

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18346-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/O ⁽²⁾	20-Pin PDIP/SOIC/SSOP	20-Pin UQFN	ADC	Reference	Comparator	NCO	DAC	WSQ	Timers	сср	MWG	CWG	MSSP	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RA0	19	16	ANA0	_	C1IN0+	—	DAC1OUT	-	-	—	—	-	—	_	—	_	IOC	Y	ICDDAT ICSPDAT
RA1	18	15	ANA1	VREF+	C1IN0- C2IN0-	—	DAC1REF+			—	—	_	SS2	—		l	IOC	Y	ICDCLK ICSPCLK
RA2	17	14	ANA2	VREF-	_	_	DAC1REF-	_	T0CKI ⁽¹⁾	CCP3 ⁽¹⁾	_	CWG1IN ⁽¹⁾ CWG2IN ⁽¹⁾	-	_	CLCIN0 ⁽¹⁾	_	IOC INT ⁽¹⁾	Y	_
RA3	4	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	IOC	Y	MCLR VPP
RA4	3	20	ANA4	_	_	_	_	_	T1G ⁽¹⁾ T3G ⁽¹⁾ T5G ⁽¹⁾ SOSCO	CCP4 ⁽¹⁾	_	_	_	_	_	_	IOC	Y	CLKOUT OSC2
RA5	2	19	ANA5		_		_	_	T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T5CKI ⁽¹⁾ SOSCIN SOSCI	_	_	_	Ι	_	Ι	_	IOC	Y	CLKIN OSC1
RB4	13	10	ANB4	_	_	_	—	_	_	_	_	_	SDI1 ⁽¹⁾ SDA1 ^(1,3,4)	_	CLCIN2 ⁽¹⁾	_	IOC	Y	_
RB5	12	9	ANB5	_	_	_	_	_	_	—	_	_	SDI2 ⁽¹⁾ SDA2 ^(1,3,4)	RX ⁽¹⁾	CLCIN3 ⁽¹⁾	_	IOC	Υ	_
RB6	11	8	ANB6	_	_	_	_	_	_	—	_	_	SCK1 ⁽¹⁾ SCL1 ^(1,3,4)	_	_	_	IOC	Y	_
RB7	10	7	ANB7	_	_	_	_	_	_	_	_	_	SCK2 ⁽¹⁾ SCL2 ^(1,3,4)	_	_	_	IOC	Y	_
RC0	16	13	ANC0	_	C2IN0+	_	_	_	_	—	_	_	_	_	_	—	IOC	Y	_
RC1	15	12	ANC1		C1IN1- C2IN1-	_	_	_	_	—	_	_	_	_	_		IOC	Y	_
RC2	14	11	ANC2	_	C1IN2- C2IN2-	_	_	MDCIN1 ⁽¹⁾	_	—	_	_	—	_	_	_	IOC	Y	_

TABLE 3: 20-PIN ALLOCATION TABLE (PIC16(L)F18346)

All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. 2:

These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections. 3:

These pins are configured for I²C logic levels; clock and data signals may be assigned to any of these pins. Assignments to other pins (e.g., RA5) will operate, but logic levels will be standard 4: TTL/ST as selected by the INLVL register.

TABLE 1-2: PIC16(L)F18326 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0+/DAC1OUT/	RA0	TTL/ST	CMOS	General purpose I/O.
SS2 ⁽¹⁾ / ICDDAT/ICSPDAT	ANA0	AN	_	ADC Channel A0 input.
	C1IN0+	AN	_	Comparator C1 positive input.
	DAC1OUT	_	AN	Digital-to-Analog Converter output.
	SS2	TTL/ST	—	Slave Select 2 input.
	ICDDAT	TTL/ST	CMOS	In-Circuit Debug Data I/O.
	ICSPDAT	TTL/ST	CMOS	ICSP™ Data I/O.
RA1/ANA1/VREF+/C1IN0-/	RA1	TTL/ST	CMOS	General purpose I/O.
C2IN0-/DAC1REF+/ ICDCLK/	ANA1	AN	—	ADC Channel A1 input.
ICSPCLK	VREF+	AN	—	ADC positive voltage reference input.
	C1IN0-	AN	_	Comparator C1 negative input.
	C2IN0-	AN	_	Comparator C2 negative input.
	DAC1REF+	_	AN	Digital-to-Analog Converter positive reference input
	ICDCLK	TTL/ST	CMOS	In-Circuit Debug Clock I/O.
	ICSPCLK	TTL/ST	CMOS	ICSP Clock I/O.
RA2/ANA2/VREF-/ DAC1REF-/	RA2	TTL/ST	CMOS	General purpose I/O.
T0CKI ⁽¹⁾ / CCP3 ⁽¹⁾ /CWG1IN ⁽¹⁾ / CWG2IN ⁽¹⁾ /INT ⁽¹⁾	ANA2	AN	_	ADC Channel A2 input.
CWG2IN ⁽¹ /INI ⁽¹⁾	VREF-	AN	—	ADC negative voltage reference input.
	DAC1REF-	—	AN	Digital-to-Analog Converter negative reference inpu
	TOCKI	TTL/ST	_	TMR0 Clock input.
	CCP3	TTL/ST	CMOS	Capture/Compare/PWM 3 input.
	CWG1IN	TTL/ST	—	Complementary Waveform Generator 1 input.
	CWG2IN	TTL/ST	—	Complementary Waveform Generator 2 input.
	INT	TTL/ST	—	External interrupt input.
RA3/MCLR/Vpp	RA3	TTL/ST	CMOS	General purpose I/O.
	MCLR	TTL/ST	—	Master Clear with internal pull-up.
	Vpp	HV	_	Programming voltage.
RA4/ANA4/T1G ⁽¹⁾ / SOSCO/	RA4	TTL/ST	CMOS	General purpose I/O.
CLKOUT/OSC2	ANA4	AN	_	ADC Channel A4 input.
	T1G	ST	_	TMR1 gate input.
	SOSCO	_	XTAL	Secondary Oscillator connection.
	CLKOUT	—	CMOS	Fosc/4 output.
	OSC2	_	XTAL	Crystal/Resonator (LP, XT, HS modes).

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD
 = Open-Drain

 TTL = TTL compatible input
 ST
 = Schmitt Trigger input with CMOS levels
 I²C
 = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL
 = Crystal levels
 I
 I
 I

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 13-1.
 All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 13-2.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

TABLE 1-3: PIC16(L)F18346 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0+/DAC1OUT/	RA0	TTL/ST	CMOS	General purpose I/O.
ICDDAT/ICSPDAT	ANA0	AN	_	ADC Channel A0 input.
	C1IN0+	AN	_	Comparator C1 positive input.
	DAC10UT	—	AN	Digital-to-Analog Converter output.
	ICDDAT	TTL/ST	CMOS	In-Circuit Debug Data I/O.
	ICSPDAT	TTL/ST	CMOS	ICSP™ Data I/O.
RA1/ANA1/VREF+/C1IN0-/	RA1	TTL/ST	CMOS	General purpose I/O.
C2IN0-/ DAC1REF+/SS2 ⁽¹⁾)/ ICDCLK/ ICSPCLK	ANA1	AN	_	ADC Channel A1 input.
ICDCLK/ ICSPCLK	VREF+	AN	_	ADC positive voltage reference input.
	C1IN0-	AN	_	Comparator C1 negative input.
	C2IN0-	AN	_	Comparator C2 negative input.
	DAC1REF+	AN	_	Digital-to-Analog Converter positive reference input.
	SS2	TTL/ST	_	Slave Select 2 input.
	ICDCLK	TTL/ST	CMOS	In-Circuit Debug Clock I/O.
	ICSPCLK	TTL/ST	CMOS	ICSP Clock I/O.
RA2/ANA2/VREF-/ DAC1REF-/	RA2	TTL/ST	CMOS	General purpose I/O.
T0CKI ⁽¹⁾ / CCP3 ⁽¹⁾ /CWG1IN ⁽¹⁾ / CWG2IN ⁽¹⁾ /CLCIN0 ⁽¹⁾ / INT ⁽¹⁾	ANA2	AN	_	ADC Channel A2 input.
	VREF-	AN	_	ADC negative voltage reference input.
	DAC1REF-	AN	_	Digital-to-Analog Converter negative reference input.
	T0CKI	TTL/ST	_	TMR0 Clock input.
	CCP3	TTL/ST	CMOS	Capture/Compare/PWM 3 input.
	CWG1IN	TTL/ST	_	Complementary Waveform Generator 1 input.
	CWG2IN	TTL/ST	_	Complementary Waveform Generator 2 input.
	CLCIN0	TTL/ST	—	Configurable Logic Cell 0 input.
	INT	TTL/ST	—	External interrupt input.
RA3/MCLR/Vpp	RA3	TTL/ST	CMOS	General purpose I/O.
	MCLR	TTL/ST	—	Master Clear with internal pull-up.
	Vpp	HV	—	Programming voltage.
RA4/ANA4/T1G(1)/T3G ⁽¹⁾ /	RA4	TTL/ST	CMOS	General purpose I/O.
T5G ⁽¹⁾ /SOSCO/CCP4 ⁽¹⁾ / CLKOUT/OSC2	ANA4	AN	_	ADC Channel A4 input.
CEROUT/OSC2	T1G	TTL/ST	—	TMR1 gate input.
	T3G	TTL/ST	—	TMR3 gate input.
	T5G	TTL/ST	_	TMR5 gate input.
	SOSCO	—	XTAL	Secondary Oscillator connection.
	CCP4	TTL/ST	CMOS	Capture/Compare/PWM 4 input.
	CLKOUT	—	CMOS	Fosc/4 output.
	OSC2	_	XTAL	Crystal/Resonator (LP, XT, HS modes).

Legend:AN= Analog input or outputCMOS= CMOS compatible input or outputOD= Open-DrainTTL = TTL compatible inputST= Schmitt Trigger input with CMOS levelsI²C= Schmitt Trigger input with I²CHV= High VoltageXTAL= Crystal levelsI²C= Schmitt Trigger input with I²C

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 13-2.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 13-2.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

TABLE 4-4:	SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)
------------	--

Address	Name	PIC16(L)F18326 PIC16(L)F18346	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 7												
					CPU CORE RE	EGISTERS; see 1	Table 4-2 for spe	cifics				
38Ch	INLVLA		—	—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	11 1111	11 111
38Dh	INLVLB	X —				Unimple	mented				-	—
		— X	INLVLB7	INLVLB6	INLVLB5	INLVLB4	—	—	_	—	1111	1111
38Eh	INLVLC	X —	—	—	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	11 1111	11 111
		— X	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 111
38Fh	—	—				Unimple	mented				-	—
390h	—	-				Unimple	mented				-	_
391h	IOCAP		—	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 000
392h	IOCAN		—	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 000
393h	IOCAF		_	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 000
394h	IOCBP	X —		•		Unimple	mented			•	_	_
		— X	IOCBP7	IOCBP6	IOCBP5	IOCBP4	—	—	—	_	0000	0000
395h	IOCBN	X —		•		Unimple	mented			•	_	_
		— X	IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	—	—	_	0000	0000
396h	IOCBF	X —		-		Unimple	mented			· · · · · · · · · · · · · · · · · · ·	-	—
		— X	IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	_			0000	0000
397h	IOCCP	× —	—	_	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	00 0000	00 000
		— X	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	0000 0000	0000 000
398h	IOCCN	X —	—	—	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	00 0000	00 000

IOCCN3

IOCCF3

IOCCF3

IOCCN2

IOCCF2

IOCCF2

IOCCN1

IOCCF1

IOCCF1

IOCCN0

IOCCF0

IOCCF0

0000 0000

--00 0000

0000 0000 0000 0000

0000 0000

--00 0000

399h

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

IOCCN4

IOCCF4

IOCCF4

IOCCN5

IOCCF5

IOCCF5

Note 1: Only on PIC16F18326/18346.

IOCCF

2: Register accessible from both User and ICD Debugger.

Х

Х

X —

IOCCN7

_

IOCCF7

IOCCN6

_

IOCCF6

TABLE	4-4: SPE	CIAL F	UNCTION RE	EGISTER SI	UMMARY B	SANKS 0-31 ((CONTINUEI	D)					
Address	Name	PIC16(L)F18326 PIC16(L)F18346	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets	
Banks	15-16												
					CPU CORE RI	EGISTERS; see	Table 4-2 for spe	cifics					
78Ch to 79FH	-	-				Unimple	emented				-	—	
80Ch to 81Fh	_	-		Unimplemented									
Bank 1	7												
88Ch	—	—				Unimple	emented				-	—	
88Dh	—	—				Unimple	emented				—	—	
88Eh	—	—				Unimple	emented				_		
88Fh	—	—				Unimple	emented				-	_	
890h	—	—				Unimple	emented				_		
891h	NVMADRL					NVMAD	R<7:0>				0000 0000	0000 000	
892h	NVMADRH		—	– NVMADR<14:8>									
893h	NVMDATL			NVMDAT<7:0>									
894h	NVMDATH		_	—			NVMDA	T<13:8>			00 0000	00 000	
895h	NVMCON1		_	NVMREGS	LWLO	FREE	WRERR	WREN	WR	RD	-000 x000	-000 q00	
896h	NVMCON2			NVMCON2 0000 001									

Unimplemented

Unimplemented

Unimplemented

Unimplemented

Unimplemented

RMCLR

RI

POR

RWDT

897h

898h

899h

89Ah

89Bh

89Fh

89Ch to

_

_

_

PCON0

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

_

Only on PIC16F18326/18346. Note 1:

Register accessible from both User and ICD Debugger. 2:

STKOVF

STKUNF

_

_

_

_

_

—

_

—

_

00-1 110q qq-q qquu

BOR

—

_

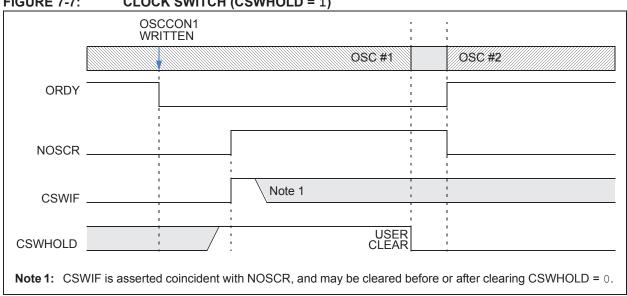
_

IADLE	4-4. JFE			EGISTER SU		ANNO U-DI	CONTINUE)				
Address	Name	PIC16(L)F18326 PIC16(L)F18346	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 1	8											
					CPU CORE RE	EGISTERS; see	Table 4-2 for spe	cifics				
90Ch	_	_				Unimple	mented				_	_
90Dh	—	-				Unimple	mented				—	—
90Eh	—	_				Unimple	mented				—	—
90Fh	—	—				Unimple	Unimplemented					_
910h	—	—				Unimple	mented				—	_
911h	PMD0		SYSCMD	FVRMD	_	—	—	NVMMD	CLKRMD	IOCMD	00000	0000
912h	PMD1		NCOMD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD	0000	000
913h	PMD2		—	DACMD	ADCMD	—	—	CMP2MD	CMP1MD	_	-000-	-00(
914h	PMD3		CWG2MD	CWG1MD	PWM6MD	PWM5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	-00000	-0000
915h	PMD4		—	—	UART1MD	—	—	MSSP2MD	MSSP1MD	—	00-	0(
916h	PMD5		_	—		CLC4MD	CLC3MD	CLC2MD	CLC1MD	DSMMD	000	00
917h	—	—				Unimple	mented				—	
918h	CPUDOZE		IDLEN	DOZEN	ROI	DOE			DOZE<2:0>		000000	00000
919h	OSCCON1				NOSC<2:0>			NDIV	<3:0>		-qqq 0000	-qqq 000
91Ah	OSCCON2		_		COSC<2:0>	1		CDIV	<3:0>		-qqq 0000	-qqq 000
91Bh	OSCCON3		CSWHOLD	SOSCPWR	SOSCBE	ORDY	NOSCR	—	—	—	0000 0	0000 0
91Ch	OSCSTAT1		EXTOR	HFOR	—	LFOR	SOR	ADOR	—	PLLR	dd-d dd-d	dd-d dd-
91Dh	OSCEN		EXTOEN	HFOEN	—	LFOEN	SOSCEN	ADOEN	—	—	00-0 00	00-0 00-
91Eh	OSCTUNE		_	_			HFTU				10 0000	10 000
91Fh	OSCFRQ		_	—	_	—		HFFR	Q<3:0>		qqq	qq

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Only on PIC16F18326/18346. Legend:

Note 1:

2: Register accessible from both User and ICD Debugger.


REGISTE	R 5-3: CON	FIGURATION	WORD 3: IN	EMORY			
		R/P-1	U-1	U-1	U-1	U-1	U-1
		LVP ⁽¹⁾	—	_	—	—	—
		bit 13					bit 8
U-1	U-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1
—	—	—	—	—	—	WRT1	WRT0
bit 7							bit 0
<u>.</u>							
Legend:							
R = Reada	able bit	P = Programn	nable bit	U = Unimplem	nented bit, read	as '1'	
'0' = Bit is	cleared	'1' = Bit is set		n = Value whe	en blank or afte	r Bulk Erase	
bit 13	LVP: Low-Vo	oltage Programn	ning Enable bit	(1)			
		ow-Voltage Pro	• •	enabled. MC	LR/VPP pin f	unction is M	CLR. MCLRE
		Configuration bit			in a		
		IV on MCLR/VP		a for programm	ing.		
bit 12-2		nted: Read as '1					
bit 1-0		User NVM Self-		n bits			
	11 = OFF 10 = POOT	Write protectio 0000h to 01FF		ed 0200h to 31	EEEh may be m	odified	
		0000h to 1FFF	•		•		
	00 = ALL	0000h to 3FFF					
	WRT applies	only to the self-					protected.
Note 1:	The LVP bit cann	not be programm	ned to '0' wher	Programming	mode is entere	ed via LVP.	

REGISTER 5-3: CONFIGURATION WORD 3: MEMORY

PIC16(L)F18326/18346

FIGURE 7-6: CLOCK SWITCH (CSWHOLD = 0) OSCCON1 WRITTEN OSC #1 OSC #2 ORDY Note 2 NOSCR Note '1 CSWIF USER CLEAR **CSWHOLD**

Note 1: CSWIF is asserted coincident with NOSCR; interrupt is serviced at OSC#2 speed. 2: The assertion of NOSCR is hidden from the user because it appears only for the duration of the switch.

FIGURE 7-7: CLOCK SWITCH (CSWHOLD = 1)

9.2 Sleep Mode

Sleep mode is entered by executing the SLEEP instruction, while the Idle Enable (IDLEN) bit of the CPUDOZE register is clear (IDLEN = 0). If the SLEEP instruction is executed while the IDLEN bit is set (IDLEN = 1), the CPU will enter the Idle mode (Section 9.2.3 "Low-Power Sleep Mode").

Upon entering Sleep mode, the following conditions exist:

- 1. Resets other than WDT are not affected by Sleep mode; WDT will be cleared but keeps running if enabled for operation during Sleep
- 2. The PD bit of the STATUS register is cleared
- 3. The $\overline{\text{TO}}$ bit of the STATUS register is set
- 4. The CPU and System clocks are disabled
- 31 kHz LFINTOSC, HFINTOSC and SOSC will remain enabled if any peripheral has requested them as a clock source or if the HFOEN, LFOEN, or SOSCEN bits of the OSCEN register are set.
- ADC is unaffected if the dedicated ADCRC oscillator is selected. When the ADC clock is something other than ADCRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains active.
- 7. I/O ports maintain the status they had before SLEEP was executed (driving high, low, or high-impedance) only if no peripheral connected to the I/O port is active.

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- Internal circuitry sourcing current from I/O pins
- Current draw from pins with internal weak pull-ups
- Modules using any oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or Vss externally to avoid switching currents caused by floating inputs.

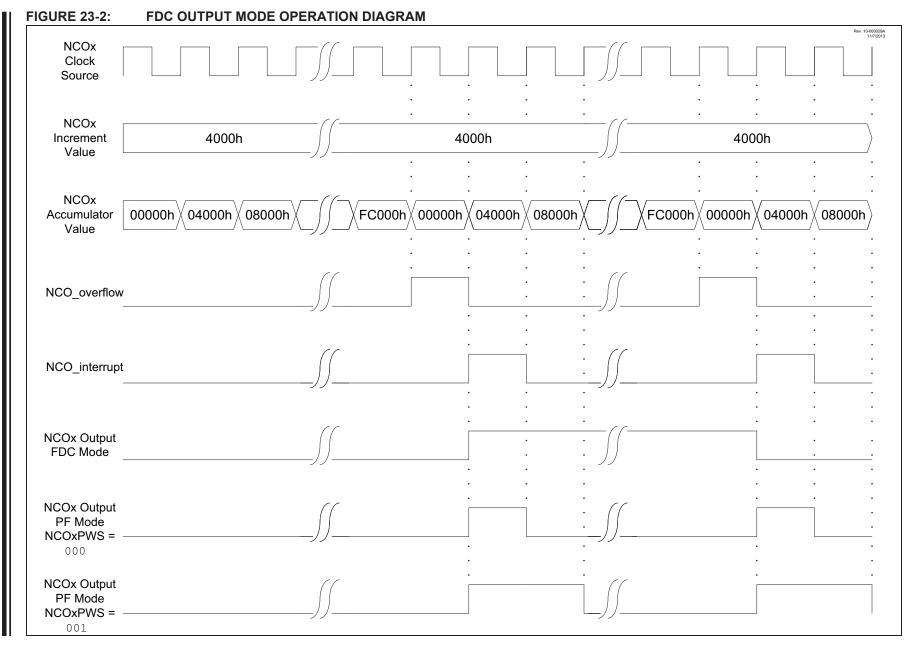
Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 24.0 "5-bit Digital-to-Analog Converter (DAC1) Module" and Section 16.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

9.2.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled
- 2. BOR Reset, if enabled.
- 3. POR Reset.
- 4. Watchdog Timer, if enabled
- 5. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information).

The first three events will cause a device Reset. The last two events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to Section 6.11 "Determining the Cause of a Reset".


The WDT is cleared when the device wakes-up from Sleep, regardless of the source of wake-up.

9.2.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared
- If the interrupt occurs **during or after** the execution of a SLEEP instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

U

S

F18326/18346

DS40001839B-page 254

Preliminary

REGISTER 23-4: NCO1ACCH: NCO1 ACCUMULATOR REGISTER – HIGH BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			NCO1A	CC<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplem	ented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkno	own	-n/n = Value a	t POR and BOF	R/Value at all ot	her Resets
'1' = Bit is set		'0' = Bit is clear	red				

bit 7-0 NCO1ACC<15:8>: NCO1 Accumulator, high byte

REGISTER 23-5: NCO1ACCU: NCO1 ACCUMULATOR REGISTER – UPPER BYTE⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
—	—	—	—	NCO1ACC<19:16>						
bit 7							bit 0			

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 NCO1ACC<19:16>: NCO1 Accumulator, upper byte

Note 1: The accumulator spans registers NCO1ACCU:NCO1ACCH:NCO1ACCL. The 24 bits are reserved but not all are used. This register updates in real-time, asynchronously to the CPU; there is no provision to ensure atomic access to this 24-bit space using an 8-bit bus. Writing to this register while the module is operating will produce undefined results.

REGISTER 23-6: NCO1INCL^(1,2): NCO1 INCREMENT REGISTER – LOW BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1			
NCO1INC<7:0>										
bit 7	bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCO1INC<7:0>: NCO1 Increment, low byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

2: NCO1INC is double-buffered as INCBUF; INCBUF is updated on the next falling edge of NCOCLK after writing to NCO1INCL;NCO1INCU and NCO1INCH should be written prior to writing NCO1INCL.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			NCO1I	NC<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	it	U = Unimplem	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkno	wn	-n/n = Value a	t POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clear	red				

REGISTER 23-7: NCO1INCH⁽¹⁾: NCO1 INCREMENT REGISTER – HIGH BYTE

bit 7-0 NCO1INC<15:8>: NCO1 Increment, high byte

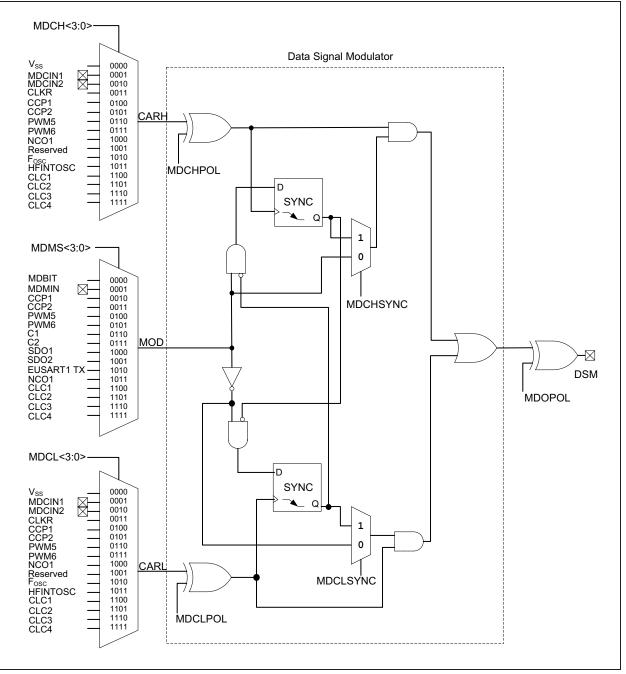
Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

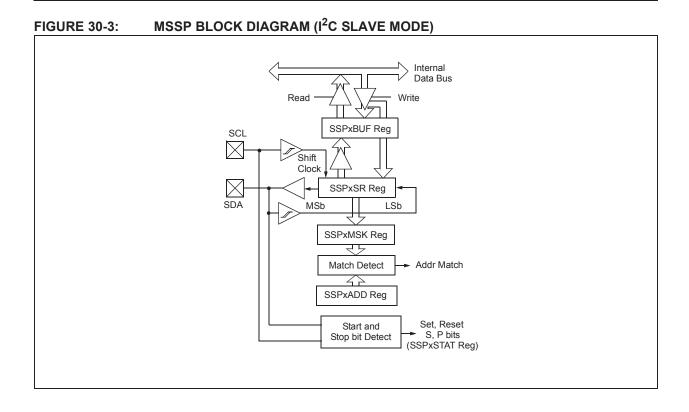
REGISTER 23-8: NCO1INCU⁽¹⁾: NCO1 INCREMENT REGISTER – UPPER BYTE

			• • • • • • • • • • • • • • • • • • • •					
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	—	—	—	NCO1INC<19:16>				
bit 7							bit 0	

Legend:

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	


bit 7-4 Unimplemented: Read as '0'


bit 3-0 NCO1INC<19:16>: NCO1 Increment, upper byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

PIC16(L)F18326/18346

30.5.3 SLAVE TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCL pin is held low (see Section 30.5.6 "Clock Stretching" for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPxBUF register which also loads the SSPxSR register. Then the SCL pin should be released by setting the CKP bit of the SSPxCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.

The \overline{ACK} pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. This \overline{ACK} value is copied to the ACKSTAT bit of the SSPxCON2 register. If ACKSTAT is set (not \overline{ACK}), then the data transfer is complete. When the not \overline{ACK} is latched by the slave, the slave goes idle and waits for another occurrence of the Start bit. If the SDA line was low (\overline{ACK}), the next transmit data must be loaded into the SSPxBUF register. Again, the SCL pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared by software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

30.5.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPxCON3 register is set, the BCLIF bit of the PIR register is set. Once a bus collision is detected, the slave goes idle and waits to be addressed again. User software can use the BCLIF bit to handle a slave bus collision.

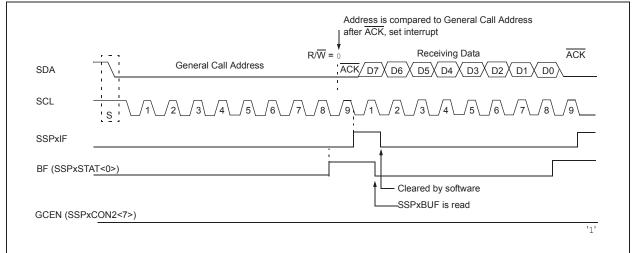
30.5.3.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 30-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDA and SCL.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Slave setting SSPxIF bit.
- 4. Slave hardware generates an ACK and sets SSPxIF.
- 5. SSPxIF bit is cleared by user.
- 6. Software reads the received address from SSPxBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPxBUF.
- 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
- 10. SSPxIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPxIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.
 - Note 1: If the master ACKs the clock will be stretched.
 - ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.
- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPxIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

30.5.8 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.


The general call address is a reserved address in the $I^{2}C$ protocol, defined as address 0x00. When the GCEN bit of the SSPxCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPxADD. After the slave clocks in an address of all zeros with

the R/W bit clear, an interrupt is generated and slave software can read SSPxBUF and respond. Figure 30-24 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPxCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the eighth falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

FIGURE 30-24: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE

30.5.9 SSP MASK REGISTER

An SSP Mask (SPPxMSK) register (Register 30-5) is available in I²C Slave mode as a mask for the value held in the SSPxSR register during an address comparison operation. A zero ('0') bit in the SSPxMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

31.3.1 AUTO-BAUD DETECT

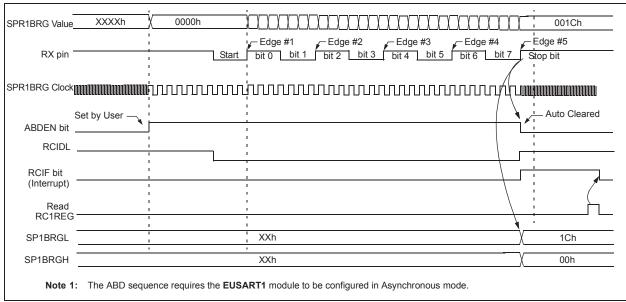
The EUSART1 module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUD1CON register starts the auto-baud calibration sequence. While the ABD sequence takes place, the EUSART1 state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Figure 31-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SP1BRGH, SP1BRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RC1REG needs to be read to clear the RCIF interrupt. RC1REG content should be discarded. When calibrating for modes that do not use the SP1BRGH register the user can verify that the SP1BRGL register did not overflow by checking for 00h in the SP1BRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 31-1. During ABD, both the SP1BRGH and SP1BRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SP1BRGH and SP1BRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte following the Break character (see Section 31.3.3 "Auto-Wake-up on Break").


2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART1 baud rates are not possible.

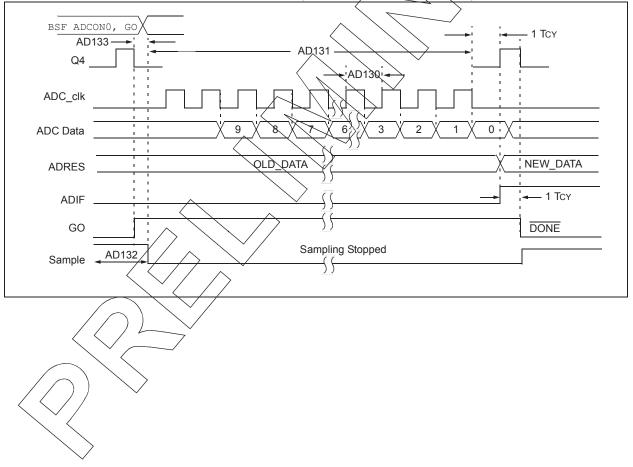
3: During the auto-baud process, the auto-baud counter starts counting at one. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SP1BRGH:SP1BRGL register pair.

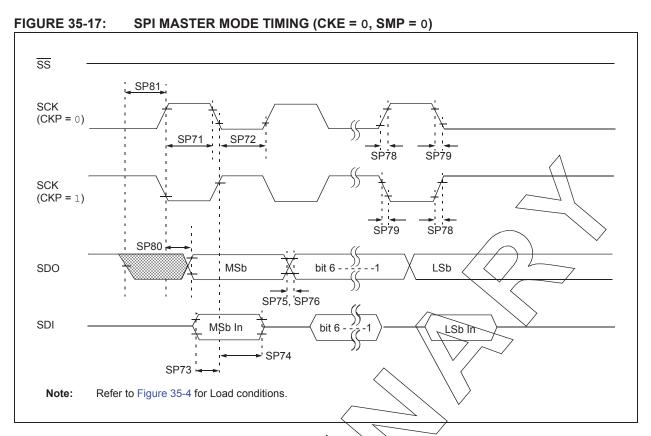
TABLE 31-1: BRG COUNTER CLOCK RATE	TABLE 31-1:	BRG COUNTER CLOCK RATES
------------------------------------	-------------	--------------------------------

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

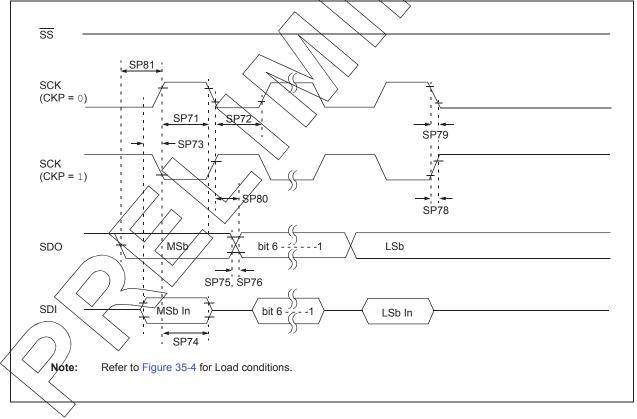
Note: During the ABD sequence, SP1BRGL and SP1BRGH registers are both used as a 16-bit counter, independent of the BRG16 setting.

FIGURE 31-6: AUTOMATIC BAUD RATE CALIBRATION


TABLE 35-13: ANALOG-TO DIGITAL CONVERTER (ADC) CONVERSION TIMING SPECIFICATIONS


Standar	Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Typ.†	Max.	Units	Conditions		
AD20	TAD	ADC Clock Period	1		9	us	Using Fosc as the ADC clock source; ADCS $! = \times 11$		
AD21			1	2	6	us	Using ADCRC as the ADC clock source, ADCS = 11		
AD22	TCNV	Conversion Time	_	11	_	TAD	Set of GO/DONE bit to Clear of GO/DONE bit		
AD23	TACQ	Acquisition Time	_	2	_	us			
AD24	THCD	Sample and Hold Capacitor		_	_	us <	Fosc based clock source		
		Disconnect Time			_	us	ADCRC based clock source		
*	L These na	arameters are characterized but	not tested	I	<				

These parameters are characterized but not tested.


Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

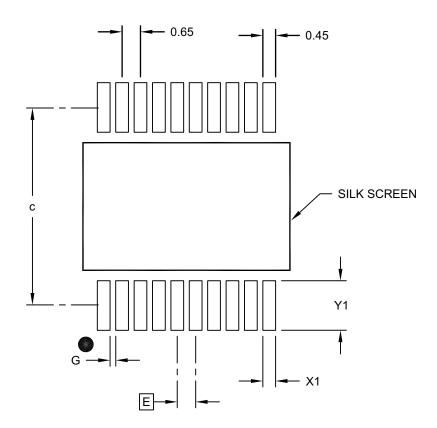


FIGURE 35-18: SPI MASTER MODE TIMING (CKE = 1, SMR = 1)

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	MILLIMETER	ILLIMETERS NOM MAX 0.65 BSC		
Dimensior	Dimension Limits			MAX	
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	С		7.20		
Contact Pad Width (X20)	X1			0.45	
Contact Pad Length (X20)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072B