0		nted: Read as '0	,				
	ommpleme	nieu. Redu ds (1				

REGISTER 14-3: PMD2: PMD CONTROL REGISTER 2

REGISTER ZU	J-4. CVVGX		DATAINFUI	SELECTION	N REGISTER		
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—		DAT	<3:0>	
bit 7							bit 0
Legend:							

REGISTER 20-4: CWGxDAT: CWGx DATA INPUT SELECTION REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-4 Unimplemented: Read as '0'

bit 3-0 DAT<3:0>: CWG Data Input Selection bits

DAT	Data Source
0000	CWGxPPS
0001	C1OUT
0010	C2OUT
0011	CCP1
0100	CCP2
0101	CCP3
0110	CCP4
0111	PWM5
1000	PWM6
1001	NCO1
1010	CLC1
1011	CLC2
1100	CLC3
1101	CLC4
1110	Reserved
1111	Reserved

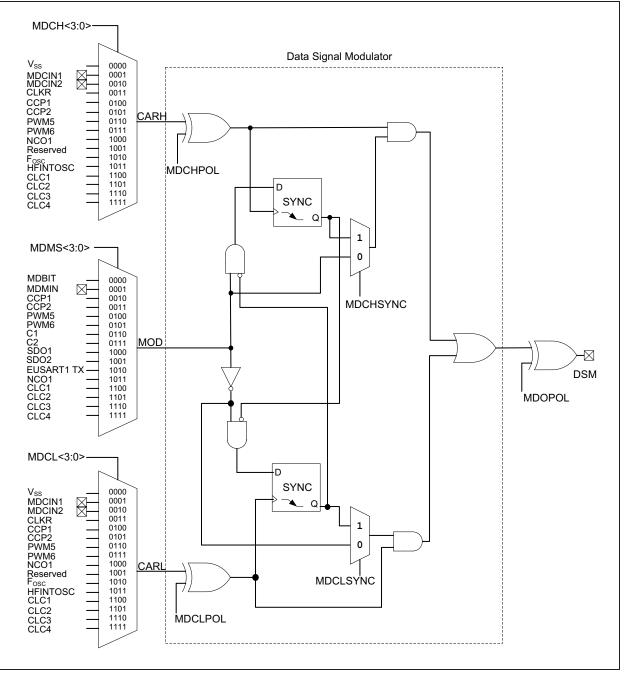
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TRISA	—	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	143
ANSELA	—	_	ANSA5	ANSA4		ANSA2	ANSA1	ANSA0	144
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_	_	149
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	_	_	_	_	150
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	155
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
PIR4	CWG2IF	CWG1IF	TMR5GIF	TMR5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	110
PIE4	CWG2IE	CWG1IE	TMR5GIE	TMR5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	105
CWG1CON0	EN	LD	—	_		Ν	10DE<2:0	>	213
CWG1CON1	—	_	IN	_	POLD	POLC	POLB	POLA	214
CWG1CLKCON	—	_	—	_		_	_	CS	214
CWG1DAT	—	_	—	_		DAT	<3:0>		215
CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	216
CWG1AS0	SHUTDOWN	REN	LSBD<	<1:0>	LSAC	<1:0>	—	—	217
CWG1AS1	—	—	_	AS4E	AS3E	AS2E	AS1E	AS0E	218
CWG1DBR	—	—			DBR•	<5:0>			218
CWG1DBF	—	—			DBF<	<5:0>			219
CWG1PPS	—	_	—		CV	VG1PPS<4	k:0>		162
CWG2CON0	EN	LD	—	_	—	Ν	10DE<2:0	>	213
CWG2CON1	—	—	IN	—	POLD	POLC	POLB	POLA	214
CWG2CLKCON	—	—	—	—	—	—	—	CS	214
CWG2DAT	—	—	—	_		DAT	<3:0>		215
CWG2STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	216
CWG2AS0	SHUTDOWN	REN	LSBD<	<1:0>	LSAC	<1:0>	_	_	217
CWG2AS1	—	—	—	AS4E	AS3E	AS2E	AS1E	AS0E	218
CWG2DBR	—	—		DBR<5:0>					218
CWG2DBF					DBF<	<5:0>			219
CWG2PPS	—	_	—		CV	VG2PPS<4	-0:		162

TABLE 20-2: SUMMARY OF REGISTERS ASSOCIATED WITH CWGx

Note 1: PIC16(L)F18346 only.

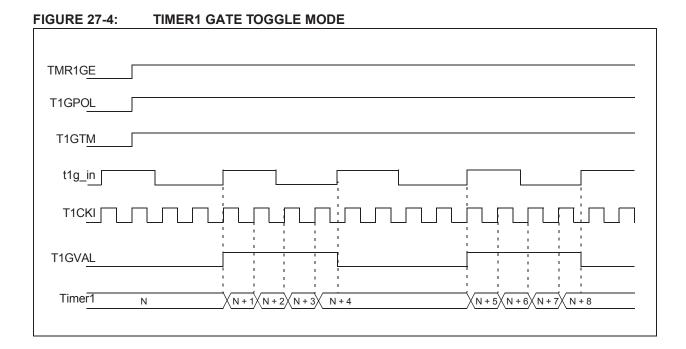
2: Unimplemented, read as '0'.

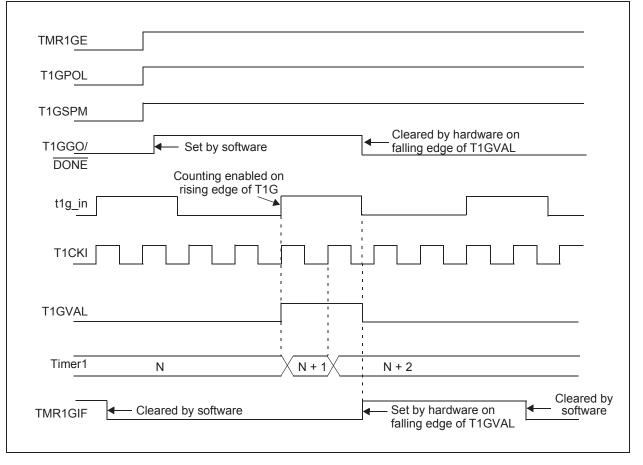
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE		—	—	—		INTEDG	100
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	102
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	107
TRISA	—	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	143
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	—	_	_	149
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	155
ANSELA	—	—	ANSA5	ANSA4		ANSA2	ANSA1	ANSA0	144
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4		_	_		150
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
ADCON0			CHS<	5:0>			GO/DONE	ADON	244
ADCON1	ADFM	A	ADCS<2:0>	•		ADNREF	ADPRE	F<1:0>	245
ADACT	—	—				ADACT<4:)>		246
ADRESH	ADRESH<7:0>						247		
ADRESL	ADRESL<7:0>							247	
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	SRNG CDAFVR<1:0> ADFVR<1:0>				180
DAC1CON1	—	—				DAC1R<4:	0>		264
OSCSTAT1	EXTOR	HFOR		LFOR	SOR	ADOR	_	PLLR	91


TABLE 22-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: -= unimplemented read as '0'. Shaded cells are not used for the ADC module.

Note 1: PIC16(L)F18346 only.


2: Unimplemented, read as '1'.



R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	T0CS<2:0>		TOASYNC		TOCKF	PS<3:0>	
bit 7							bit
Legend:							
R = Readable		W = Writable		•	mented bit, read		
u = Bit is unch	anged	x = Bit is unkr		-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-5	111 = CLC1 110 = SOSC 101 = Reserv 100 = LFINT 011 = HFINT 010 = Fosc/4	ved OSC ⁻ OSC 4 PPS (Inverted)	ource Select b	iits			
bit 4	1 = The inpu	MR0 Input Asy ut to the TMR0 o ut to the TMR0 o	counter is not	synchronized f		S	
bit 3-0	TOCKPS<3:0 1111 = 1:327 1110 = 1:163 1101 = 1:819 1100 = 1:409 1011 = 1:202 1010 = 1:102 1001 = 1:512 1000 = 1:256 0111 = 1:128 0100 = 1:4 0011 = 1:2 0000 = 1:1	384 92 96 48 24 2 5	ate Select bit				

REGISTER 26-4: T0CON1: TIMER0 CONTROL REGISTER 1

FIGURE 27-5: TIMER1 GATE SINGLE-PULSE MODE

28.5 Register Definitions: Timer2/4/6 Control

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
_			PS<3:0>		TMRxON		S<1:0>			
oit 7							bit			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'				
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all	other Resets			
1' = Bit is s	et	'0' = Bit is clea	ared							
oit 7	Unimpleme	ented: Read as '	0'							
oit 6-3	TxOUTPS<	3:0>: Timerx Ou	tput Postscale	er Select bits						
	1111 = 1:16	6 Postscaler								
	1110 = 1:1 5	1110 = 1:15 Postscaler								
		1101 = 1:14 Postscaler								
	1100 = 1:13 Postscaler									
		1 = 1:12 Postscaler								
		l Postscaler								
	1001 = 1:10 1000 = 1:9) Postscaler								
	0111 = 1:8									
	0110 = 1:7									
	0101 = 1:6									
	0100 = 1:5	Postscaler								
	0011 = 1:4 Postscaler									
	0010 = 1:3	0010 = 1:3 Postscaler								
	0001 = 1:2 Postscaler									
	0000 = 1:1	Postscaler								
oit 2	TMRxON: 7	Timer2 On bit								
	1 = Timerx 0 = Timerx									
oit 1-0	TxCKPS<1	:0>: Timerx Cloc	k Prescale Se	elect bits						
	11 = Presca	aler is 64								
	10 = Presca	aler is 16								
	01 = Presca									
	00 = Presca	aler is 1								

REGISTER 28-1: TxCON⁽¹⁾: TIMERX CONTROL REGISTER

Note 1: 'x' refers to either '2,' 4' or '6' for the respective Timer2/4/6 registers.

29.5 Register Definitions: CCP Control

R/W-0/0	0-U	R-x/x	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
CCPxEI	м —	CCPxOUT	CCPxFMT		CCPxMC	DDE<3:0>	
bit 7							bit
Legend:							
R = Reada		W = Writable		•	mented bit, rea		
u = Bit is u	inchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Reset
'1' = Bit is	set	'0' = Bit is cle	ared				
bit 7	CCPxEN: (1 = CCP is 0 = CCP is		ble bit				
bit 6	Unimplem	ented: Read as '	0'				
bit 5	CCPxOUT:	CCPx Output Da	ata (read-only)	bit			
bit 4	<u>CCPxMOD</u> Unuse <u>CCPxMOD</u> Unuse <u>CCPxMOD</u> 1 = Left-alig	E = Compare mo	le	t bit			
bit 3-0	CCPxMOD 1111 = PW 1110 = Re: 1101 = Re: 1100 = Re:	served served	lode Select bit	s ⁽¹⁾			
	1010 = Co 1001 = Co	mpare mode: out mpare mode: out mpare mode: clea mpare mode: set	put will pulse (ar output on co)-1-0 ompare match	MR1/3/5		
	0110 = Ca 0101 = Ca	pture mode: ever pture mode: ever pture mode: ever pture mode: ever	y 4th rising ed y rising edge o	ge of CCPx inp of CCPx input			
	0010 = Co 0001 = Co	pture mode: ever mpare mode: tog mpare mode: tog pture/Compare/P	gle output on i gle output on i	natch natch; clear TN			
Note 1:	All modes will se trigger source.	et the CCPxIF bit	and will trigge	er an ADC conv	ersion if CCPx	is selected as	the ADC

REGISTER 29-1: CCPxCON: CCPx CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-x/x
SPEN ⁽¹⁾	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7	·		·			·	bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
u = Bit is uncl	nanged	x = Bit is unk	nown	•	at POR and BC		ther Resets
'1' = Bit is set		'0' = Bit is cle	eared				
bit 7	SPEN: Seria	Il Port Enable b	it(1)				
	1 = Serial p 0 = Serial p	ort enabled ort disabled (he	eld in Reset)				
bit 6	RX9: 9-bit R	eceive Enable	bit				
		9-bit reception 8-bit reception					
bit 5	SREN: Sing	le Receive Ena	ble bit				
	Asynchrono	<u>us mode</u> :					
		iis mode – valu <u>s mode – Mast</u> e	•				
		single receive					
		s single receive					
		eared after rece s mode – Slave		ele.			
	-	iis mode – valu					
bit 4		inuous Receive	•				
	Asynchrono	<u>us mode</u> :					
		s continuous ree s continuous re s mode:		ole bit CREN i	s cleared		
	1 = Enables			ole bit CREN i	s cleared (CREI	N overrides SR	EN)
bit 3	ADDEN: Ad	dress Detect E	nable bit				
	Asynchrono	us mode 9-bit (RX9 = 1 <u>)</u> :				
	the rece	ive buffer is se	t	-	bad of the receiv		
	Asynchrono	us mode 8-bit (RX9 = 0):	are received a	and ninth bit can	i be used as pa	rity dit
		is mode – valu	e ignored				
bit 2	FERR: Fram	-	undeted by rea		Creatister and re	anivo novt volic	huto)
	1 = Framing 0 = No fram			IUNING RUTREC	G register and re		i byte)
bit 1	OERR: Over	rrun Error bit					
	1 = Overrur 0 = No over	error (can be or run error	cleared by clea	ring bit CREN	1)		
bit 0	RX9D: Ninth	bit of Receive	d Data				
	This can be	address/data b	it or a parity bit	and must be	calculated by us	ser firmware.	
	e EUSART1 m sociated TRIS				i-state to drive a	as needed. Con	figure the

.

FIGURE 34-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations
OPCODE d f (FILE #)
d = 0 for destination W d = 1 for destination f f = 7-bit file register address
Bit-oriented file register operations
OPCODE b (BIT #) f (FILE #)
b = 3-bit bit address f = 7-bit file register address
Literal and control operations
General
13 8 7 0
OPCODE k (literal)
k = 8-bit immediate value
CALL and GOTO instructions only
OPCODE k (literal)
k = 11-bit immediate value
13 7 6 0
OPCODE k (literal)
k = 7-bit immediate value
MOVLB instruction only 13 54 0
OPCODE k (literal)
k = 5-bit immediate value
BRA instruction only 13 9 8 0
OPCODE k (literal)
k = 9-bit immediate value
FSR Offset instructions 13 7 6 5 0
OPCODE n k (literal)
n = appropriate FSR k = 6-bit immediate value
FSR Increment instructions133210
OPCODE n m (mode)
n = appropriate FSR m = 2-bit mode value
OPCODE only 13 0
OPCODE

BCF	Bit Clear f
Syntax:	[<i>label</i>]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch	BTFSS
Syntax:	[<i>label</i>]BRA label	Syntax:
	[<i>label</i>]BRA \$+k	Operands
Operands:	-256 \leq label - PC + 1 \leq 255	
	$-256 \le k \le 255$	Operation
Operation:	$(PC) + 1 + k \rightarrow PC$	Status Aff
Status Affected:	None	Descriptio
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range.	

Syntax:	[label] BRW
Operands:	None
Operation:	$(PC) + (W) \to PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruction.

BSF	Bit Set f
Syntax:	[<i>label</i>]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

c	[<i>label</i>]BTFSS f,b
nds:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
tion:	skip if (f) = 1
Affected:	None
ption:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

Bit Test f, Skip if Set

CALL	Call Subroutine				
Syntax:					
Operands:	$0 \leq k \leq 2047$				
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<6:3>) → PC<14:11>				
Status Affected:	None				
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.				

CLRWDT	Clear Watchdog Timer			
Syntax:	[label] CLRWDT			
Operands:	None			
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT} \\ \text{0} \rightarrow \text{WDT prescaler,} \\ \text{1} \rightarrow \overline{\text{TO}} \\ \text{1} \rightarrow \overline{\text{PD}} \end{array}$			
Status Affected:	TO, PD			
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits \overline{TO} and PD are set.			

CALLW	Subroutine Call With W [/abe/] CALLW				
Syntax:					
Operands:	None				
Operation:	(PC) +1 \rightarrow TOS, (W) \rightarrow PC<7:0>, (PCLATH<6:0>) \rightarrow PC<14:8>				
Status Affected:	None				
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.				

COMF	Complement f					
Syntax:	[<i>label</i>] COMF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	$(\overline{f}) \rightarrow (destination)$					
Status Affected:	Z					
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.					

CLRF	Clear f					
Syntax:	[<i>label</i>] CLRF f					
Operands:	$0 \leq f \leq 127$					
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$					
Status Affected:	Z					
Description:	The contents of register 'f' are cleared and the Z bit is set.					

DECF	Decrement f [/abe/] DECF f,d				
Syntax:					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) - 1 \rightarrow (destination)				
Status Affected:	Z				
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

CLRW	Clear W			
Syntax:	[label] CLRW			
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$			
Status Affected:	Z			
Description:	W register is cleared. Zero bit (Z) is set.			

	d Operat 0V, TA = 2	i <mark>ng Conditions (unless othe</mark> 25°C	erwise st	ated)			\bigwedge
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions
AD01	NR	Resolution	—	—	10	bit	\frown
AD02	EIL	Integral Error	—	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF- = 0V
AD03	Edl	Differential Error	—	±0.1	±1.0	LSb	ADCREFT = 3.0V, ADCREF-= 0V
AD04	EOFF	Offset Error	—	0.5	2	LSb	ADCREFt = 3:0V, ADCREF- = 0V
AD05	Egn	Gain Error	—	±0.2	±1.0	LSb~	ADCREF+ = 3.0V, ADCREF- = 0V
AD06	VADREF	ADC Reference Voltage (ADREF+) ⁽³⁾	1.8	_	Vdd	Ń	
AD07	VAIN	Full-Scale Range	Vss		ADREF+	V	
AD06	VADREF	ADC Reference Voltage (ADREF+ - ADREF-) ⁽³⁾	1.8	_	VDD	V	
AD07	VAIN	Full-Scale Range	ADREF-	<	ADREF+	Ý	
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_	10	F	kΩ	<i>v</i>
AD09	RVREF	ADC Voltage Reference Ladder Impedance			$\overline{\left\langle \cdot \right\rangle}$	×kΩ	

TABLE 35-12: ANALOG-TO-DIGITAL CONVERTER (ADC) CHARACTERISTICS^(1,2)

† Data in "Typ." column is at 3.0V, 25° (unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.

2: The ADC conversion result never decreases with an increase in the input and has no missing codes.

37.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

37.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradeable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

37.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

37.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

37.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.