# E·XFL



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 32MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                   |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                       |
| Number of I/O              | 18                                                                          |
| Program Memory Size        | 28KB (16K x 14)                                                             |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | 256 x 8                                                                     |
| RAM Size                   | 2K x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                 |
| Data Converters            | A/D 17x10b; D/A 1x5b                                                        |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 20-SSOP (0.209", 5.30mm Width)                                              |
| Supplier Device Package    | 20-SSOP                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18346-i-ss |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| TABLE   | 4-4: SPEC                                       |                                  | <b>UNCTION RE</b> | GISTER S      | UMMARY B     | ANKS 0-31 ( | CONTINUE | ))    |           |         |                       |                                 |
|---------|-------------------------------------------------|----------------------------------|-------------------|---------------|--------------|-------------|----------|-------|-----------|---------|-----------------------|---------------------------------|
| Address | Name                                            | PIC16(L)F18326<br>PIC16(L)F18346 | Bit 7             | Bit 6         | Bit 5        | Bit 4       | Bit 3    | Bit 2 | Bit 1     | Bit 0   | Value on:<br>POR, BOR | Value on<br>all other<br>Resets |
| Bank 1  | Bank 13                                         |                                  |                   |               |              |             |          |       |           |         |                       |                                 |
|         | CPU CORE REGISTERS; see Table 4-2 for specifics |                                  |                   |               |              |             |          |       |           |         |                       |                                 |
| 68Ch    | -                                               | —                                |                   | Unimplemented |              |             |          |       |           |         | _                     | _                               |
| 68Dh    | -                                               | —                                |                   | Unimplemented |              |             |          |       |           |         | _                     | _                               |
| 68Eh    | -                                               | —                                |                   | Unimplemented |              |             |          |       |           |         | _                     | _                               |
| 68Fh    | -                                               | —                                |                   | Unimplemented |              |             |          |       |           |         | _                     | _                               |
| 690h    | -                                               | —                                |                   | Unimplemented |              |             |          |       |           |         | _                     | _                               |
| 691h    | CWG1CLKCON                                      |                                  | —                 | —             | —            | —           | —        | —     | —         | CS      | 0                     | 0                               |
| 692h    | CWG1DAT                                         |                                  | _                 | —             | — — DAT<3:0> |             |          |       |           |         | 0000                  | 0000                            |
| 693h    | CWG1DBR                                         |                                  | — —               |               |              |             |          |       | 00 0000   | 00 0000 |                       |                                 |
| 694h    | CWG1DBF                                         |                                  |                   | DBF<5:0> -    |              |             |          |       | 00 0000   | 00 0000 |                       |                                 |
| 695h    | CWG1CON0                                        |                                  | EN                | LD            | _            | _           | _        |       | MODE<2:0> |         | 00000                 | 00000                           |
| 696h    | CWG1CON1                                        |                                  |                   | _             | IN           | _           | POLD     | POLC  | POLB      | POLA    | x- 0000               | x- 0000                         |
| 697h    | CWG1AS0                                         |                                  | SHUTDOWN          | REN           | LSBE         | )<1:0>      | LSAC     | <1:0> | _         | _       | 0001 01               | 0001 01                         |

AS4E

**OVRA** 

Unimplemented

AS2E

STRC

AS3E

STRD

AS1E

STRB

AS0E

STRA

---0 0000

0000 0000 0000 0000

---0 0000

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

\_

OVRB

Only on PIC16F18326/18346. Note 1:

CWG1AS1

CWG1STR

Register accessible from both User and ICD Debugger. 2:

\_

\_

OVRD

\_

OVRC

698h

699h

69Fh

69Ah to

| TABLE 4-4: | SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED) |
|------------|----------------------------------------------------------|
|------------|----------------------------------------------------------|

| Address         | Name                                            | PIC16(L)F18326<br>PIC16(L)F18346 | Bit 7    | Bit 6         | Bit 5 | Bit 4   | Bit 3  | Bit 2 | Bit 1     | Bit 0 | Value on:<br>POR, BOR | Value on<br>all other<br>Resets |
|-----------------|-------------------------------------------------|----------------------------------|----------|---------------|-------|---------|--------|-------|-----------|-------|-----------------------|---------------------------------|
| Bank 14         | 4                                               |                                  |          |               |       |         |        |       |           |       |                       |                                 |
|                 | CPU CORE REGISTERS; see Table 4-2 for specifics |                                  |          |               |       |         |        |       |           |       |                       |                                 |
| 70Ch            | _                                               | _                                |          |               |       | Unimple | mented |       |           |       | _                     |                                 |
| 70Dh            | —                                               | _                                |          | Unimplemented |       |         |        |       |           |       | _                     | _                               |
| 70Eh            | —                                               | —                                |          | Unimplemented |       |         |        |       |           |       | _                     | _                               |
| 70Fh            | —                                               | —                                |          | Unimplemented |       |         |        |       |           |       | —                     | —                               |
| 710h            | —                                               | —                                |          | Unimplemented |       |         |        |       |           |       | —                     |                                 |
| 711h            | CWG2CLKCON                                      |                                  | —        | —             | —     | —       | —      | —     | —         | CS    | 0                     | 0                               |
| 712h            | CWG2DAT                                         |                                  | —        | —             | —     | —       |        | DAT   | <3:0>     |       | 0000                  | 0000                            |
| 713h            | CWG2DBR                                         |                                  | —        | —             |       |         | DBR    | <5:0> |           |       | 00 0000               | 00 0000                         |
| 714h            | CWG2DBF                                         |                                  | —        | —             |       |         | DBF∢   | <5:0> |           |       | 00 0000               | 00 0000                         |
| 715h            | CWG2CON0                                        |                                  | EN       | LD            | —     | —       | —      |       | MODE<2:0> |       | 00000                 | 00000                           |
| 716h            | CWG2CON1                                        |                                  | —        | —             | IN    | —       | POLD   | POLC  | POLB      | POLA  | x- 0000               | x- 0000                         |
| 717h            | CWG2AS0                                         |                                  | SHUTDOWN | REN           | LSBI  | D<1:0>  | LSAC   | <1:0> | —         | —     | 0001 01               | 0001 01                         |
| 718h            | CWG2AS1                                         |                                  | _        | _             | _     | AS4E    | AS3E   | AS2E  | AS1E      | AS0E  | 0 0000                | 0 0000                          |
| 719h            | CWG2STR                                         |                                  | OVRD     | OVRC          | OVRB  | OVRA    | STRD   | STRC  | STRB      | STRA  | 0000 0000             | 0000 0000                       |
| 71Ah to<br>71Fh | -                                               | -                                |          | Unimplemented |       |         |        |       |           |       | -                     | _                               |

PIC16(L)F18326/18346

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Only on PIC16F18326/18346. Legend:

Note 1:

2: Register accessible from both User and ICD Debugger.

# PIC16(L)F18326/18346

# FIGURE 7-6: CLOCK SWITCH (CSWHOLD = 0) OSCCON1 WRITTEN OSC #1 OSC #2 ORDY Note 2 NOSCR Note '1 CSWIF USER CLEAR **CSWHOLD**

Note 1: CSWIF is asserted coincident with NOSCR; interrupt is serviced at OSC#2 speed. 2: The assertion of NOSCR is hidden from the user because it appears only for the duration of the switch.



#### FIGURE 7-7: CLOCK SWITCH (CSWHOLD = 1)

| R/W-0/0          | R/W-0/0                       | R/W-0/0                           | R/W-0/0                           | R/W-0/0          | R/W-0/0          | R/W-0/0          | R/W-0/0      |
|------------------|-------------------------------|-----------------------------------|-----------------------------------|------------------|------------------|------------------|--------------|
| TMR1GIE          | ADIE                          | RCIE                              | TXIE                              | SSP1IE           | BCL1IE           | TMR2IE           | TMR1IE       |
| bit 7            | -                             | •                                 | ·                                 |                  | ·                | -                | bit 0        |
|                  |                               |                                   |                                   |                  |                  |                  |              |
| Legend:          |                               |                                   |                                   |                  |                  |                  |              |
| R = Readable     | bit                           | W = Writable                      | bit                               | U = Unimple      | mented bit, read | l as '0'         |              |
| u = Bit is unch  | anged                         | x = Bit is unki                   | nown                              | -n/n = Value     | at POR and BO    | R/Value at all o | other Resets |
| '1' = Bit is set |                               | '0' = Bit is cle                  | ared                              |                  |                  |                  |              |
|                  |                               |                                   |                                   |                  |                  |                  |              |
| bit 7            | TMR1GIE: Ti                   | mer1 Gate Inte                    | errupt Enable I                   | oit              |                  |                  |              |
|                  | 1 = Enables t                 | he Timer1 gate                    | e acquisition in                  | nterrupt         |                  |                  |              |
| bit 6            |                               | the Timer I gat                   |                                   | Interrunt Enab   | le hit           |                  |              |
| bit 0            | 1 = Enables t                 | be ADC interru                    |                                   |                  |                  |                  |              |
|                  | 0 = Disables                  | the ADC interre                   | upt                               |                  |                  |                  |              |
| bit 5            | RCIE: EUSA                    | RT Receive Int                    | errupt Enable                     | bit              |                  |                  |              |
|                  | 1 = Enables t                 | he EUSART re                      | ceive interrup                    | t                |                  |                  |              |
|                  | 0 = Disables                  | the EUSART re                     | eceive interrup                   | ot               |                  |                  |              |
| bit 4            | TXIE: EUSAF                   | RT Transmit Int                   | errupt Enable                     | bit              |                  |                  |              |
|                  | 1 = Enables t<br>0 = Disables | he EUSART tra<br>the EUSART tr    | ansmit interrup<br>ansmit interru | pt<br>pt         |                  |                  |              |
| bit 3            | SSP1IE: Syne                  | chronous Seria                    | I Port (MSSP                      | ) Interrupt Ena  | ble bit          |                  |              |
|                  | 1 = Enables t<br>0 = Disables | he MSSP inter<br>the MSSP inte    | rupt<br>rrupt                     |                  |                  |                  |              |
| bit 2            | BCL1IE: MSS                   | SP1 Bus Collis                    | ion Interrupt E                   | nable bit        |                  |                  |              |
|                  | 1 = MSSP bu                   | s collision inter                 | rupt enabled                      |                  |                  |                  |              |
|                  | 0 = MSSP bu                   | is collision inter                | rupt not enab                     | led              |                  |                  |              |
| bit 1            | TMR2IE: TM                    | R2 to PR2 Mat                     | ch Interrupt Ei                   | nable bit        |                  |                  |              |
|                  | 1 = Enables t<br>0 = Disables | he Timer2 to P<br>the Timer2 to F | R2 match inte<br>R2 match inte    | errupt<br>errupt |                  |                  |              |
| bit 0            | TMR1IE: Tim                   | er1 Overflow Ir                   | nterrupt Enabl                    | e bit            |                  |                  |              |
|                  | 1 = Enables t                 | he Timer1 ove                     | rflow interrupt                   |                  |                  |                  |              |
|                  | 0 = Disables                  | the Timer1 ove                    | rflow interrupt                   | t                |                  |                  |              |
|                  |                               |                                   |                                   |                  |                  |                  |              |
| Note: Bit        | PEIE of the IN                | TCON register                     | must be                           |                  |                  |                  |              |
| set              | to enable any p               | peripheral inter                  | rupt.                             |                  |                  |                  |              |

# REGISTER 8-3: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

| R/W-0/0          | R/W-0/0                                                                                                                                     | R/W-0/0                                                   | R/W-0/0                                          | R/W-0/0                                               | R/W-0/0         | R/W-0/0 | R/W-0/0 |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|-----------------|---------|---------|--|--|
| TMR6IE           | C2IE                                                                                                                                        | C1IE                                                      | NVMIE                                            | SSP2IE                                                | BCL2IE          | TMR4IE  | NCO1IE  |  |  |
| bit 7            |                                                                                                                                             |                                                           |                                                  |                                                       |                 |         | bit 0   |  |  |
| <b>I</b>         |                                                                                                                                             |                                                           |                                                  |                                                       |                 |         |         |  |  |
| Legend:          |                                                                                                                                             |                                                           |                                                  |                                                       |                 |         |         |  |  |
| R = Readable     | bit                                                                                                                                         | W = Writable                                              | bit                                              | U = Unimplemented bit, read as '0'                    |                 |         |         |  |  |
| u = Bit is unch  | anged                                                                                                                                       | x = Bit is unkr                                           | Iown                                             | -n/n = Value at POR and BOR/Value at all other Resets |                 |         |         |  |  |
| '1' = Bit is set |                                                                                                                                             | '0' = Bit is clea                                         | ared                                             |                                                       |                 |         |         |  |  |
| bit 7            | <b>TMR6IE:</b> TMF<br>1 = TMR6 to F<br>0 = TMR6 to F                                                                                        | R6 to PR6 Mate<br>PR6 match inte<br>PR6 match is n        | ch Interrupt Er<br>errupt is enabl<br>ot enabled | nable bit<br>ed                                       |                 |         |         |  |  |
| bit 6            | <b>C2IE:</b> Comparator C2 Interrupt Enable bit<br>1 = Enables the Comparator C2 interrupt<br>0 = Disables the Comparator C2 interrupt      |                                                           |                                                  |                                                       |                 |         |         |  |  |
| bit 5            | <b>C1IE:</b> Comparator C1 Interrupt Enable bit<br>1 = Enables the Comparator C1 interrupt<br>0 = Disables the Comparator C1 interrupt      |                                                           |                                                  |                                                       |                 |         |         |  |  |
| bit 4            | <b>NVMIE:</b> NVM Interrupt Enable Bit<br>1 = ENVM task complete interrupt enable<br>0 = NVM interrupt not enabled                          |                                                           |                                                  |                                                       |                 |         |         |  |  |
| bit 3            | SSP2IE: Mas<br>1 = Enables th<br>0 = Disables t                                                                                             | ter Synchronou<br>he MSSP2 inte<br>the MSSP2 inte         | us Serial Port<br>rrupt<br>errupt                | (MSSP2) Inter                                         | rupt Enable bit |         |         |  |  |
| bit 2            | <b>BCL2IE:</b> MSS<br>1 = MSSP bus<br>0 = MSSP bus                                                                                          | SP2 Bus Collisi<br>s collision inter<br>s collision inter | on Interrupt E<br>rupt enabled<br>rupt not enab  | nable bit<br>led                                      |                 |         |         |  |  |
| bit 1            | <b>TMR4IE:</b> TMR4 to PR4 Match Interrupt Enable bit<br>1 = TMR4 to PR4 match interrupt is enabled<br>0 = TMR4 to PR4 match is not enabled |                                                           |                                                  |                                                       |                 |         |         |  |  |
| bit 0            | <b>NCO1IE:</b> NCO<br>1 = NCO rollo<br>0 = NCO rollo                                                                                        | D Interrupt Ena<br>over interrupt e<br>over interrupt n   | ble bit<br>nabled<br>ot enabled                  |                                                       |                 |         |         |  |  |
| Note: Bit        | PEIE of the IN                                                                                                                              | TCON register                                             | must be                                          |                                                       |                 |         |         |  |  |

# REGISTER 8-4: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

**Note:** Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

# 13.8 Register Definitions: PPS Input Selection

#### REGISTER 13-1: xxxPPS: PERIPHERAL xxx INPUT SELECTION

| U-0                                                                                                                                                                                                                                                  | U-0                                                                                                                                                                                                  | U-0                                                                                                                               | R/W-q/u                                                                            | R/W-q/u        | R/W-q/u          | R/W-q/u          | R/W-q/u      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------|------------------|------------------|--------------|
| —                                                                                                                                                                                                                                                    | —                                                                                                                                                                                                    | —                                                                                                                                 |                                                                                    |                | xxxPPS<4:0>      |                  |              |
| bit 7                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                                   |                                                                                    |                |                  |                  | bit 0        |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                   |                                                                                    |                |                  |                  |              |
| Legend:                                                                                                                                                                                                                                              |                                                                                                                                                                                                      |                                                                                                                                   |                                                                                    |                |                  |                  |              |
| R = Readable                                                                                                                                                                                                                                         | bit                                                                                                                                                                                                  | W = Writable                                                                                                                      | bit                                                                                | U = Unimplen   | nented bit, read | as '0'           |              |
| u = Bit is unch                                                                                                                                                                                                                                      | anged                                                                                                                                                                                                | x = Bit is unkr                                                                                                                   | nown                                                                               | -n/n = Value a | at POR and BO    | R/Value at all c | other Resets |
| '1' = Bit is set                                                                                                                                                                                                                                     |                                                                                                                                                                                                      | '0' = Bit is cle                                                                                                                  | ared                                                                               | q = value dep  | ends on periph   | eral             |              |
| bit 7-5                                                                                                                                                                                                                                              | Unimplemen                                                                                                                                                                                           | <b>ted:</b> Read as '                                                                                                             | 0'                                                                                 |                |                  |                  |              |
| bit 4-0 xxxPPS<4:0>: Peripheral xxx Input Selection bits<br>11xxx = Reserved. Do not use.                                                                                                                                                            |                                                                                                                                                                                                      |                                                                                                                                   |                                                                                    |                |                  |                  |              |
| 10111 = Peripheral input is<br>10110 = Peripheral input is<br>10101 = Peripheral input is<br>10100 = Peripheral input is<br>10011 = Peripheral input is<br>10010 = Peripheral input is<br>10001 = Peripheral input is<br>10000 = Peripheral input is |                                                                                                                                                                                                      |                                                                                                                                   | RC7 <sup>(1)</sup><br>RC6 <sup>(1)</sup><br>RC5<br>RC4<br>RC3<br>RC2<br>RC1<br>RC0 |                |                  |                  |              |
|                                                                                                                                                                                                                                                      | 01111 = Peripheral input is RB7 <sup>(1)</sup><br>01110 = Peripheral input is RB6 <sup>(1)</sup><br>01101 = Peripheral input is RB5 <sup>(1)</sup><br>01100 = Peripheral input is RB4 <sup>(1)</sup> |                                                                                                                                   |                                                                                    |                |                  |                  |              |
|                                                                                                                                                                                                                                                      | <br>0011x = Rese<br>00101 = Peri<br>00100 = Peri<br>00011 = Peri<br>00001 = Peri<br>00001 = Peri<br>00000 = Peri                                                                                     | erved. Do not u<br>pheral input is<br>pheral input is<br>pheral input is<br>pheral input is<br>pheral input is<br>pheral input is | use.<br>RA5<br>RA4<br>RA3<br>RA2<br>RA1<br>RA0                                     |                |                  |                  |              |

**Note 1:** PIC16(L)F18346 only.

# 19.0 PULSE-WIDTH MODULATION (PWM)

The PWMx modules generate Pulse-Width Modulated (PWM) signals of varying frequency and duty cycle.

In addition to the CCP modules, the PIC16(L)F18326/18346 devices contain two PWM modules.

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the ON state (pulse width), and the low portion of the signal is considered the OFF state. The term duty cycle describes the proportion of the ON time to the OFF time and is expressed in percentages, where 0% is fully OFF and 100% is fully ON. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse-width time and in turn the power that is applied to the load.

Figure 19-1 shows a typical waveform of the PWM signal.





# 19.1 Standard PWM Mode

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the PWMx pin with up to ten bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- TMR2, TMR4 or TMR6 registers
- PR2, PR4 or PR6 registers
- PWMxCON registers
- PWMxDCH registers
- PWMxDCL registers

Figure 29-2 shows a simplified block diagram of the PWM operation.

If PWMPOL = 0, the default state of the output is '0'. If PWMPOL = 1, the default state is '1'. If PWMEN = 0, the output will be the default state.

Note: The corresponding TRIS bit must be cleared to enable the PWM output on the PWMx pin

Note: The formulas and text refer to TMR2 and PR2, for simplicity. The same formulas and text apply to TMR4/6 and PR4/6. The timer sources can be selected in Register 19-4. For additional information on TMR2/4/6, refer to Section 28.0 "Timer 2/4/6 Module"

#### FIGURE 19-2: SIMPLIFIED PWM BLOCK DIAGRAM



#### 19.1.1 PWM PERIOD

Referring to Figure 19-1, the PWM output has a period and a pulse width. The frequency of the PWM is the inverse of the period (1/period).

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

#### EQUATION 19-1: PWM PERIOD

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet TOSC \bullet$ (TMR2 Prescale Value) **Note:** TOSC = 1/FOSC

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The PWMx pin is set (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM pulse width is latched from PWMxDC.

| Note: | If the pulse-width value is greater than the | е  |
|-------|----------------------------------------------|----|
|       | period, the assigned PWM pin(s) will         | 11 |
|       | remain unchanged.                            |    |

### 19.1.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to the PWMxDC register. The PWMxDCH contains the eight MSbs and bits <7:6> of the PWMxDCL register contain the two LSbs.

The PWMDC register is double-buffered and can be updated at any time. This double buffering is essential for glitch-free PWM operation. New values take effect when TMR2 = PR2. Note that PWMDC is left-justified.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (Fosc), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

Equation 19-2 is used to calculate the PWM pulse width.

Equation 19-3 is used to calculate the PWM duty cycle ratio.

# EQUATION 19-2: PULSE WIDTH

Pulse Width =  $(PWMxDC) \bullet T_{OSC} \bullet$ 

• (TMR2 Prescale Value)

#### EQUATION 19-3: DUTY CYCLE RATIO

Duty Cycle Ratio =  $\frac{(PWMxDC)}{4(PR2+1)}$ 

#### TABLE 19-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWMx

| Name                  | Bit 7                 | Bit 6                 | Bit 5    | Bit 4    | Bit 3       | Bit 2  | Bit 1       | Bit 0   | Register<br>on Page |
|-----------------------|-----------------------|-----------------------|----------|----------|-------------|--------|-------------|---------|---------------------|
| TRISA                 |                       | _                     | TRISA5   | TRISA4   | (2)         | TRISA2 | TRISA1      | TRISA0  | 143                 |
| ANSELA                |                       | _                     | ANSA5    | ANSA4    | _           | ANSA2  | ANSA1       | ANSA0   | 144                 |
| TRISB <sup>(1)</sup>  | TRISB7                | TRISB6                | TRISB5   | TRISB4   | _           | _      | _           | —       | 149                 |
| ANSELB <sup>(1)</sup> | ANSB7                 | ANSB6                 | ANSB5    | ANSB4    | —           | —      | _           | —       | 150                 |
| TRISC                 | TRISC7 <sup>(1)</sup> | TRISC6 <sup>(1)</sup> | TRISC5   | TRISC4   | TRISC3      | TRISC2 | TRISC1      | TRISC0  | 155                 |
| ANSELC                | ANSC7 <sup>(1)</sup>  | ANSC6 <sup>(1)</sup>  | ANSC5    | ANSC4    | ANSC3       | ANSC2  | ANSC1       | ANSC0   | 157                 |
| PWM5CON               | PWM5EN                | _                     | PWM5OUT  | PWM5POL  | _           | _      |             | —       | 196                 |
| PWM5DCH               | PWM5DC<9:2>           |                       |          |          |             |        |             |         |                     |
| PWM5DCL               | PWM5                  | DC<1:0>               | —        | —        | —           | —      |             | —       | 196                 |
| PWM6CON               | PWM6EN                | —                     | PWM6OUT  | PWM6POL  | —           | _      | _           | —       | 196                 |
| PWM6DCH               | PWM6DC<9:2>           |                       |          |          |             |        |             |         |                     |
| PWM6DCL               | PWM6DC<1:0>           |                       | —        | —        | —           | —      |             | —       | 196                 |
| PWMTMRS               |                       |                       | _        | —        | P6TSEL<1:0> |        | P5TSEL<1:0> |         | 197                 |
| INTCON                | GIE                   | PEIE                  | —        | —        | —           | —      | —           | INTEDG  | 100                 |
| PIR1                  | TMR1GIF               | ADIF                  | RCIF     | TXIF     | SSP1IF      | BCL1IF | TMR2IF      | TMR1IF  | 107                 |
| PIR2                  | TMR6IF                | C2IF                  | C1IF     | NVMIF    | SSP2IF      | BCL2IF | TMR4IF      | NCO1IF  | 108                 |
| PIE1                  | TMR1GIE               | ADIE                  | RCIE     | TXIE     | SSP1IE      | BCL1IE | TMR2IE      | TMR1IE  | 102                 |
| PIE2                  | TMR6IE                | C2IE                  | C1IE     | NVMIE    | SSP2IE      | BCL2IE | TMR4IE      | NCO1IE  | 103                 |
| T2CON                 |                       |                       | T2OUTPS  | S<3:0>   |             | TMR2ON | T2CKP       | 'S<1:0> | 298                 |
| T4CON                 |                       |                       | T4OUTPS  | S<3:0>   |             | TMR4ON | T4CKP       | 'S<1:0> | 292                 |
| T6CON                 |                       |                       | T6OUTPS  | S<3:0>   |             | TMR6ON | T6CKP       | 'S<1:0> | 292                 |
| TMR2                  |                       |                       |          | TMR2<7:0 | )>          |        |             |         | 299                 |
| TMR4                  |                       |                       |          | TMR4<7:0 | )>          |        |             |         | 299                 |
| TMR6                  |                       |                       |          | TMR6<7:0 | )>          |        |             |         | 299                 |
| PR2                   |                       |                       |          | PR2<7:0  | >           |        |             |         | 299                 |
| PR4                   |                       |                       |          | PR4<7:0  | >           |        |             |         | 299                 |
| PR6                   |                       |                       |          | PR6<7:0  | >           |        |             |         | 299                 |
| CWGxDAT               | —                     | —                     | —        | —        |             | DAT<   | <3:0>       |         | 215                 |
| CLCxSELy              |                       |                       |          |          | LCxDyS<     | 5:0>   |             |         | 229                 |
| MDSRC                 | —                     | —                     | —        | —        |             | MDMS   | \$<3:0>     |         | 272                 |
| MDCARH                | —                     | MDCHPOL               | MDCHSYNC | —        | MDCH<3:0>   |        |             |         | 273                 |
| MDCARL                |                       | MDCLPOL               | MDCLSYNC | —        |             | MDCL   | <3:0>       |         | 274                 |

Legend: - = Unimplemented locations, read as '0'. Shaded cells are not used by the PWM module.

Note 1: PIC16(L)F18346 only.

2: Unimplemented, read as '1'.

| U-0              | U-0              | R/W-0/0             | R/W-0/0        | R/W-0/0                        | R/W-0/0          | R/W-0/0          | R/W-0/0     |  |
|------------------|------------------|---------------------|----------------|--------------------------------|------------------|------------------|-------------|--|
| _                | —                |                     |                | DBF                            | <5:0>            |                  |             |  |
| bit 7            |                  |                     |                |                                |                  |                  | bit 0       |  |
|                  |                  |                     |                |                                |                  |                  |             |  |
| Legend:          |                  |                     |                |                                |                  |                  |             |  |
| R = Readable     | bit              | W = Writable        | bit            | U = Unimpler                   | nented bit, read | as '0'           |             |  |
| u = Bit is unch  | anged            | x = Bit is unkn     | nown           | -n/n = Value a                 | at POR and BO    | R/Value at all c | ther Resets |  |
| '1' = Bit is set |                  | '0' = Bit is clea   | ared           | q = Value depends on condition |                  |                  |             |  |
|                  |                  |                     |                |                                |                  |                  |             |  |
| bit 7-6          | Unimplemer       | nted: Read as '     | ) <b>'</b>     |                                |                  |                  |             |  |
| bit 5-0          | DBF<5:0>: (      | CWG Falling Edg     | ge Triggered I | Dead-Band Cou                  | int bits         |                  |             |  |
|                  | 11 1111 <b>=</b> | 63-64 CWG clo       | ock periods    |                                |                  |                  |             |  |
|                  | 11 1110 <b>=</b> | 62-63 CWG clo       | ock periods    |                                |                  |                  |             |  |
|                  |                  |                     |                |                                |                  |                  |             |  |
|                  | •                |                     |                |                                |                  |                  |             |  |
|                  | •                | 2.2 CWC alook       | noriodo        |                                |                  |                  |             |  |
|                  | 00 0010 =        | 1-2 CWG clock       | periods        |                                |                  |                  |             |  |
|                  | 00 0000 =        | 0 CWG clock p       | eriods. Dead-  | band generatio                 | n is bypassed.   |                  |             |  |
|                  |                  | · · - • • • • • • • |                | 35110101010                    |                  |                  |             |  |

#### REGISTER 20-9: CWGxDBF: CWGx FALLING DEAD-BAND COUNT REGISTER

# 25.1 DSM Operation

The DSM module can be enabled by setting the MDEN bit in the MDCON register. Clearing the MDEN bit in the MDCON register, disables the DSM module by automatically switching the carrier high and carrier low signals to the Vss signal source. The modulator signal source is also switched to the MDBIT in the MDCON register. This not only assures that the DSM module is inactive, but that it is also consuming the least amount of current.

The values used to select the carrier high, carrier low, and modulator sources held by the Modulation Source, Modulation High Carrier, and Modulation Low Carrier control registers are not affected when the MDEN bit is cleared and the DSM module is disabled. The values inside these registers remain unchanged while the DSM is inactive. The sources for the carrier high, carrier low and modulator signals will once again be selected when the MDEN bit is set and the DSM module is again enabled and active.

The modulated output signal can be disabled without shutting down the DSM module. The DSM module will remain active and continue to mix signals, but the output value will not be sent to the DSM pin. During the time that the output is disabled, the DSM pin will remain low. The modulated output can be disabled by clearing the MDEN bit in the MDCON register.

#### 25.2 Modulator Signal Sources

The modulator signal can be supplied from the following sources:

- CCP1 Output
- CCP2 Output
- PWM5 Output
- PWM6 Output
- MSSP1 SDO1 (SPI mode only)
- MSSP2 SDO2 (SPI mode only)
- Comparator C1 Output
- Comparator C2 Output
- EUSART1 TX Output
- External Signal on MDMIN pin
- NCO1 Output
- CLC1 Output
- CLC2 Output
- CLC3 Output
- CLC4 Output
- MDBIT bit in the MDCON register

The modulator signal is selected by configuring the MDMS <3:0> bits in the MDSRC register.

## 25.3 Carrier Signal Sources

The carrier high signal and carrier low signal can be supplied from the following sources:

- CCP1 Output
- CCP2 Output
- PWM5 Output
- PWM6 Output
- NCO1 Output
- · Fosc (System Clock)
- HFINTOSC
- CLC1 Output
- CLC2 Output
- CLC3 Output
- CLC4 Output
- CLKR
- External Signal on MDCIN1 pin
- External Signal on MDCIN2 pin
- Vss

The carrier high signal is selected by configuring the MDCH <3:0> bits in the MDCARH register. The carrier low signal is selected by configuring the MDCL <3:0> bits in the MDCARL register.

# 25.4 Carrier Synchronization

During the time when the DSM switches between carrier high and carrier low signal sources, the carrier data in the modulated output signal can become truncated. To prevent this, the carrier signal can be synchronized to the modulator signal. When the modulator signal transitions away from the synchronized carrier, the unsynchronized carrier source is immediately active, while the synchronized carrier remains active until its next falling edge. When the modulator signal transitions back to the synchronized carrier, the unsynchronized carrier is immediately disabled, and the modulator waits until the next falling edge of the synchronized carrier before the synchronized carrier becomes active.

Synchronization is enabled separately for the carrier high and carrier low signal sources. Synchronization for the carrier high signal is enabled by setting the MDCHSYNC bit in the MDCARH register. Synchronization for the carrier low signal is enabled by setting the MDCLSYNC bit in the MDCARL register.

Figure 25-1 through Figure 25-6 show timing diagrams of using various synchronization methods.

#### EQUATION 29-2: PULSE WIDTH

| Pulse Width | = (CCPRxI | H:CCPRxL  | register pair) | • |
|-------------|-----------|-----------|----------------|---|
|             | Torr      | - (T) (D) |                | ` |

TOSC • (TMR2 Prescale Value)

# EQUATION 29-3: DUTY CYCLE RATIO

 $Duty Cycle Ratio = \frac{(CCPRxH:CCPRxL register pair)}{4(PR2 + 1)}$ 

The CCPRxH:CCPRxL register pair and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering provides glitchless PWM operation.

The 8-bit timer TMR2/4/6 register is concatenated with either the 2-bit internal system clock (Fosc), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2/4/6 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH:CCPRxL register pair, then the CCPx pin is cleared (see Figure 29-4).

#### 29.4.6 PWM RESOLUTION

PWM resolution, expressed in number of bits, defines the maximum number of discrete steps that can be present in a single PWM period. For example, a 10-bit resolution will result in 1024 discrete steps, whereas an 8-bit resolution will result in 256 discrete steps.

The maximum PWM resolution is ten bits when PRx is 255. The resolution is a function of the PRx register value as shown by Equation 29-4.

### EQUATION 29-4: PWM RESOLUTION

Resolution = 
$$\frac{\log[4(PRx+1)]}{\log(2)}$$
 bits

**Note:** If the pulse-width value is greater than the period the assigned PWM pin(s) will remain unchanged.

| TABLE 29-1: | EXAMPLE PWM FREQUENCIES AND RESOLUTIONS ( | Fosc = 20 MHz |
|-------------|-------------------------------------------|---------------|

| PWM Frequency             | 1.22 kHz | 4.88 kHz | 19.53 kHz | 78.12 kHz | 156.3 kHz | 208.3 kHz |
|---------------------------|----------|----------|-----------|-----------|-----------|-----------|
| Timer Prescale            | 16       | 4        | 1         | 1         | 1         | 1         |
| PRx Value                 | 0xFF     | 0xFF     | 0xFF      | 0x3F      | 0x1F      | 0x17      |
| Maximum Resolution (bits) | 10       | 10       | 10        | 8         | 7         | 6.6       |

#### TABLE 29-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

| PWM Frequency             | 1.22 kHz | 4.90 kHz | 19.61 kHz | 76.92 kHz | 153.85 kHz | 200.0 kHz |
|---------------------------|----------|----------|-----------|-----------|------------|-----------|
| Timer Prescale            | 16       | 4        | 1         | 1         | 1          | 1         |
| PRx Value                 | 0x65     | 0x65     | 0x65      | 0x19      | 0x0C       | 0x09      |
| Maximum Resolution (bits) | 8        | 8        | 8         | 6         | 5          | 5         |

#### 29.4.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2/4/6 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2/4/6 will continue from its previous state.

#### 29.4.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See **Section 7.0 "Oscillator Module"** for additional details.

#### 29.4.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

# 30.6 I<sup>2</sup>C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM<3:0> bits in the SSPxCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the  $I^2C$  bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I<sup>2</sup>C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSPxIF, to be set (SSP interrupt, if enabled):

- Start condition generation
- Stop condition generation
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
  - Note 1: The MSSPx module, when configured in I<sup>2</sup>C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur
    - 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

# 30.6.1 I<sup>2</sup>C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I<sup>2</sup>C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See Section 30.7 "Baud Rate Generator" for more detail.

### 30.6.5 I<sup>2</sup>C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 30-27) occurs when the RSEN bit of the SSPxCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- **Note 1:** If RSEN is programmed while any other event is in progress, it will not take effect.
  - **2:** A bus collision during the Repeated Start condition occurs if:
    - SDA is sampled low when SCL goes from low-to-high.
    - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

# FIGURE 30-27: REPEATED START CONDITION WAVEFORM



# 30.6.7 I<sup>2</sup>C MASTER MODE RECEPTION

Master mode reception (Figure 30-29) is enabled by programming the Receive Enable bit, RCEN bit of the SSPxCON2 register.

| Note: | The MSSPx module must be in an Idle     |  |  |  |  |  |  |
|-------|-----------------------------------------|--|--|--|--|--|--|
|       | state before the RCEN bit is set or the |  |  |  |  |  |  |
|       | RCEN bit will be disregarded.           |  |  |  |  |  |  |

The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/low-to-high) and data is shifted into the SSPxSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPxSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSPx is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPxCON2 register.

#### 30.6.7.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPxSR. It is cleared when the SSPxBUF register is read.

#### 30.6.7.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when eight bits are received into the SSPxSR and the BF flag bit is already set from a previous reception.

#### 30.6.7.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPxSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

#### 30.6.7.4 Typical Receive Sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. User writes SSPxBUF with the slave address to transmit and the R/W bit set.
- 5. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- 6. The MSSPx module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- The MSSPx module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 8. User sets the RCEN bit of the SSPxCON2 register and the master clocks in a byte from the slave.
- 9. After the eighth falling edge of SCL, SSPxIF and BF are set.
- 10. Master clears SSPxIF and reads the received byte from SSPxBUF, clears BF.
- 11. Master sets ACK value sent to slave in ACKDT bit of the SSPxCON2 register and initiates the ACK by setting the ACKEN bit.
- 12. Master's ACK is clocked out to the slave and SSPxIF is set.
- 13. User clears SSPIF.
- 14. Steps 8-13 are repeated for each received byte from the slave.
- 15. Master sends a not ACK or Stop to end communication.

## TABLE 35-3:POWER-DOWN CURRENTS (IPD)

| PIC16LF18326/18346 |           |                                          | Standard Operating Conditions (unless otherwise stated)               |       |       |                 |          |      |                                  |  |
|--------------------|-----------|------------------------------------------|-----------------------------------------------------------------------|-------|-------|-----------------|----------|------|----------------------------------|--|
| PIC16F18326/18346  |           |                                          | Standard Operating Conditions (unless otherwise stated)<br>VREGPM = 1 |       |       |                 |          |      |                                  |  |
| Param.             | Cumhal    | Device Oberneterieties                   | Min                                                                   | True  | Max.  | Max.            | Units    |      | Conditions                       |  |
| No.                | Symbol    | Device Characteristics                   | win.                                                                  | тур.т | +85°C | +125°C          |          | Vdd  | Note                             |  |
| D200               | IPD       | IPD Base                                 | —                                                                     | 0.05  | 2     | 9               | μA       | 3.0V |                                  |  |
| D200               | IPD       | IPD Base                                 |                                                                       | 0.8   | 4     | 12              | μA       | 3.0V |                                  |  |
|                    |           |                                          |                                                                       | 13    | 22    | 27              | μA       | 3.0V | VREGPM = Q                       |  |
| D201               | IPD_WDT   | Low-Frequency Internal<br>Oscillator/WDT | -                                                                     | 0.8   | 5     | 13              | μA       | 3.0V | $\sim$                           |  |
| D201               | IPD_WDT   | Low-Frequency Internal<br>Oscillator/WDT | —                                                                     | 0.9   | 5     | 13              | μA       | 3.0V |                                  |  |
| D202               | IPD_SOSC  | Secondary Oscillator (SOSC)              | —                                                                     | 0.6   | 5     | 13              | μA       | 3.0V |                                  |  |
| D202               | IPD_SOSC  | Secondary Oscillator (SOSC)              |                                                                       | 0.8   | 9     | 15~             | μA       | 3.00 | $\searrow$                       |  |
| D203               | IPD_FVR   | FVR                                      | —                                                                     | 40    | 47    | 4۲ ۲            | μA       | 3.0V | V                                |  |
| D203               | IPD_FVR   | FVR                                      |                                                                       | 33    | 44    | 44              | ∖µA∕     | 3.0V |                                  |  |
| D204               | IPD_BOR   | Brown-out Reset (BOR)                    | —                                                                     | 12    | 17⁄\  | 19 \            | μÁ       | 3.0V |                                  |  |
| D204               | IPD_BOR   | Brown-out Reset (BOR)                    | —                                                                     | 12    | 18    | 20              | \μA      | 3.0V |                                  |  |
| D205               | IPD_LPBOR | Low Power Brown-out Reset (LPBOR)        | -                                                                     | 3 <   | 5     | 13              | µ́A<br>≻ | 3.0V |                                  |  |
| D205               | IPD_LPBOR | Low Power Brown-out Reset (LPBOR)        | -                                                                     | 4     | 5     | 13              | μΑ       | 3.0V |                                  |  |
| D207               | IPD_ADCA  | ADC - Active                             | $\nearrow$                                                            | 0.9   | 5     | <sup>√</sup> 13 | μA       | 3.0V | ADC is converting <sup>(4)</sup> |  |
| D207               | IPD_ADCA  | ADC - Active                             | $\neq \prime$                                                         | 9.0   | 5     | 13              | μΑ       | 3.0V | ADC is converting <sup>(4)</sup> |  |
| D208               | IPD_CMP   | Comparator                               | $\langle - \rangle$                                                   | 32    | 43    | 45              | μA       | 3.0V |                                  |  |
| D208               | IPD_CMP   | Comparator                               |                                                                       | 4 31  | 42    | 44              | μA       | 3.0V |                                  |  |

These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note 1:** The peripheral current is the sum of the base IPD and the additional current consumed when this peripheral is enabled. The peripheral  $\Delta$  current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.



| Standard Operating Conditions (unless otherwise stated) |                |                        |      |                           |      |                   |                |  |
|---------------------------------------------------------|----------------|------------------------|------|---------------------------|------|-------------------|----------------|--|
| Param.<br>No.                                           | Sym.           | Characteristic         | Min. | Тур.†                     | Max. | Units             | Conditions     |  |
| ECL Os                                                  | cillator       |                        |      |                           |      |                   |                |  |
| OS1                                                     | FECL           | Clock Frequency        | —    | —                         | 500  | kHz               |                |  |
| OS2                                                     | TECL_DC        | Clock Duty Cycle       | 40   | —                         | 60   | %                 |                |  |
| ECM Os                                                  | ECM Oscillator |                        |      |                           |      |                   |                |  |
| OS3                                                     | FECM           | Clock Frequency        | —    | —                         | 4    | MHz               | Nøte 4         |  |
| OS4                                                     | TECM_DC        | Clock Duty Cycle       | 40   | —                         | 60   | %                 |                |  |
| ECH Os                                                  | cillator       |                        |      |                           |      |                   | $\frown$       |  |
| OS5                                                     | FECH           | Clock Frequency        | —    |                           | 32   | MHz               |                |  |
| OS6                                                     | TECH_DC        | Clock Duty Cycle       | 40   | —                         | 60   | %                 |                |  |
| LP Osci                                                 | llator         | ·                      |      | ·                         | ~    |                   |                |  |
| OS7                                                     | Flp            | Clock Frequency        | _    |                           | 100  | KHz               | Note 4         |  |
| XT Osci                                                 | XT Oscillator  |                        |      |                           |      |                   |                |  |
| OS8                                                     | Fxt            | Clock Frequency        | _    |                           | 4    | MHz               | Note 4         |  |
| HS Osc                                                  | illator        |                        |      | $\langle \rangle$         |      | $\langle \rangle$ |                |  |
| OS9                                                     | FHS            | Clock Frequency        | □    |                           | 20   | ∕∕MHz             | Note 4         |  |
| System Clock                                            |                |                        |      |                           |      |                   |                |  |
| OS20                                                    | Fosc           | System Clock Frequency |      | $\backslash - \backslash$ | 32   | MHz               | Note 2, Note 3 |  |
| OS21                                                    | FCY            | Instruction Frequency  |      | Fosc/4                    | >-   | MHz               |                |  |
| OS22                                                    | Тсү            | Instruction Period     | 125  | 1/Fey                     | —    | ns                |                |  |
|                                                         |                |                        |      |                           |      |                   |                |  |

## TABLE 35-7: EXTERNAL CLOCK/OSCILLATOR TIMING REQUIREMENTS<sup>(1)</sup>

These parameters are characterized but not tested.

+ Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** Instruction cycle period (Tcy) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" no clock) for all devices.
  - 2: The system clock frequency (Fosc) is selected by the "main clock switch controls" as described in Section 7.3 "Clock Switching".
  - 3: The system clock frequency (Fosc) must meet the voltage requirements defined in the Section 35.2 "Standard Operating Conditions". LP, XT and HS oscillator modes require an appropriate crystal or resonator to be connected to the device.
  - 4: For clocking the device with an external square wave, one of the EC mode selections must be used.

# Package Marking Information (Continued)



# 20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging









VIEW A-A

Microchip Technology Drawing C04-094C Sheet 1 of 2

© 2016-2017 Microchip Technology Inc.

# 20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                         | MILLIMETERS      |           |                |      |  |  |
|-------------------------|------------------|-----------|----------------|------|--|--|
| Dimension               | Dimension Limits |           |                | MAX  |  |  |
| Number of Terminals     | N                | 20        |                |      |  |  |
| Pitch                   | е                |           | 0.50 BSC       |      |  |  |
| Overall Height          | Α                | 0.45      | 0.45 0.50 0.55 |      |  |  |
| Standoff                | A1               | 0.00      | 0.02           | 0.05 |  |  |
| Terminal Thickness      | A3               | 0.127 REF |                |      |  |  |
| Overall Width           | E                | 4.00 BSC  |                |      |  |  |
| Exposed Pad Width       | E2               | 2.60      | 2.70           | 2.80 |  |  |
| Overall Length          | D                | 4.00 BSC  |                |      |  |  |
| Exposed Pad Length      | D2               | 2.60      | 2.70           | 2.80 |  |  |
| Terminal Width          | b                | 0.20      | 0.25           | 0.30 |  |  |
| Terminal Length         | L                | 0.30      | 0.40           | 0.50 |  |  |
| Terminal-to-Exposed-Pad | K                | 0.20      | -              | -    |  |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-255A Sheet 2 of 2