

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	M16C/60
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, I ² C, IEBus, SIO, UART/USART
Peripherals	DMA, POR, PWM, Voltage Detect, WDT
Number of I/O	71
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 27x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30290fathp-u3a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notes regarding these materials

- This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
 You should not use the products or the technology described in this document for the purpose of military
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below: (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

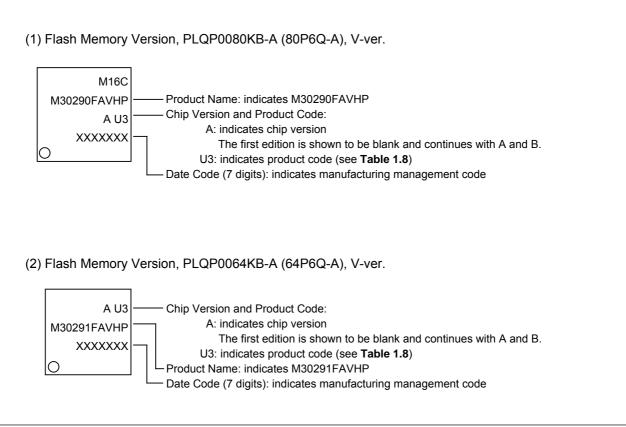


Figure 1.6 Marking Diagrams of Flash Memory Version - M16C/29 Group V-ver. (Top View)

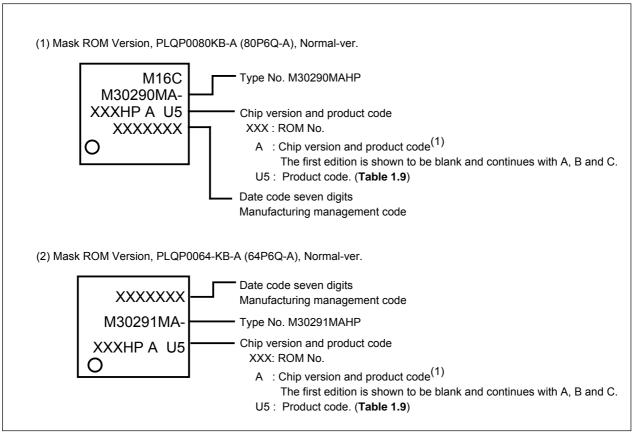
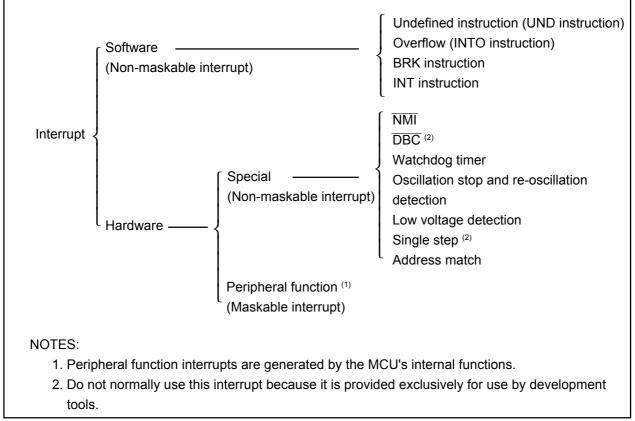


Figure 1.7 Marking Diagrams of Mask ROM Version - M16C/29 Group Normal-ver. (Top View)

Table 4.2 SFR Information (2)

Address	Register	Symbol	After reset
004016			
004116	CAN0 wakeup interrupt control register	C01WKIC	XXXXX0002
004216	CANO successful reception interrupt control register	CORECIC	XXXXX0002
004316	CAN0 successful transmission interrupt control register		XXXXX0002
004416	INT3 interrupt control register	INT3IC	XX00X0002
004516	ICOC 0 interrupt control register		XXXXX0002
004616	ICOC 1 interrupt control register, I ² C bus interface interrupt control register 1 ICOC base timer interrupt control register, ScL/SDA interrupt control register 2	ICOC1IC,IICIC BTIC,SCLDAIC	XXXXX0002 XXXXX0002
0047 ₁₆ 0048 ₁₆	SI/O4 interrupt control register, INT5 interrupt control register	S4IC, INT5IC	XX00X0002
004916	SI/O3 interrupt control register, INT4 interrupt control register	S3IC, INT4IC	XX00X0002
004A16	UART2 Bus collision detection interrupt control register	BCNIC	XXXXX0002
004B16	DMA0 interrupt control register	DM0IC	XXXXX0002
004C16	DMA1 interrupt control register	DM1IC	XXXXX0002
004D16	CAN0 error interrupt control register	C01ERRIC	XXXXX0002
004E16	A/D conversion interrupt control register, Key input interrupt control register (Note 2)	ADIC, KUPIC	XXXXX0002
004F16	UART2 transmit interrupt control register	S2TIC	XXXXX0002
005016	UART2 receive interrupt control register	S2RIC	XXXXX0002
005116	UART0 transmit interrupt control register	SOTIC	XXXXX0002
005216	UART0 receive interrupt control register	SORIC	XXXXX0002
005316	UART1 transmit interrupt control register	S1TIC	XXXXX0002
005416	UART1 receive interrupt control register	S1RIC	XXXXX0002
005516	TimerA0 interrupt control register	TAOIC	XXXXX0002
005616	TimerA1 interrupt control register TimerA2 interrupt control register	TA1IC TA2IC	XXXXX0002 XXXXX0002
0057 ₁₆ 0058 ₁₆	TimerA2 Interrupt control register	TA3IC	XXXXX0002
005816	TimerA4 interrupt control register	TA4IC	XXXXX0002
005A16	TimerB0 interrupt control register	TBOIC	XXXXX0002
005B16	TimerB1 interrupt control register	TB1IC	XXXXX0002
005C16	TimerB2 interrupt control register	TB2IC	XXXXX0002
005D16	INTO interrupt control register	INTOIC	XX00X0002
005E16	INT1 interrupt control register	INT1IC	XX00X0002
005F16	INT2 interrupt control register	INT2IC	XX00X0002
006016	CAN0 message box 0: Identifier/DLC		XX16
006116			XX16
006216			XX16
006316			XX16
006416			XX16
006516	CANO magazara hay 0 : Data field		XX16 XX16
006616 006716	CAN0 message box 0 : Data field		XX16
006716 006816			XX16
006916			XX16
006A16			XX16
006B16			XX16
006C16			XX16
006D16			XX16
006E16	CAN0 message box 0 : Time stamp		XX16
006F16			XX16
007016	CAN0 message box 1 : Identifier/DLC		XX16
007116			XX16
007216			XX16
007316			XX16
007416			XX16
007516	CANO mossage hav 1 : Data field		XX16 XX16
0076 ₁₆ 0077 ₁₆	CAN0 message box 1 : Data field		XX16 XX16
007716 007816			XX16
007816 007916			XX16
007916 007A16			XX16
007B16			XX16
007C16			XX16
007D16			XX16
	CAN0 message box 1 : Time stamp		XX16
007E16			

Note 1: The blank areas are reserved and cannot be used by users. Note 2: A/D conversion interrupt control register is effective when the bit1(Interrupt source select register (address 35Eh IFSR2A) is set to "0". Key input interrupt control register is effective when the bit1 is set to "1". X : Undefined


9. Interrupts

Note

The SI/O4 interrupt of peripheral function interrupts is not available in the 64-pin package. The low voltage detection function is not available in M16C/29 T-ver. and V-ver..

9.1 Type of Interrupts

Figure 9.1 shows types of interrupts.

Figure 9.1 Interrupts

- Maskable Interrupt: An interrupt which can be enabled (disabled) by the interrupt enable flag (I flag) or
 whose interrupt priority <u>can be changed</u> by priority level.
- Non-maskable Interrupt: An interrupt which cannot be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority <u>cannot be changed</u> by priority level.

7 b6 b5 b4 b3 b2 b		Symbol INVC1	Address 034916	After Reset 0016	
	ļļ	Bit Symbol	Bit Name	Function	RW
	-	INV10	Timer A1, A2, A4 start trigger signal select bit	0: Timer B2 underflow 1: Timer B2 underflow and write to the TB2 register ⁽²⁾	RW
		INV11	Timer A1-1, A2-1, A4-1 control bit (3)	0: Three-phase mode 0 (4) 1: Three-phase mode 1	RW
		INV12	Dead time timer count source select bit	0: f1 or f2 1: f1 divided by 2 or f2 divided by 2	RW
		INV13	Carrier wave detect flag ⁽⁵⁾	0: Timer Reload control signal is set to 0 1: Timer Reload control signal is set to 1	RO
	[INV14	Output polarity control bit	0 : Output waveform "L" active 1 : Output waveform "H" active	RW
		INV15	Dead time invalid bit	0: Dead time timer enabled 1: Dead time timer disabled	RW
		INV16	Dead time timer trigger select bit	 0: Falling edge of timer A4, A1 or A2 one-shot pulse 1: Rising edge of three-phase output shift register (U, V or W phase) output⁽⁶⁾ 	RW
		Reserved bit	Set to 0	RW	

NOTES:

- 1. Write to this register after setting the PRC1 bit in the PRCR register to 1 (write enable). Note also that this register can only be rewritten when timers A1, A2, A4 and B2 are idle.
- 2. A start trigger is generated by writing to the TB2 register only while timer B2 stops.
- 3. The effects of the INV11 bit are described in the table below.

Item	INV11=0	INV11=1
Mode	Three-phase mode 0	Three-phase mode 1
TA11, TA21, TA41 registers	Not Used	Used
INV00 bit, INV01 bit	Has no effect. ICTB2 counted every time timer B2 underflows regardless of whether bits INV00 and INV01 are set	Effect
INV13 bit	Has no effect	Effective when INV11 bit is 1 and INV06 bit is 0

4. If the INV06 bit is 1 (sawtooth wave modulation mode), set this bit to 0 (three-phase mode 0). Also, if the INV11 bit is 0, set the PWCON bit to 0 (timer B2 reloaded by a timer B2 underflow).

5. The INV13 bit is effective only when the INV06 bit is set to 0 (triangular wave modulation mode) and the INV11 bit is set to 1 (three-phase mode 1).

6. If all of the following conditions hold true, set the INV16 bit to 1 (dead time timer triggered by the rising edge of threephase output shift register output)

• The INV15 bit is 0 (dead time timer enabled)

• When the INV03 bit is set to 1 (three-phase motor control timer output enabled), the Dij bit and DiBj bit (i:U, V, or W, j: 0 to 1) have always different values (the positive-phase and negative-phase always output different levels during the period other than dead time).

Conversely, if either one of the above conditions holds false, set the INV16 bit to 0 (dead time timer triggered by the falling edge of one-shot pulse).

Figure 12.27 INVC1 Register

b7 b6 b5 b4 b3 b2 b1 b0	Symbol IDB0 IDB1	Address 034A16 034B16	After Reset 001111112 001111112	
	Bit Symbol	Bit Name	Function	RW
	DUi	U phase output buffer i	Write the output level 0: Active level	RW
	DUBi	Ū phase output buffer i	1: Inactive level	RW
	DVi	V phase output buffer i	When read, these bits show the three-phase output shift register value.	RW
	DVBi	\overline{V} phase output buffer i		RW
	DWi	W phase output buffer i		RW
	DWBi	\overline{W} phase output buffer i		RW
(b7-b6)		Nothing is assigned. If nece these contents are 0	ssary, set to 0. When read,	RO

NOTE:

1. Registers IDB0 and IDB1 values are transferred to the three-phase shift register by a transfer trigger. The value written to the IDB0 register aftera transfer trigger represents the output signal of each phase, and the next value written to the IDB1 register at the falling edge of the timer A1, A2, or A4 one-shot pulse represents the output signal of each phase.

Dead Time Timer (1, 2)

b7 b0	Symbol DTT	Address 034C16	After Re Undefine		
		Function		Setting Range	RW
	counting the count after counting it n t whichever is going	value = n, upon a start tri, souce selected by the IN imes. The positive or ne from an inactive to an a ne dead time timer stops.	VV12 bit and stops gative phase ctive level changes	1 to 255	wo

NOTES:

1. Use MOV instruction to write to this register.

2. Effective when the INV15 bit is set to 0 (dead time timer enable). If the INV15 bit is set to 1, the dead time timer is disabled and has no effect.

Timer B2 Interrupt Occurrences Frequency Set Counter

b7 b6 b5 b4 b3	- b0	Symbol ICTB2	Address 034D16	After F Undef		
			Function		Setting Range	RW
		time timer B2 unde = n, a timer B2 into occurrence of a tir If the INV01 bit is selected by the IN = n, a timer B2 into	1 (ICTB2 counter co V00 bit), assuming errupt is generated mer B2 underflow th	the set value at every <i>n</i> th punt timing the set value at every <i>n</i> th	1 to 15	WO
		Nothing is assigne undefined.	ed. When write, set	to "0". When re	ad, the content is	
NOTE	-					

NOTE

1. Use MOV instruction to write to this register.

If the INV01 bit is set to 1, make sure the TB2S bit also is set to 0 (timer B2 count stopped) when writing to this register. If the INV01 bit is set to 0, although this register can be written even when the TB2S bit is set to 1 (timer B2 count start), do not write synchronously with a timer B2 underflow.

RENESAS

') (b	8 0)b7	b0	G1TM3	Address to G1TM2 030116-030016, to G1TM5 030716-030616, to G1TM7 030D16-030C16,	030916-030816	030B16-030A16 Indeter	minte minte
		Γ		Function		Setting Range	RW
				e timer value is stored eve ment timing	ry		RO
			Symb G1PC	OCR0 to G1POCR3 03	(j=0 to 7) dress 1016, 031116, 03 1416, 031516, 03	After R 31216, 031316 0X00 >	(X002
			Bit Symbol	Bit Name		Function	RW
			MOD0	Operating mode	01: SR wav	vaveform output mode eform output mode ⁽¹⁾	RW
			MOD1	select bit	output r	delayed waveform node set to this value	RW
			(b3-b2)	Nothing is assigned. If I When read, their conten			-
			IVL	Output initial value select bit ⁽⁴⁾		t as a default value t as a default value	RW
·			RLD	G1POj register value reload timing select bit	value is w 1: Reloads t	he G1POj register when vritten he G1POj register when timer is reset	RW
			(b6)	Nothing is assigned. If When read, its content i		t to 0.	-
			INV	Inverse output function select bit ⁽²⁾	0: Output is 1: Output is	not inversed inversed	RW
corr prov 2. The to 1 prov 3. In the char 4. To p	s setting respond vide way inverse , and "H vided by he SR v nnel (ne provide	ing odd ch veform out e output fur f" signal is v setting it t vaveform c ext channe either "H"	annel (nex put. Odd nction is th provided to 1. output moo l after the or "L" sign	even channels. In SR way of channel after an even c channels provide no wave le final step in waveform g a default output by setting de, set not only the even c even channel). al output set in the IVL bit inction) and IFEj bit in the 0	hannel) are ig eform output. generating pro- the IVL bit to channel but als s, set the FSC	nored. Even channels becess. When the INV bit i 0, and an "L" signal is so the correspoinding ev j bit in the G1FS register	s set en to 0

Figure 13.6 G1TM0 to G1TM7 Registers, and G1POCR0 to G1POCR7 Registers

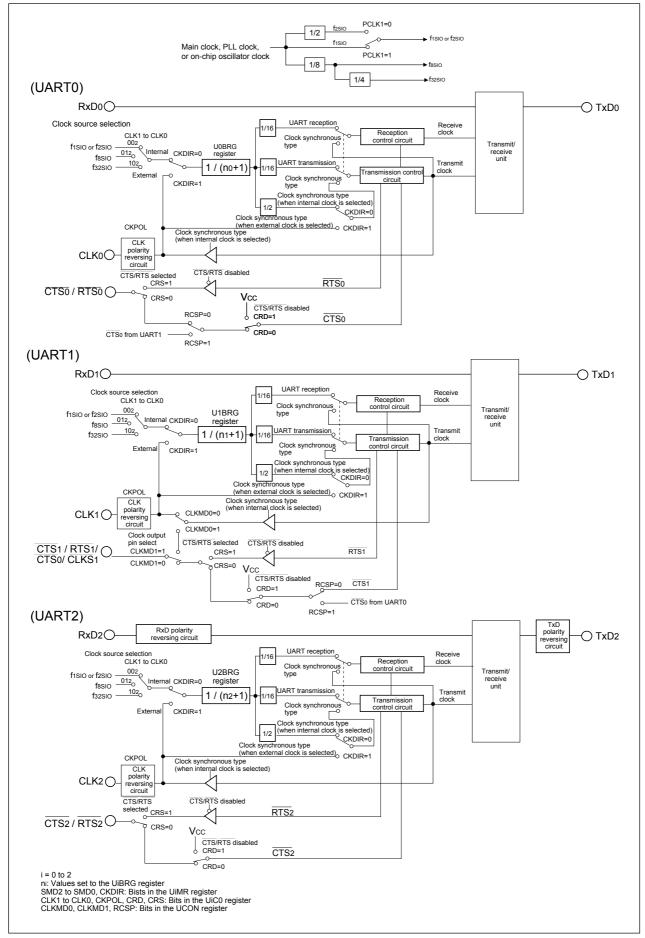


Figure 14.1 Block diagram of UARTi (i = 0 to 2)

RENESAS

14.1.1 Clock Synchronous serial I/O Mode

The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. **Table 14.1** lists the specifications of the clock synchronous serial I/O mode. **Table 14.2** lists the registers used in clock synchronous serial I/O mode and the register values set.

Table 14.1 Clock Synchronous Serial I/O Mode Specifications

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	• The CKDIR bit in the UiMR(i=0 to 2) register is set to 0 (internal clock) : fj/ (2(n+1))
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of UiBRG register 0016 to FF16
	• CKDIR bit is set to 1 (external clock): Input from CLKi pin
Transmission, reception control	Selectable from CTS function, RTS function or CTS/RTS function disable
Transmission start condition	 Before transmission can start, the following requirements must be met ⁽¹⁾
	– The TE bit in the UiC1 register is set to 1 (transmission enabled)
	– The TI bit in the UiC1 register is set to 0 (data present in UiTB register)
	– If $\overline{\text{CTS}}$ function is selected, input on the $\overline{\text{CTS}}$ i pin is set to "L"
Reception start condition	Before reception can start, the following requirements must be met ⁽¹⁾
	– The RE bit in the UiC1 register is set to 1 (reception enabled)
	– The TE bit in the UiC1 register is set to 1 (transmission enabled)
	- The TI bit in the UiC1 register is set to 0 (data present in the UiTB register)
Interrupt request	For transmission, one of the following conditions can be selected
generation timing	– The UiIRS bit ⁽³⁾ is set to 0 (transmit buffer empty): when transferring data from the
	UiTB register to the UARTi transmit register (at start of transmission)
	- The UiIRS bit is set to 1 (transfer completed): when the serial I/O finished sending
	data from the UARTi transmit register
	For reception
	When transferring data from the UARTi receive register to the UiRB register (at
	completion of reception)
Error detection	Overrun error ⁽²⁾
	This error occurs if the serial I/O started receiving the next data before reading the
	UiRB register and received the 7th bit in the the next data
Select function	CLK polarity selection
	Transfer data input/output can be chosen to occur synchronously with the rising or
	the falling edge of the transfer clock
	LSB first, MSB first selection
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7
	can be selected
	Continuous receive mode selection
	Reception is enabled immediately by reading the UiRB register
	Switching serial data logic (UART2)
	This function reverses the logic value of the transmit/receive data
	Transfer clock output from multiple pins selection (UART1)
	The output pin can be selected in a program from two UART1 transfer clock pins that
	have been set
	Separate CTS/RTS pins (UART0)
	CTS0 and RTS0 are input/output from separate pins
	UART1 pin remapping selection
	The UART1 pin can be selected from the P67 to P64 or P73 to P70
IOTES:	

1. When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register is set to 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register is set to 1 (transmit data output at the rising edge and the receive data taken in at the rising edge and the receive data taken in at the set to 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register is set to 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.

2. If an overrun error occurs, bits 8 to 0 in the UiRB register are undefined. The IR bit in the SiRIC register remains unchanged.

3. The U0IRS and U1IRS bits respectively are the bits 0 and 1 in the UCON register; the U2IRS bit is bit 4 in the U2C1 register.

14.1.2 Clock Asynchronous Serial I/O (UART) Mode

The UART mode allows transmitting and receiving data after setting the desired bit rate and transfer data format. **Table 14.5** lists the specifications of the UART mode.

Item	Specification
Transfer data format	 Character bit (transfer data): Selectable from 7, 8 or 9 bits
	Start bit: 1 bit
	 Parity bit: Selectable from odd, even, or none
	Stop bit: Selectable from 1 or 2 bits
Transfer clock	 The CKDIR bit in the UiMR(i=0 to 2) register is set to 0 (internal clock) : fj/ (16(n+1))
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of UiBRG register 0016 to FF16
	 CKDIR bit is set to 1 (external clock): fEXT/16(n+1)
	fEXT: Input from CLKi pin. n :Setting value of UiBRG register 0016 to FF16
Transmission, reception control	 Selectable from CTS function, RTS function or CTS/RTS function disable
Transmission start condition	 Before transmission can start, the following requirements must be met
	– The TE bit in the UiC1 register is set to 1 (transmission enabled)
	 The TI bit in the UiC1 register is set to 0 (data present in UiTB register)
	– If \overline{CTS} function is selected, input on the \overline{CTS} i pin is set to "L"
Reception start condition	 Before reception can start, the following requirements must be met"
	 The RE bit in the UiC1 register is set to 1 (reception enabled)
	- Start bit detection
	 For transmission, one of the following conditions can be selected
Interrupt request	– The UiIRS bit ⁽²⁾ is set to 0 (transmit buffer empty): when transferring data from the
generation timing	UiTB register to the UARTi transmit register (at start of transmission)
5	– The UiIRS bit is set to1 (transfer completed): when the serial I/O finished sending
	data from the UARTi transmit register
	For reception
	When transferring data from the UARTi receive register to the UiRB register (at
	completion of reception)
Error detection	Overrun error ⁽¹⁾
	This error occurs if the serial I/O started receiving the next data before reading the
	UiRB register and received the bit one before the last stop bit in the the next data
	Framing error
	This error occurs when the number of stop bits set is not detected
	Parity error
	This error occurs when if parity is enabled, the number of 1 in parity and
	character bits does not match the number of 1 set
	Error sum flag
	This flag is set to 1 when any of the overrun, framing, and parity errors is encountered
Select function	LSB first, MSB first selection
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7
	can be selected
	Serial data logic switch (UART2)
	This function reverses the logic of the transmit/receive data. The start and stop bits
	are not reversed.
	TxD, RxD I/O polarity switch (UART2)
	This function reverses the polarities of hte TxD pin output and RxD pin input. The
	logic levels of all I/O data is reversed.
	Separate CTS/RTS pins (UART0)
	CTS0 and RTS0 are input/output from separate pins
	• UART1 pin remapping selection

Table 14.5 UART Mode Specifications

NOTES:

1. If an overrun error occurs, bits 8 to 0 in the UiRB register are undefined. The IR bit in the SiRIC register remains unchange.

2. Bits U0IRS and U1IRS respectively are the UCON register bits 0 and 1; the U2IRS bit is the U2C1 register bit 4.

Table 14.6 Registers to Be Used and Settings in UART Mode

Register	Bit	Function				
UiTB	0 to 8	Set transmission data ⁽¹⁾				
UiRB	0 to 8	Reception data can be read ⁽¹⁾				
	OER,FER,PER,SUM	Error flag				
UiBRG	0 to 7	Set bit rate				
UiMR	SMD2 to SMD0	Set these bits to 1002 when transfer data is 7 bits long				
		Set these bits to 1012 when transfer data is 8 bits long				
		Set these bits to 1102 when transfer data is 9 bits long				
	CKDIR	Select the internal clock or external clock				
	STPS	Select the stop bit				
	PRY, PRYE	Select whether parity is included and whether odd or even				
	IOPOL(i=2) (4)	Select the TxD/RxD input/output polarity				
UiC0	CLK0, CLK1	Select the count source for the UiBRG register				
	CRS	Select CTS or RTS to use				
	TXEPT	Transmit register empty flag				
	CRD	Enable or disable the $\overline{\text{CTS}}$ or $\overline{\text{RTS}}$ function				
	NCH	Select TxDi pin output mode				
	CKPOL	Set to 0				
	UFORM	FORM LSB first or MSB first can be selected when transfer data is 8 bits long. Se				
		bit to 0 when transfer data is 7 or 9 bits long.				
UiC1	TE	Set this bit to 1 to enable transmission				
	TI	Transmit buffer empty flag				
	RE	Set this bit to 1 to enable reception				
	RI	Reception complete flag				
	U2IRS ⁽²⁾	Select the source of UART2 transmit interrupt				
	U2RRM ⁽²⁾	Set to 0				
	UiLCH ⁽³⁾	Set this bit to 1 to use UART2 inverted data logic				
	UiERE ⁽³⁾	Set to 0				
UiSMR	0 to 7	Set to 0				
UiSMR2	0 to 7	Set to 0				
UiSMR3	0 to 7	Set to 0				
UiSMR4	0 to 7	Set to 0				
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt				
	U0RRM, U1RRM	Set to 0				
	CLKMD0	Invalid because CLKMD1 is set to 0				
	CLKMD1	Set to 0				
	RCSP	Set this bit to 1 to accept as input the UART0 $\overline{\text{CTS0}}$ signal from the P64 pin				
	7	Set to 0				

NOTES:

- 1. The bits used for transmit/receive data are as follows: Bit 0 to bit 6 when transfer data is 7 bits long; bits 7 to 0 when transfer data is 8 bits long; bit 0 to bit 8 when transfer data is 9 bits long.
- 2. Set bits 5 and 4 in registers U0C1 and U1C1 to 0. Bits U0IRS, U1IRS, U0RRM and U1RRM are included in the UCON register.
- 3. Set bits 7 and 6 in registers U0C1 and U1C1 to 0.
- 4. Set the bit 7 in registers U0MR and U1MR to 0.

i=0 to 2

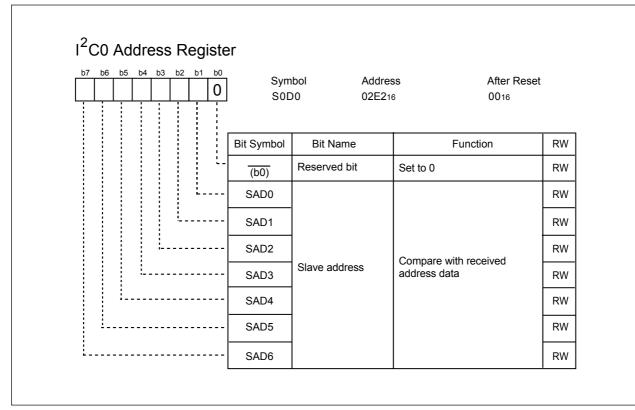


Figure 16.2 S0D0 Register

16.7 I²C0 Control Register 2 (S4D0 Register)

The S4D0 register controls the error communication detection.

If the SCL clock is stopped counting dring data transfer, each device is stopped, staying online. To avoid the situation, the I^2C bus interface circuit has a function to detect the time-out when the SCL clock is stopped in high-level ("H") state for a specific period, and to generate an I^2C bus interface interrupt request. See **Figure 16.13**.

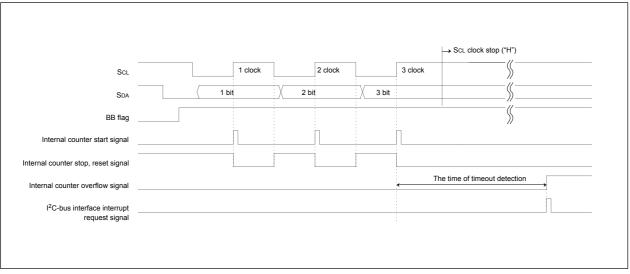
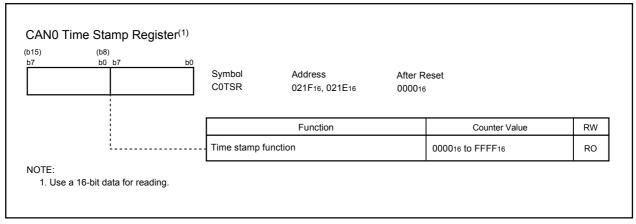



Figure 16.13 The timing of time-out detection

17.1.3.10 C0TSR Register

Figure 17.15 shows the C0TSR register.

Figure 17.15 C0TSR Register

17.1.3.11 COAFS Register

Figure 17.16 shows the COAFS register.

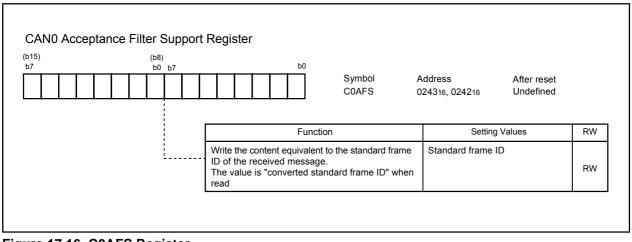


Figure 17.16 C0AFS Register

20.10 Parallel I/O Mode

In parallel input/output mode, the user ROM can be rewritten by a parallel programmer supporting the M16C/29 group. Contact your parallel programmer manufacturer for more information on the parallel programmer. Refer to the user's manual included with your parallel programmer for instructions.

20.10.1 ROM Code Protect Function

The ROM code protect function prevents the flash memory from being read or rewritten. (Refer to **20.3 Functions To Prevent Flash Memory from Rewriting**).

Timing Requirements

Vcc = 5V

(VCC = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 21.17	Timer B Input (Counter Input in Event Counter Mode)
-------------	---

Symbol	Parameter	Standard	Unit	
Symbol	Parameter	Min.	Max.	Unit
tc(TB)	TBin input cycle time (counted on one edge)	100		ns
tw(TBH)	TBin input HIGH pulse width (counted on one edge)	40		ns
tw(TBL)	TBin input LOW pulse width (counted on one edge)	40		ns
tc(TB)	TBin input cycle time (counted on both edges)	200		ns
tw(TBH)	TBin input HIGH pulse width (counted on both edges)	80		ns
tw(TBL)	TBin input LOW pulse width (counted on both edges)	80		ns

Table 21.18 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	dard	Unit
Symbol		Min.	Max.	Unit
tc(TB)	TBin input cycle time	400		ns
tw(TBH)	TBiin input HIGH pulse width	200		ns
tw(TBL)	TBin input LOW pulse width	200		ns

Table 21.19 Timer B Input (Pulse Width Measurement Mode)

Symbol Parameter	Parameter	Stan	dard	Unit
	i didifeter	Min.	Max.	ns
tc(TB)	TBin input cycle time	400		ns
tw(TBH)	TBiin input HIGH pulse width	200		ns
tw(TBL)	TBin input LOW pulse width	200		ns

Table 21.20 A /D Trigger Input

Symbol Parameter	Parameter	Stan	ndard Max.	Unit
	i didificici	Min.	Max.	Offic
tc(AD)	ADTRG input cycle time (trigger able minimum)	1000		ns
tw(ADL)	ADTRG input LOW pulse width	125		ns

Table 21.21 Serial I/O

Symbol	Parameter	Stan	ndard Max.	Unit
Symbol	Falameter	Min.		Unit
tc(CK)	CLKi input cycle time	200		ns
tw(CKH)	CLKi input HIGH pulse width	100		ns
tw(CKL)	CLKi input LOW pulse width	100		ns
td(C-Q)	TxDi output delay time		80	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	70		ns
th(C-D)	RxDi input hold time	90		ns

Table 21.22 External Interrupt INTi Input

Symbol Parameter	Standard		Unit	
Gymbol		Min.	Max.	Unit
tw(INH)	INTi input HIGH pulse width	250		ns
tw(INL)	INTi input LOW pulse width	250		ns

Timing Requirements

Vcc = 5V

(Vcc=5V, Vss=0V, at Topr=-40 to 125°C unless otherwise specified)

Table 21.87 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	dard	Unit
		Min.	Max.	
tc(TA)	TAin Input Cycle Time	100		ns
tw(tah)	TAiıN Input High ("H") Width	40		ns
tw(TAL)	TAin Input Low ("L") Width	40		ns

Table 21.88 Timer A Input (Gating Input in Timer Mode)

Symbol	Deventer	Standard		1.1
	Parameter	Min.	Max.	Unit
tc(ta)	TAin Input Cycle Time	400		ns
tw(tah)	TAiıN Input High ("H") Width	200		ns
tw(TAL)	TAiıN Input Low ("L") Width	200		ns

Table 21.89 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Star	dard	Unit
	Falameter	Min.	Max.	
tc(ta)	TAin Input Cycle Time	200		ns
tw(tah)	TAiıN Input High ("H") Width	100		ns
tw(TAL)	TAiıN Input Low ("L") Width	100		ns

Table 21.90 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Star	ndard	Unit
Symbol	Falameter	Min.	Max.	Unit
tw(tah)	TAiıN Input High ("H") Width	100		ns
tw(TAL)	TAiıN Input Low ("L") Width	100		ns

Table 21.91 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Standard	Unit	
	Falantelei	Min.	Max.	
tc(UP)	TAiout Input Cycle Time	2000		ns
tw(UPH)	TAiout Input High ("H") Width	1000		ns
tw(UPL)	TAiout Input Low ("L") Width	1000		ns
tsu(UP-TIN)	TAiout Input Setup Time	400		ns
th(TIN-UP)	TAiout Input Hold Time	400		ns

Table 21.92 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol Parameter	Parameter	Star	Idard	Unit
	Min.	Max.		
tC(TA)	TAin Input Cycle Time	800		ns
tsu(TAIN-TAOUT)	TAiout Input Setup Time	200		ns
tsu(taout-tain)	TAin Input Setup Time	200		ns

- 8. If the CPU reads the ADi register (i = 0 to 7) at the same time the conversion result is stored in the ADi register after completion of A/D conversion, an incorrect value may be stored in the ADi register. This problem occurs when a divide-by-n clock derived from the main clock or a subclock is selected for CPU clock.
 - When operating in one-shot, single-sweep mode, simultaneous sample sweep mode, delayed trigger mode 0 or delayed trigger mode 1
 - Check to see that A/D conversion is completed before reading the target ADi register. (Check the ADIC register's IR bit to see if A/D conversion is completed.)
 - When operating in repeat mode or repeat sweep mode 0 or 1 Use the main clock for CPU clock directly without dividing it.
- 9. If A/D conversion is forcibly terminated while in progress by setting the ADST bit in the ADCON0 register to 0 (A/D conversion halted), the conversion result of the A/D converter is undefined. The contents of ADi registers irrelevant to A/D conversion may also become undefined. If while A/D conversion is underway the ADST bit is cleared to 0 in a program, ignore the values of all ADi registers.
- 10. When setting the ADST bit in the ADCON register to 0 and terminating forcefully by a program in single sweep conversion mode, A/D delayed trigger mode 0 and A/D delayed trigger mode 1 during A/D converting operation, the A/D interrupt request may be generated. If this causes a problem, set the ADST bit to 0 after an interrupt is disabled.

22.13 Electric Characteristic Differences Between Mask ROM and Flash Memory Version

Flash memory version and mask ROM version may have different characteristics, operating margin, noise tolerated dose, noise width dose in electrical characteristics due to internal ROM, different layout pattern, etc. When switching to the mask ROM version, conduct equivalent tests as system evaluation tests conducted in the flash memory version.

REVISION HISTORY

M16C/29 Hardware Manual

Rev.	Date		Description
		Page	Summary
		329	Table 19.1 Unassigned Pin Handling in Single-chip Mode Note 5 added
			Flash Memory Version
		330	• 20.1 Flash Memory Performance Description partially deleted
			Table 20.14 Flash Memory Version Specifications Note 3 added
		331	• 20.1.1 Boot Mode added
		332	20.2 Memory Map Description is modified
		335	20.3.1 ROM Code Protect Function Description is modified
		336	Figure 20.4 ROMCP Address is modified
		337	Table 20.3 EW Mode 0 and EW Mode 1 Note 2 is modified
		339	• 20.5.1 Flash Memory Control Register 0 FMR01 Bit and FMR02 Bit: descrip-
			tion is modified
		340	• 20.5.2 Flash Memory Control Register 1 (FMR1) FMR6 Bit is modified,
			FMR17 Bit is modified
		341	• Figure 20.6 FMR0 and FMR1 Registers FMR0 register: note 3 modified, value
			after reset modified; FMR1 register: note 3 modified, reserved bit map modified
		342	Figure 20.7 FMR4 Register Note 2 is modified
		345	20.6.3 Interrupts EW1 mode modified
			20.6.4 How to Access FMR16 bit is added
		346	20.6.9 Stop Mode modified
		352	Table 20.7 Errors and FMR0 Register Status Register name modified
		355	Table 20.8 Pin Functions Pin settings are partially modified
			Electrical Characteristics
			 V version is newly added
		366	• Table 21.1 Absolute Maximum Ratings Parameters of Pd and Topr are modi-
			fied
		367	• Table 21.2 Recommended Operating Conditions VIH and VIL are modified
		368	Table 21.3 A/D Conversion Characeristics tSAMP deleted, note 4 added
		369	• Table 21.4 Flash Memory Version Electrical Characteristics: Standard val-
			ues of Program and Erase Endrance cycle modified, tps added
			Table 21.5 Flash Memory Version Electrical Characteristics: tps added, data
			hold time added, note 1, 3, 8 modified, note 11 and 12 added
		370	Table 21.6 Low Voltage Detection Circuit Electrical Characteristics Note 4
			added
			Table 21.7 Power Supply Circuit from Timing CharacteristicsL Note 2 & 3
			are deleted, figure modified
		372	Table 21.9 Electrical Characteristics(2) Note 5 is added
		380	Table 21.25 Electrical Characteristics(2) Note 5 is added
		387	• Table 21.40 Absolute Maximum Ratings Parameters of Pd and Topr are modi-
			fied