

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, I ² C, IEBus, SIO, UART/USART
Peripherals	DMA, POR, PWM, Voltage Detect, WDT
Number of I/O	71
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 27x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30290fchp-u3a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RENESAS

M16C/29 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

1. Overview

1.1 Features

The M16C/29 Group of single-chip control MCU incorporates the M16C/60 series CPU core, employing the high-performance silicon gate CMOS technology and sophisticated instructions for a high level of efficiency. The M16C/29 Group is housed in 64-pin and 80-pin plastic molded LQFP packages. These single-chip MCUs operate using sophisticated instructions featuring a high level of instruction efficiency. This MCU is capable of executing instructions at high speed and it has one CAN module, makes it suitable for control of cars and LAN system of FA. In addition, the CPU core boasts a multiplier and DMAC for high-speed processing to make adequate for office automation, communication devices, and other high-speed processing applications.

1.1.1 Applications

Automotive body, car audio, LAN system of FA, etc.

As of March. 2007

1.3 Product List

Tables 1.3 to 1.5 list the M16C/29 Group products and Figure 1.3 shows the type numbers, memory sizes and packages. Tables 1.6 to 1.8 list the product code of flash memory version for M16C/29 Group. Figure 1.4 to Figure 1.6 show the marking diagram of flash memory version for M16C/29 Group.

					ai 011, 2007
Type Number	ROM Capacity	RAM Capacity	Package Type	Remarks	Product Code
M30290FAHP	96 K + 4 K	8 K	PLQP0080KB-A (80P6Q-A)		
M30290FCHP	128 K + 4 K	12 K		Flash	U3, U5,
M30291FAHP	96 K + 4 K	8 K	PLQP0064KB-A (64P6Q-A)	Memory	U7, U9
M30291FCHP	128 K + 4 K	12 K	FLQF0004KB-A (04F0Q-A)		
M30290M8-XXXHP	64 K	4 K			
M30290MA-XXXHP	96 K	8 K	PLQP0080KB-A (80P6Q-A)		
M30290MC-XXXHP	128 K	12 K		Mask	U3, U5
M30291M8-XXXHP	64 K	4 K		ROM	03, 05
M30291MA-XXXHP	96 K	8 K	PLQP0064KB-A (64P6Q-A)		
M30291MC-XXXHP	128 K	12 K			

Table 1.3 Product List (1) -Normal Version

Table 1.4 Product List (2) -T Version

Table 1.4 Product List (2)		As of M	arch, 2007		
Type Number	ROM Capacity	RAM Capacity	Package Type	Remarks	Product Code
M30290FATHP	96 K + 4 K	8 K	PLQP0080KB-A (80P6Q-A)		
M30290FCTHP	128 K + 4 K	12 K		Flash	U3, U5,
M30291FATHP	96 K + 4 K	8 K		Memory	U7, U9
M30291FCTHP	128 K + 4 K	12 K	- PLQP0064KB-A (64P6Q-A)		
M30290M8T-XXXHP	64 K	4 K			
M30290MAT-XXXHP	96 K	8 K	PLQP0080KB-A (80P6Q-A)		
M30290MCT-XXXHP	128 K	12 K		Mask	UO
M30291M8T-XXXHP	64 K	4 K		ROM	00
M30291MAT-XXXHP	96 K	8 K	PLQP0064KB-A (64P6Q-A)		
M30291MCT-XXXHP	128 K	12 K	1		

The internal bus consists of CPU bus, memory bus, and peripheral bus. Bus Interface Unit (BIU) is used to interfere with CPU, ROM/RAM, and perpheral functions by controling CPU bus, memory bus, and peripheral bus. **Figure 6.3** shows the block diagram of the internal bus.

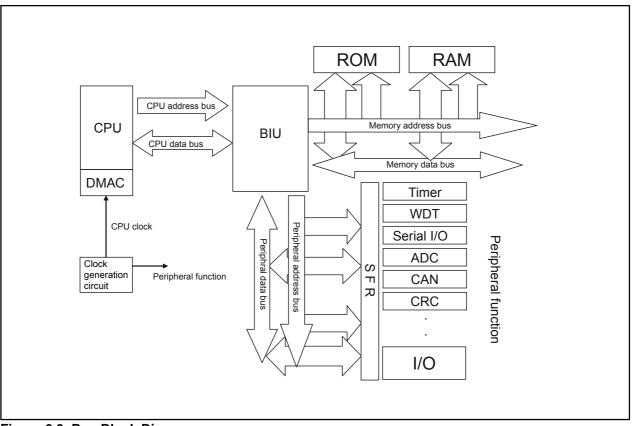


Figure 6.3 Bus Block Diagram

The number of bus cycle varies by the internal bus. Table 6.1 lists the accessible area and bus cycle.

Table 6.1 Ac	cessible Area	and Bus	Cycle
--------------	---------------	---------	-------

	Accessible Area	Bus Cycle
SFR	PM20 bit = 0 (2 waits)	3 CPU clock cycles
	PM20 bit = 1 (1 wait)	2 CPU clock cycles
ROM/RAM	PM17 bit = 0 (no wait)	1 CPU clock cycle
	PM17 bit = 1 (1 wait)	2 CPU clock cycles

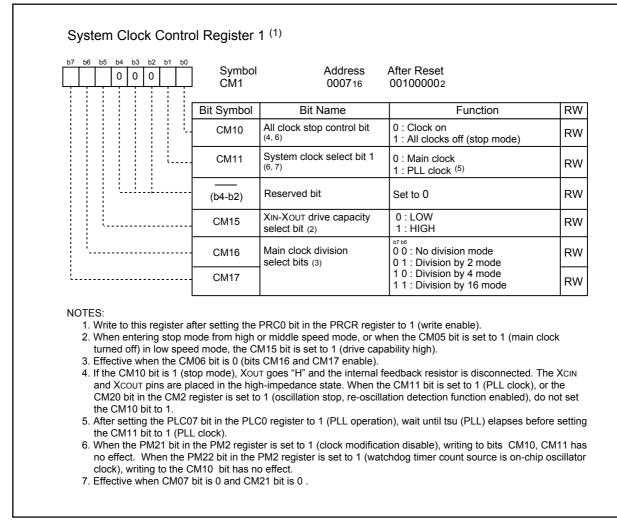


Figure 7.3 CM1 Register

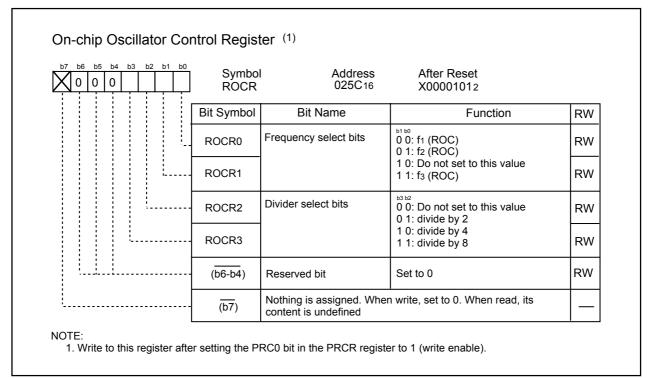
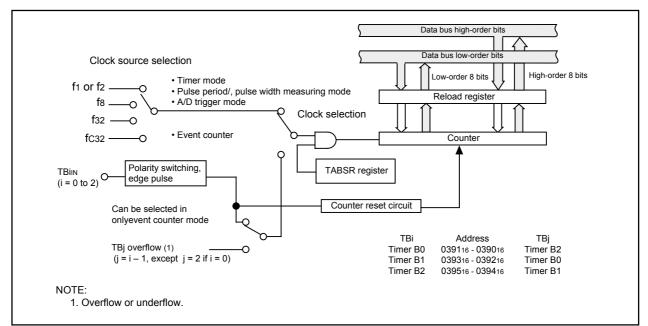
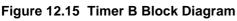
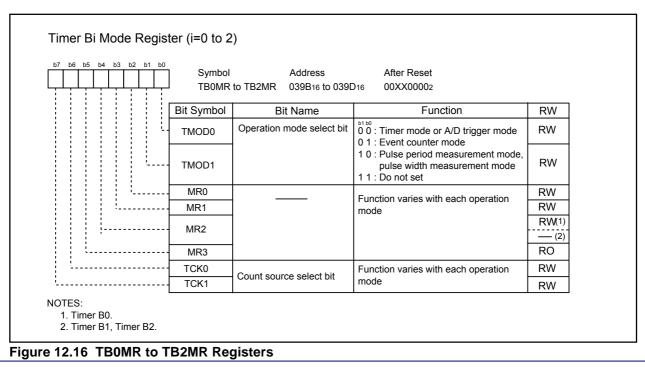


Figure 7.4 ROCR Register




12.2 Timer B


Figure 12.15 shows a block diagram of the timer B. Figures 12.16 and 12.17 show registers related to the timer B.

Timer B supports the following four modes. Use bits TMOD1 and TMOD0 in the TBiMR register (i = 0 to 2) to select the desired mode.

- Timer mode: The timer counts the internal count source.
- Event counter mode: The timer counts the external pulses or overflows and underflows of other timers.
- Pulse period/pulse width measurement mode: The timer measures the pulse period or pulse width of external signal.
- A/D trigger mode: The timer starts counting by one trigger until the count value becomes 000016. This mode is used together with simultaneous sample sweep mode or delayed trigger mode 0 of A/D converter to start A/D conversion.

RENESAS

b6 b5 b4 b3 b2 b1 b0	Symb G1IE		After Reset 00 ₁₆	
	Bit Symbol	Bit Name	Function	RV
	G1IE00	Interrupt enable 0, CH0	0 : IC/OC interrupt 0 request disable 1 : IC/OC interrupt 0 request enable	RV
· · · · · · · · · · · · · · · · · · ·	G1IE01	Interrupt enable 0, CH1		RV
L	G1IE02	Interrupt enable 0, CH2		RV
	G1IE03	Interrupt enable 0, CH3		RV
	G1IE04	Interrupt enable 0, CH4		RV
L	G1IE05	Interrupt enable 0, CH5		RV
L	G1IE06	Interrupt enable 0, CH6		RV
terrupt Enable R	G1IE07	Interrupt enable 0, CH7		RV
terrupt Enable R		r 1 pol Address	After Reset 0016	RV
	egiste	r 1 pol Address		RV
	Symt G1IE	r 1 pol Address 1 033216	0016	RW
	Symt G1IE Symbol	r 1 pol Address 1 033216 Bit Name	0016 Function 0 : IC/OC interrupt 1 request disable	
	Symt G1IE Symbol G1IE10	r 1 pol Address 1 033216 Bit Name Interrupt enable 1, CH0	0016 Function 0 : IC/OC interrupt 1 request disable	RW RV RV
	Symt G1IE Symbol G1IE10 G1IE11	r 1 pol Address 1 033216 Bit Name Interrupt enable 1, CH0 Interrupt enable 1, CH1	0016 Function 0 : IC/OC interrupt 1 request disable	RW
	Symbol G1IE10 G1IE11 G1IE12	r 1 pol Address 1 033216 Bit Name Interrupt enable 1, CH0 Interrupt enable 1, CH1 Interrupt enable 1, CH2	0016 Function 0 : IC/OC interrupt 1 request disable	RV RV RV RV
	Symb G1IE Symbol G1IE10 G1IE11 G1IE12 G1IE13	r 1 bol Address 1 033216 Bit Name Interrupt enable 1, CH0 Interrupt enable 1, CH1 Interrupt enable 1, CH2 Interrupt enable 1, CH3	0016 Function 0 : IC/OC interrupt 1 request disable	RW RV RV RV RV
	Symbol G1IE10 G1IE11 G1IE12 G1IE13 G1IE14	r 1 Dol Address 1 033216 Bit Name Interrupt enable 1, CH0 Interrupt enable 1, CH1 Interrupt enable 1, CH2 Interrupt enable 1, CH3 Interrupt enable 1, CH3	0016 Function 0 : IC/OC interrupt 1 request disable	RV RV RV

Figure 13.10 G1IE0 and G1IE1 Registers

13.4 Time Measurement Function

In synchronization with an external trigger input, the value of the base timer is stored into the G1TMj register (j=0 to 7). **Table 13.5** shows specifications of the time measurement function. **Table 13.6** shows register settings associated with the time measurement function. **Figures 13.19** and **13.20** display operational timing of the time measurement function. **Figure 13.21** shows operational timing of the prescaler function.

Item	Specification
Measurement channel	Channels 0 to 7
Selecting trigger input polarity	Rising edge, falling edge, both edges of the INPC1j pin $^{(1)}$
Measurement start condition	The IFEj bit in the G1FE register should be set to 1 (channels j function enabled) when the FSCj bit (j=0 to 7) in the G1FS register is set to 1 (time measurement function selected).
Measurement stop condition	The IFEj bit should be set to 0 (channel j function disabled)
Time measurement timing	•No prescaler : every time a trigger signal is applied •Prescaler (for channel 6 and channel 7):
	every <i>G1TPRk (k=6,7) register value +1</i> times a trigger signal is applied
Interrupt request generation timing	The G1IRi bit (i=0 to 7) in the interrupt request register (See Figure 13.9) is set to 1 at time measurement timing
INPC1j pin function ⁽¹⁾	Trigger input pin
Selectable function	 Digital filter function The digital filter samples a trigger input signal level every f1, f2 or fBT1 cycles and passes pulse signal matching trigger input signal level three times Prescaler function (for channel 6 and channel 7) Time measurement is executed every <i>G1TPRk register value +1</i> times a trigger signal is applied Cate function (for channel 6 and channel 7)
	 Gate function (for channel 6 and channel 7) After time measurement by the first trigger input, trigger input cannot be accepted. However, while the GOC bit in the G1TMCRk register is set to 1 (gate cleared by matching the base timer with the G1POp register (p=4 when k=6, p=5 when k=7)), trigger input can be accepted again by matching the base timer value with the G1POp register setting Digital Debounce function (for channel7) See 13.6.2 Digital Debounce Function for P17/INT5/INPC17 and 19.6 Digital Debounce Function for details

Table 13.5 Time	Measurement	Function	Specifications

NOTE:

1. The INPC10 to INPC17 pins

	b5 b	04 b3	b2 b	b1 b0			dress After Reset 716 X0000002	
					Bit Symbol	Bit Name	Function	R\
					IICM	I ² C bus mode select bit	0 : Other than I ² C bus mode 1 : I ² C bus mode	R
					ABC	Arbitration lost detecting flag control bit	0 : Update per bit 1 : Update per byte	R\
					BBS	Bus busy flag	0 : STOP condition detected 1 : START condition detected (busy)	RV
					(b3)	Reserved bit	Set to 0	RV
				· ,	ABSCS	Bus collision detect sampling clock select bit	0 : Rising edge of transfer clock 1 : Underflow signal of timer A0	RV
					ACSE	Auto clear function select bit of transmit enable bit	0 : No auto clear function 1 : Auto clear at occurrence of bus collision	RV
					SSS	Transmit start condition select bit	0 : Not synchronized to RxD2 1 : Synchronized to RxD2 ⁽²⁾	RV
						Nothing is assigned. If p	•	
2: W	The BB When a RT2	a tran Spe	ecial	egins, ⁵ Mod	the SSS t) by program. (Writing 1 ha		
1: T 2: W	The BB When a RT2	a tran Spe	ecial	egins,	writing 0 the SSS t) by program. (Writing 1 ha	is no effect). ized to RxD2). s After Reset	
1: T 2: W	The BB When a RT2	a tran Spe	ecial	egins, ⁵ Mod	writing 0 the SSS t	by program. (Writing 1 ha bit is set to 0 (Not synchron ister 2 Symbol Addres J2SMR2 037616 Bit Name	is no effect). ized to RxD2). s After Reset	RW
1: T 2: W	The BB When a RT2	a tran Spe	ecial	egins, ⁵ Mod	/ writing 0 the SSS t e Regi	by program. (Writing 1 ha bit is set to 0 (Not synchron ister 2 Symbol Addres J2SMR2 037616 Bit Name	is no effect). ized to RxD2). s After Reset X00000002 Function	
1: T 2: W	The BB When a RT2	a tran Spe	ecial	egins, ⁵ Mod	e Regi) by program. (Writing 1 ha bit is set to 0 (Not synchron ister 2 Symbol Addres J2SMR2 037616	s no effect). ized to RxD2). s After Reset X00000002 Function it 2 Refer to Table 14.13	RV
1: T 2: W	The BB When a RT2	a tran Spe		egins, ⁵ Mod	y writing 0 the SSS to e Regi]) by program. (Writing 1 ha bit is set to 0 (Not synchron ister 2 Symbol Addres J2SMR2 037616 Bit Name I ¹² C bus mode select b	is no effect). ized to RxD2). s After Reset X00000002 Function it 2 Refer to Table 14.13 0 : Disabled	RW
1: T 2: W	The BB When a RT2	a tran Spe		Mod	writing 0 the SSS t e Regi] Bit Symbo IICM2 CSC	b by program. (Writing 1 ha bit is set to 0 (Not synchron ister 2 Symbol Addres J2SMR2 037616 Bit Name I ² C bus mode select to Clock-synchronous bit	s no effect). ized to RxD2). s After Reset X00000002 Function it 2 Refer to Table 14.13 0 : Disabled 1 : Enabled 0 : Disabled 0 : Disabled	RW RW
1: T 2: W	The BB When a RT2	a tran Spe		Mod	writing 0 the SSS t e Regi] Bit Symbo IICM2 CSC SWC	by program. (Writing 1 ha bit is set to 0 (Not synchron ister 2 Symbol Addres J2SMR2 037616 I Bit Name I ² C bus mode select b Clock-synchronous bit SCL2 wait output bit	s no effect). ized to RxD2). s After Reset X00000002 Function it 2 Refer to Table 14.13 0 : Disabled 1 : Enabled 0 : Disabled 1 : Enabled 0 : Disabled 1 : Enabled 0 : Disabled 1 : Enabled 0 : Disabled 1 : Enabled	RW RW RW
1: T 2: W	The BB When a RT2	a tran Spe		Mod	writing 0 the SSS b e Regi Bit Symbo IICM2 CSC SWC ALS	by program. (Writing 1 happit is set to 0 (Not synchron ister 2 Symbol Addres J2SMR2 037616 I Bit Name I ² C bus mode select b Clock-synchronous bit SCL2 wait output bit UART initialization bit SCL2 wait output bit 2	s no effect). ized to RxD2). s After Reset X00000002 Function it 2 Refer to Table 14.13 0 : Disabled 1 : Enabled 0 : Disabled 1 : Enabled	RW RW RW RW RW
1: T 2: W	The BB When a RT2	a tran Spe		Mod	writing 0 the SSS t e Regi Bit Symbo IICM2 CSC SWC ALS STAC	b) by program. (Writing 1 ha bit is set to 0 (Not synchron ister 2 Symbol Addres J2SMR2 037616 I Bit Name I ² C bus mode select b Clock-synchronous bit SCL2 wait output bit SDA2 output stop bit UART initialization bit	s no effect). ized to RxD2). s After Reset X00000002 Function it 2 Refer to Table 14.13 0 : Disabled 1 : Enabled 0 : Disabled 1 : Enabled	RW RW RW RW RW RW RW RW RW

14.1.1 Clock Synchronous serial I/O Mode

The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. **Table 14.1** lists the specifications of the clock synchronous serial I/O mode. **Table 14.2** lists the registers used in clock synchronous serial I/O mode and the register values set.

Table 14.1 Clock Synchronous Serial I/O Mode Specifications

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	• The CKDIR bit in the UiMR(i=0 to 2) register is set to 0 (internal clock) : fj/ (2(n+1))
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of UiBRG register 0016 to FF16
	• CKDIR bit is set to 1 (external clock): Input from CLKi pin
Transmission, reception control	Selectable from CTS function, RTS function or CTS/RTS function disable
Transmission start condition	 Before transmission can start, the following requirements must be met ⁽¹⁾
	– The TE bit in the UiC1 register is set to 1 (transmission enabled)
	– The TI bit in the UiC1 register is set to 0 (data present in UiTB register)
	– If $\overline{\text{CTS}}$ function is selected, input on the $\overline{\text{CTS}}$ i pin is set to "L"
Reception start condition	Before reception can start, the following requirements must be met ⁽¹⁾
	– The RE bit in the UiC1 register is set to 1 (reception enabled)
	– The TE bit in the UiC1 register is set to 1 (transmission enabled)
	- The TI bit in the UiC1 register is set to 0 (data present in the UiTB register)
Interrupt request	For transmission, one of the following conditions can be selected
generation timing	– The UiIRS bit ⁽³⁾ is set to 0 (transmit buffer empty): when transferring data from the
	UiTB register to the UARTi transmit register (at start of transmission)
	- The UiIRS bit is set to 1 (transfer completed): when the serial I/O finished sending
	data from the UARTi transmit register
	For reception
	When transferring data from the UARTi receive register to the UiRB register (at
	completion of reception)
Error detection	Overrun error ⁽²⁾
	This error occurs if the serial I/O started receiving the next data before reading the
	UiRB register and received the 7th bit in the the next data
Select function	CLK polarity selection
	Transfer data input/output can be chosen to occur synchronously with the rising or
	the falling edge of the transfer clock
	LSB first, MSB first selection
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7
	can be selected
	Continuous receive mode selection
	Reception is enabled immediately by reading the UiRB register
	Switching serial data logic (UART2)
	This function reverses the logic value of the transmit/receive data
	Transfer clock output from multiple pins selection (UART1)
	The output pin can be selected in a program from two UART1 transfer clock pins that
	have been set
	Separate CTS/RTS pins (UART0)
	CTS0 and RTS0 are input/output from separate pins
	UART1 pin remapping selection
	The UART1 pin can be selected from the P67 to P64 or P73 to P70
IOTES:	

1. When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register is set to 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register is set to 1 (transmit data output at the rising edge and the receive data taken in at the rising edge and the receive data taken in at the set to 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register is set to 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.

2. If an overrun error occurs, bits 8 to 0 in the UiRB register are undefined. The IR bit in the SiRIC register remains unchanged.

3. The U0IRS and U1IRS bits respectively are the bits 0 and 1 in the UCON register; the U2IRS bit is bit 4 in the U2C1 register.

Register	Bit	Function
UITB ⁽³⁾	0 to 7	Set transmission data
UiRB ⁽³⁾	0 to 7	Reception data can be read
	OER	Overrun error flag
UiBRG	0 to 7	Set bit rate
UiMR ⁽³⁾	SMD2 to SMD0	Set to 0012
	CKDIR	Select the internal clock or external clock
	IOPOL(i=2) (4)	Set to 0
UiC0	CLK1 to CLK0	Select the count source for the UiBRG register
	CRS	Select CTS or RTS to use
	TXEPT	Transmit register empty flag
	CRD	Enable or disable the CTS or RTS function
	NCH	Select TxDi pin output mode
	CKPOL	Select the transfer clock polarity
	UFORM	Select the LSB first or MSB first
UiC1	TE	Set this bit to 1 to enable transmission/reception
	TI	Transmit buffer empty flag
	RE	Set this bit to 1 to enable reception
	RI	Reception complete flag
	U2IRS ⁽¹⁾	Select the source of UART2 transmit interrupt
	U2RRM ⁽¹⁾	Set this bit to 1 to use UART2 continuous receive mode
	U2LCH ⁽³⁾	Set this bit to 1 to use UART2 inverted data logic
	U2ERE ⁽³⁾	Set to 0
U2SMR	0 to 7	Set to 0
U2SMR2	0 to 7	Set to 0
U2SMR3	0 to 2	Set to 0
	NODC	Select clock output mode
	4 to 7	Set to 0
U2SMR4	0 to 7	Set to 0
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt
	U0RRM, U1RRM	Set this bit to 1 to use continuous receive mode
	CLKMD0	Select the transfer clock output pin when CLKMD1 is set to 1
	CLKMD1	Set this bit to 1 to output UART1 transfer clock from two pins
	RCSP	Set this bit to 1 to accept as input the UART0 $\overline{\text{CTS0}}$ signal from the P64 pin
	7	Set to 0

NOTES:

- 1. Set bits 5 and 4 in registers U0C1 and U1C1 to 0. Bits U0IRS, U1IRS, U0RRM, and U1RRM are in the UCON register.
- 2. Not all register bits are described above. Set those bits to 0 when writing to the registers in clock synchronous serial I/O mode.
- 3. Set bits 7 and 6 in registers U0C1 and U1C1 to 0.
- 4. Set the bit 7 in registers U0MR and U1MR to 0.

i=0 to 2

14.1.2 Clock Asynchronous Serial I/O (UART) Mode

The UART mode allows transmitting and receiving data after setting the desired bit rate and transfer data format. **Table 14.5** lists the specifications of the UART mode.

Item	Specification		
Transfer data format	 Character bit (transfer data): Selectable from 7, 8 or 9 bits 		
	Start bit: 1 bit		
	 Parity bit: Selectable from odd, even, or none 		
	Stop bit: Selectable from 1 or 2 bits		
Transfer clock	 The CKDIR bit in the UiMR(i=0 to 2) register is set to 0 (internal clock) : fj/ (16(n+1)) 		
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of UiBRG register 0016 to FF16		
	 CKDIR bit is set to 1 (external clock): fEXT/16(n+1) 		
	fEXT: Input from CLKi pin. n :Setting value of UiBRG register 0016 to FF16		
Transmission, reception control	 Selectable from CTS function, RTS function or CTS/RTS function disable 		
Transmission start condition	 Before transmission can start, the following requirements must be met 		
	– The TE bit in the UiC1 register is set to 1 (transmission enabled)		
	 The TI bit in the UiC1 register is set to 0 (data present in UiTB register) 		
	– If \overline{CTS} function is selected, input on the \overline{CTS} i pin is set to "L"		
Reception start condition	 Before reception can start, the following requirements must be met" 		
	- The RE bit in the UiC1 register is set to 1 (reception enabled)		
	- Start bit detection		
	 For transmission, one of the following conditions can be selected 		
Interrupt request	– The UiIRS bit ⁽²⁾ is set to 0 (transmit buffer empty): when transferring data from the		
generation timing	UiTB register to the UARTi transmit register (at start of transmission)		
5	– The UiIRS bit is set to1 (transfer completed): when the serial I/O finished sending		
	data from the UARTi transmit register		
	For reception		
	When transferring data from the UARTi receive register to the UiRB register (at		
	completion of reception)		
Error detection	Overrun error ⁽¹⁾		
	This error occurs if the serial I/O started receiving the next data before reading the		
	UiRB register and received the bit one before the last stop bit in the the next data		
	Framing error		
	This error occurs when the number of stop bits set is not detected		
	Parity error		
	This error occurs when if parity is enabled, the number of 1 in parity and		
	character bits does not match the number of 1 set		
	Error sum flag		
	This flag is set to 1 when any of the overrun, framing, and parity errors is encountered		
Select function	LSB first, MSB first selection		
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7		
	can be selected		
	Serial data logic switch (UART2)		
	This function reverses the logic of the transmit/receive data. The start and stop bits		
	are not reversed.		
	TxD, RxD I/O polarity switch (UART2)		
	This function reverses the polarities of hte TxD pin output and RxD pin input. The		
	logic levels of all I/O data is reversed.		
	Separate CTS/RTS pins (UART0)		
	CTS0 and RTS0 are input/output from separate pins		
	• UART1 pin remapping selection		

Table 14.5 UART Mode Specifications

NOTES:

1. If an overrun error occurs, bits 8 to 0 in the UiRB register are undefined. The IR bit in the SiRIC register remains unchange.

2. Bits U0IRS and U1IRS respectively are the UCON register bits 0 and 1; the U2IRS bit is the U2C1 register bit 4.

Table 14.7 lists the functions of the input/output pins in UART mode. **Table 14.8** lists the P64 pin functions during UART mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs an "H". (If the N-channel open-drain output is selected, this pin is in a high-impedance state.)

Pin Name	Function	Method of Selection
TxDi (i = 0 to 2) (P63, P67, P70)	Serial data output	(Outputs "H" when performing reception only)
RxDi (P62, P66, P71)	Serial data input	PD6_2 bit, PD6_6 bit in the PD6 register and the PD7_1 bit in the PD7 register (Can be used as an input port when performing transmission only)
CLKi (P61, P65, P72)	Input/output port	Set the CKDIR bit in the UiMR register to 0
	Transfer clock input	Set the CKDIR bit in the UiMR register to 1 Set the PD6_1 bit and PD6_5 bit in the PD6 register to 0, PD7_2 bit in the PD7 register to 0
(P60, P64, P73)	CTS input	Set the CRD bit in the UiC0 register to 0 Set the CRS bit in the UiC0 register to 0 Set the PD6_0 bit and PD6_4 bit in the PD6 register to 0, the PD7_3 bit in the PD7 register 0
	RTS output	Set the CRD bit in the UiC0 register to 0 Set the CRS bit in the UiC0 register to 1
	Input/output port	Set the CRD bit in the UiC0 register 1

NOTE:

1. When the U1MAP bit in PACR register is set to 1 (P73 to P70), UART1 pin is assgined to P73 to P70.

	Bit Set Value					
Pin Function	U1C0 register		UCON register		PD6 register	
	CRD	CRS	RCSP	CLKMD1	PD6_4	
P64	1		0	0	Input: 0, Output: 1	
CTS1	0	0	0	0	0	
RTS1	0	1	0	0		
CTS ₀ (2)	0	0	1	0	0	

NOTES:

1. When the U1MAP bit in PACR register is 1 (P73 to P70), this table lists the P70 functions.

2. In addition to this, set the CRD bit in the U0C0 register to 0 (CTSo/RTSo enabled) and the CRS bit in the U0C0 register to 1 (RTSo selected).

14.1.3 Special Mode 1 (I²C bus mode)(UART2)

I²C bus mode is provided for use as a simplifed I²C bus interface compatible mode. **Table 14.10** lists the specifications of the I²C bus mode. **Tables 14.11** and **14.12** list the registers used in the I²C bus mode and the register values set. **Table 14.13** lists the I²C bus mode fuctions. **Figure 14.22** shows the block diagram for I²C bus mode. **Figure 14.23** shows SCL2 timing.

As shown in **Table 14.13**, the MCU is placed in I²C bus mode by setting bits SMD2 to SMD0 to 0102 and the IICM bit to 1. Because SDA2 transmit output has a delay circuit attached, SDA output does not change state until SCL2 goes low and remains stably low.

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	During master
	the CKDIR bit in the U2MR register is set to 0 (internal clock) : fj/ (2(n+1))
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value in the U2BRG register 0016 to FF16
	During slave
	CKDIR bit is set to 1 (external clock): Input from SCL2 pin
Transmission start condition	Before transmission can start, the following requirements must be met ⁽¹⁾
	 The TE bit in the U2C1 register is set to 1 (transmission enabled)
	 The TI bit in the U2C1 register is set to 0 (data present in U2TB register)
Reception start condition	Before reception can start, the following requirements must be met ⁽¹⁾
	 The RE bit in the U2C1 register is set to 1 (reception enabled)
	 The TE bit in the U2C1 register is set to 1 (transmission enabled)
	– The TI bit in the U2C1 register is set to 0 (data present in the UiTB register)
Interrupt request	When start or stop condition is detected, acknowledge undetected, and acknowledge
generation timing	detected
Error detection	Overrun error ⁽²⁾
	This error occurs if the serial I/O started receiving the next data before reading the
	U2RB register and received the 8th bit in the the next data
Select function	Arbitration lost
	Timing at which the ABT bit in the U2RB register is updated can be selected
	• SDA digital delay
	No digital delay or a delay of 2 to 8 U2BRG count source clock cycles selectable
	Clock phase setting
	With or without clock delay selectable

Table 14.10 I²C bus mode Specifications

NOTES:

1. When an external clock is selected, the conditions must be met while the external clock is in the high state.

2. If an overrun error occurs, bits 8 to 0 in the U2RB register are undefined. The IR bit in the S2RIC register remains unchange.

14.1.6 Special Mode 4 (SIM Mode) (UART2)

Based on UART mode, this is an SIM interface compatible mode. Direct and inverse formats can be implemented, and this mode allows output of a low from the TxD2 pin when a parity error is detected. **Table 14.18** lists the specifications of SIM mode. **Table 14.19** lists the registers used in the SIM mode and the register values set.

Item	Specification		
Transfer data format	Direct format		
	Inverse format		
Transfer clock	The CKDIR bit in the U2MR register is set to 0 (internal clock) : fi/ (16(n+1))		
	fi = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of U2BRG register 0016 to FF16		
	• The CKDIR bit is set to 1 (external clock): fEXT/16(n+1)		
	fEXT: Input from CLK2 pin. n: Setting value of U2BRG register 0016 to FF16		
Transmission start condition	Before transmission can start, the following requirements must be met		
	 The TE bit in the U2C1 register is set to 1 (transmission enabled) 		
	 The TI bit in the U2C1 register is set to 0 (data present in U2TB register) 		
Reception start condition	 Before reception can start, the following requirements must be met 		
	 The RE bit in the U2C1 register is set to 1 (reception enabled) 		
	- Start bit detection		
Interrupt request	For transmission		
generation timing ⁽²⁾	When the serial I/O finished sending data from the U2TB transfer register (U2IRS bit =1)		
	For reception		
	When transferring data from the UART2 receive register to the U2RB register (at		
	completion of reception)		
Error detection	• Overrun error ⁽¹⁾		
	This error occurs if the serial I/O started receiving the next data before reading the		
	U2RB register and received the bit one before the last stop bit in the the next data		
	Framing error		
	This error occurs when the number of stop bits set is not detected		
	Parity error		
	During reception, if a parity error is detected, parity error signal is output from the		
	TxD2 pin.		
	During transmission, a parity error is detected by the level of input to the RxD2 pin		
	when a transmission interrupt occurs		
	• Error sum flag		
	This flag is set to 1 when any of the overrun, framing, and parity errors is encountered		

Table 14.18	SIM Mode	Specifications
-------------	----------	----------------

NOTES:

- 1. If an overrun error occurs, bits 8 to 0 in the U2RB register are undefined. The IR bit in the S2RIC register remains unchanged.
- A transmit interrupt request is generated by setting the U2IRS bit in the U2C1 register to 1 (transmission complete) and U2ERE bit to 1 (error signal output) after reset. Therefore, when using SIM mode, be sure to clear the IR bit to 0 (no interrupt request) after setting these bits.

Figure 14.32 shows the example of connecting the SIM interface. Connect TxD2 and RxD2 and apply pull-up.

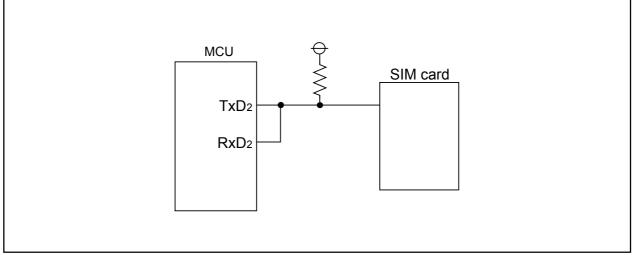


Figure 14.32 SIM Interface Connection

14.1.6.1 Parity Error Signal Output

The parity error signal is enabled by setting the U2ERE bit in theU2C1 register to 1.

When receiving

The parity error signal is output when a parity error is detected while receiving data. This is achieved by pulling the TxD2 output low with the timing shown in **Figure 14.33**. If the R2RB register is read while outputting a parity error signal, the PER bit is cleared to 0 and at the same time the TxD2 output is returned high.

When transmitting

A transmission-finished interrupt request is generated at the falling edge of the transfer clock pulse that immediately follows the stop bit. Therefore, whether a parity signal has been returned can be determined by reading the port that shares the RxD2 pin in a transmission-finished interrupt service routine.

Transfer clock		
RxD2	"H"	⊃_) SP
TxD2	"н"(1)	
U2C1 register RI bit	1	
	am applies to the case where the direct format is implemented.	ST: Start bit P: Even Parity
NOTE: 1. The output	of MCU is in the high-impedance state (pulled up externally).	SP: Stop bit

Figure 14.33 Parity Error Signal Output Timing

Note

19. Programmable I/O Ports

Ports P04 to P07, P10 to P14, P34 to P37 and P95 to P97 are not available in 64-pin package.

The programmable input/output ports (hereafter referred to simply as "I/O ports") consist of 71 lines P0, P1, P2, P3, P6, P7, P8, P9, P10 (except P94) for the 80-pin package, or 55 lines P00 to P03, P15 to P17, P2, P30 to P33, P6, P7, P8, P90 to P93, P10 for the 64-pin package. Each port can be set for input or output every line by using a direction register, and can also be chosen to be or not be pulled high in sets of 4 lines. **Figures 19.1** to **19.4** show the I/O ports. **Figure 19.5** shows the I/O pins.

Each pin functions as an I/O port, a peripheral function input/output.

For details on how to set peripheral functions, refer to each functional description in this manual. If any pin is used as a peripheral function input, set the direction bit for that pin to 0 (input mode). Any pin used as an output pin for peripheral functions is directed for output no matter how the corresponding direction bit is set.

19.1 Port Pi Direction Register (PDi Register, i = 0 to 3, 6 to 10)

Figure 19.6 shows the direction registers.

This register selects whether the I/O port is to be used for input or output. The bits in this register correspond one for one to each port.

19.2 Port Pi Register (Pi Register, i = 0 to 3, 6 to 10)

Figure 19.7 shows the Pi registers.

Data input/output to and from external devices are accomplished by reading and writing to the Pi register. The Pi register consists of a port latch to hold the output data and a circuit to read the pin status. For ports set for input mode, the input level of the pin can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register.

For ports set for output mode, the port latch can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register. The data written to the port latch is output from the pin. The bits in the Pi register correspond one for one to each port.

19.3 Pull-up Control Register 0 to 2 (PUR0 to PUR2 Registers)

Figure 19.8 shows registers PUR0 to PUR2.

Registers PUR0 to PUR2 select whether the pins, divided into groups of four pins, are pulled up or not. The pins, selected by setting the bits in registers PUR0 to PUR2 to 1 (pull-up), are pulled up when the direction registers are set to 0 (input mode). The pins are pulled up regardless of the pins' function.

19.4 Port Control Register (PCR Register)

Figure 19.9 shows the port control register.

When the P1 register is read after setting the PCR0 bit in the PCR register to 1, the corresponding port latch can be read no matter how the PD1 register is set.

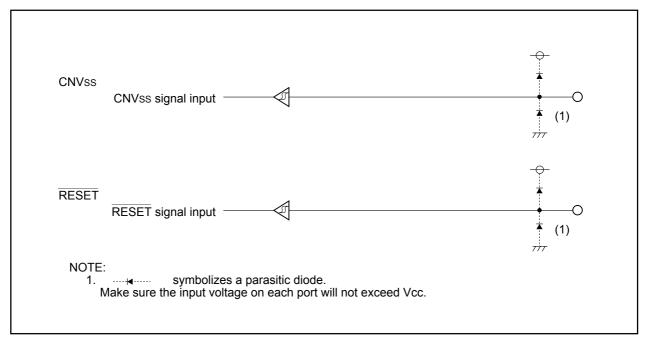


Figure 19.5 I/O Pins

20.3 Functions To Prevent Flash Memory from Rewriting

The flash memory has a built-in ROM code protect function for parallel I/O mode and a built-in ID code check function for standard input/output mode to prevent the flash memory from reading or rewriting.

20.3.1 ROM Code Protect Function

The ROM code protect function disables reading or changing the contents of the on-chip flash memory in parallel I/O mode. **Figure 20.4** shows the ROMCP address. The ROMCP address is located in a user ROM area. To enable ROM code protect, set the ROMCP1 bit to "002", "012", or "102" and set the bit 5 to bit 0 to "1111112".

To cancel ROM code protect, erase the block including the the ROMCP register in CPU rewrite mode or standard serial I/O mode.

20.3.2 ID Code Check Function

Use the ID code check function in standard serial input/output mode. Unless the flash memory is blank, the ID code sent from the programmer and the 7-byte ID code written in the flash memory are compared for match. If the ID codes do not match, the commands sent from the programmer are not acknowledged. The ID code consists of 8-bit data, starting with the first byte, into addresses, 0FFFDF16, 0FFFE316, 0FFFE316, 0FFFE316, 0FFFF316, 0FFFF716, and 0FFFFB16. The flash memory must have a program with the ID code set in these addresses.

20.7 Software Commands

Read or write 16-bit commands and data from or to even addresses in the user ROM area. When writing a command code, 8 high-order bits (D15–D8) are ignored.

Table 20.5 Software Commands

	First bus cycle			Second bus cycle			
Command	Mode	Address	Data (D15 to D0)	Mode	Address	Data (D15 to D0)	
Read array	Write	Х	xxFF16				
Read status register	Write	Х	xx70 16	Read	Х	SRD	
Clear status register	Write	Х	xx50 16				
Program	Write	WA	xx40 16	Write	WA	WD	
Block erase	Write	Х	xx20 16	Write	BA	xxD016	

SRD: Status register data (D7 to D0)

WA : Write address (However, even address)

WD : Write data (16 bits)

BA : Highest-order block address (However, even address)

 $X\,$: Any even address in the user ROM area

xx : 8 high-order bits of command code (ignored)

20.7.1 Read Array Command (FF16)

The read array command reads the flash memory.

Read array mode is entered by writing command code xxFF16 in the first bus cycle. Content of a specified address can be read in 16-bit unit after the next bus cycle. The MCU remains in read array mode until an another command is written. Therefore, contents of multiple addresses can be read consecutively.

20.7.2 Read Status Register Command (7016)

The read status register command reads the status register.

By writing command code xx7016 in the first bus cycle, the status register can be read in the second bus cycle (Refer to **20.8 Status Register**). Read an even address in the user ROM area. Do not execute this command in EW mode 1.

20.7.3 Clear Status Register Command (5016)

The clear status register command clears the status register to 0.

By writing xx5016 in the first bus cycle, and bits FMR06 to FMR07 in the FMR0 register and bits SR4 to SR5 in the status register are set to 0.

Timing Requirements

Vcc = 3V

(VCC = 3V, VSS = 0V, at Topr = - 20 to 85°C / - 40 to 85°C unless otherwise specified)

Table 21.33	3 Timer B Input (Counter Input in Event Counter Mod	e)
-------------	---	----

Symbol	Parameter	Standard		Unit
	Parameter		Max.	
tc(TB)	TBin input cycle time (counted on one edge)	150		ns
tw(TBH)	TBin input HIGH pulse width (counted on one edge)	60		ns
tw(TBL)	TBin input LOW pulse width (counted on one edge)	60		ns
tc(TB)	TBin input cycle time (counted on both edges)	300		ns
tw(TBH)	TBin input HIGH pulse width (counted on both edges)	120		ns
tw(TBL)	TBin input LOW pulse width (counted on both edges)	120		ns

Table 21.34 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tc(TB)	TBin input cycle time	600		ns
tw(TBH)	TBin input HIGH pulse width	300		ns
tw(TBL)	TBin input LOW pulse width	300		ns

Table 21.35 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tc(TB)	TBin input cycle time	600		ns
tw(TBH)	TBiin input HIGH pulse width	300		ns
tw(TBL)	TBin input LOW pulse width	300		ns

Table 21.36 A/D Trigger Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tc(AD)	ADTRG input cycle time (trigger able minimum)	1500		ns
tw(ADL)	ADTRG input LOW pulse width	200		ns

Table 21.37 Serial I/O

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tc(CK)	CLKi input cycle time	300		ns
tw(CKH)	CLKi input HIGH pulse width	150		ns
tw(CKL)	CLKi input LOW pulse width	150		ns
td(C-Q)	TxDi output delay time		160	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	100		ns
th(C-D)	RxDi input hold time	90		ns

Table 21.38 External Interrupt INTi Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tw(INH)	INTi input HIGH pulse width	380		ns
tw(INL)	INTi input LOW pulse width	380		ns

