

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-·XE

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	M16C/60
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, I ² C, IEBus, SIO, UART/USART
Peripherals	DMA, POR, PWM, Voltage Detect, WDT
Number of I/O	55
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30291fahp-u5a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Quick Reference to Pages Classified by Address

Address	Register	Symbol	Page	Address	Register	Symbol	Page
008016 008116 008216 008316 008416 008516	CAN0 message box 2: Identifier/DLC		289	00C016 00C116 00C216 00C316 00C416 00C516	CAN0 message box 6: Identifier/DLC		289
008616 008716 008816 008916 008A16 008B16 008C16 008D16	CAN0 message box 2: Data field		289	00C616 00C716 00C816 00C916 00CA16 00CB16 00CC16 00CC16	CAN0 message box 6: Data field		289
008E16 008F16	CAN0 message box 2: time stamp		289	00CE16 00CF16	CAN0 message box 6: time stamp		289
009016 009116 009216 009316 009416 009516	CAN0 message box 3: Identifier/DLC		289	00D016 00D116 00D216 00D316 00D416 00D516	CAN0 message box 7: Identifier/DLC		289
009616 009716 009816 009916 009A16 009B16 009C16 009D16	CAN0 message box 3: Data field		289	00D616 00D716 00D816 00D916 00DA16 00DB16 00DC16 00DD16	CAN0 message box 7: Data field		289
009E16 009F16 00A016 00A116 00A216 00A316 00A416	CAN0 message box 3: time stamp CAN0 message box 4: Identifier/DLC		289 289	00DE16 00DF16 00E016 00E116 00E216 00E316 00E416	CAN0 message box 7: time stamp CAN0 message box 8: Identifier/DLC		289 289
00A516 00A616 00A716 00A816 00A916 00AA16 00AB16 00AC16 00AD16	CAN0 message box 4: Data field		289	00E516 00E616 00E716 00E816 00E916 00EA16 00EB16 00EC16	CAN0 message box 8: Data field		289
00AE16 00AF16	CAN0 message box 4: time stamp		289	00EE16 00EF16	CAN0 message box 8: time stamp		289
00B016 00B116 00B216 00B316 00B416 00B516	CAN0 message box 5: Identifier/DLC		289	00F016 00F116 00F216 00F316 00F416 00F516	CAN0 message box 9: Identifier/DLC		289
008616 008716 008816 008916 008A16 008A16 008B16 008C16	CAN0 message box 5: Data field		289	00F616 00F716 00F816 00F916 00FA16 00FB16 00FC16 00FC16	CAN0 message box 9: Data field		289
00BE16 00BF16	CAN0 message box 5: time stamp		289	00FE16 00FF16	CAN0 message box 9: time stamp		289

Note: The blank areas are reserved and cannot be accessed by users.

As of March. 2007

1.3 Product List

Tables 1.3 to 1.5 list the M16C/29 Group products and Figure 1.3 shows the type numbers, memory sizes and packages. Tables 1.6 to 1.8 list the product code of flash memory version for M16C/29 Group. Figure 1.4 to Figure 1.6 show the marking diagram of flash memory version for M16C/29 Group.

					ai 011, 2007
Type Number	ROM Capacity	RAM Capacity	Package Type	Remarks	Product Code
M30290FAHP	96 K + 4 K	8 K	PLQP0080KB-A (80P6Q-A)		
M30290FCHP	128 K + 4 K	12 K		Flash	U3, U5,
M30291FAHP	96 K + 4 K	8 K	PLQP0064KB-A (64P6Q-A)	Memory	U7, U9
M30291FCHP	128 K + 4 K	12 K	FLQF0004KB-A (04F0Q-A)		
M30290M8-XXXHP	64 K	4 K			
M30290MA-XXXHP	96 K	8 K	PLQP0080KB-A (80P6Q-A)		
M30290MC-XXXHP	128 K	12 K		Flash	U3, U5
M30291M8-XXXHP	64 K	4 K		ROM	03, 05
M30291MA-XXXHP	96 K	8 K	PLQP0064KB-A (64P6Q-A)		
M30291MC-XXXHP	128 K	12 K			

Table 1.3 Product List (1) -Normal Version

Table 1.4 Product List (2) -T Version

Table 1.4 Product List (2)	T Version			As of M	arch, 2007
Type Number	ROM Capacity	RAM Capacity	Package Type	Remarks	Product Code
M30290FATHP	96 K + 4 K	8 K	PLQP0080KB-A (80P6Q-A)		
M30290FCTHP	128 K + 4 K	12 K		Flash	U3, U5,
M30291FATHP	96 K + 4 K	8 K		Memory	U7, U9
M30291FCTHP	128 K + 4 K	12 K	- PLQP0064KB-A (64P6Q-A)		
M30290M8T-XXXHP	64 K	4 K			
M30290MAT-XXXHP	96 K	8 K	PLQP0080KB-A (80P6Q-A)		
M30290MCT-XXXHP	128 K	12 K		Mask	UO
M30291M8T-XXXHP	64 K	4 K		ROM	00
M30291MAT-XXXHP	96 K	8 K	PLQP0064KB-A (64P6Q-A)		
M30291MCT-XXXHP	128 K	12 K	1		

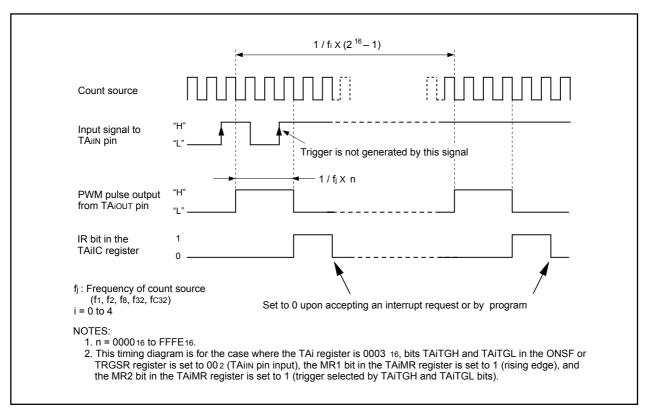


Figure 12.13 Example of 16-bit Pulse Width Modulator Operation

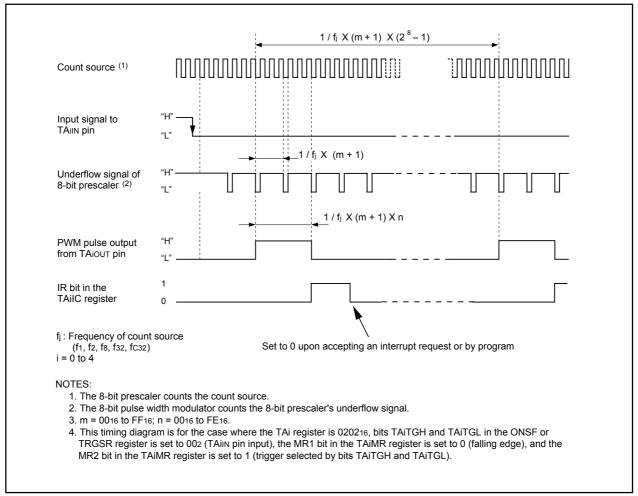


Figure 12.14 Example of 8-bit Pulse Width Modulator Operation

12.3.1.2 Position-data-retain Function Control Register

Figure 12.36 shows the structure of the position-data-retain function contol register.

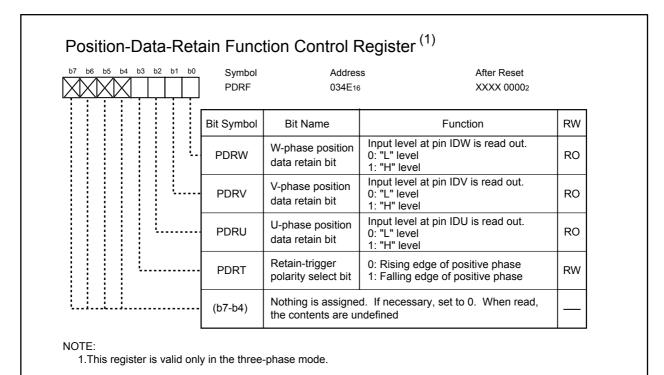


Figure 12.36 PDRF Register

12.3.1.2.1 W-phase Position Data Retain Bit (PDRW)

This bit is used to retain the input level at pin IDW.

12.3.1.2.2 V-phase Position Data Retain Bit (PDRV)

This bit is used to retain the input level at pin IDV.

12.3.1.2.3 U-phase Position Data Retain Bit (PDRU)

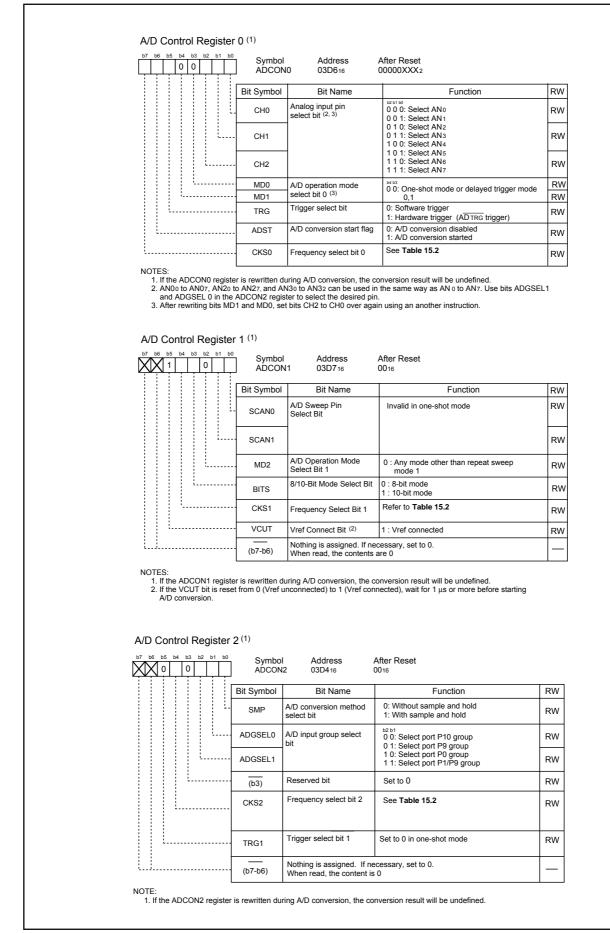
This bit is used to retain the input level at pin IDU.

12.3.1.2.4 Retain-trigger Polarity Select Bit (PDRT)

This bit is used to select the trigger polarity to retain the position data. When this bit is set to 0, the rising edge of each positive phase selected. When this bit is set to 1, the falling edge of each pocitive phase selected.

14.1.1 Clock Synchronous serial I/O Mode

The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. **Table 14.1** lists the specifications of the clock synchronous serial I/O mode. **Table 14.2** lists the registers used in clock synchronous serial I/O mode and the register values set.

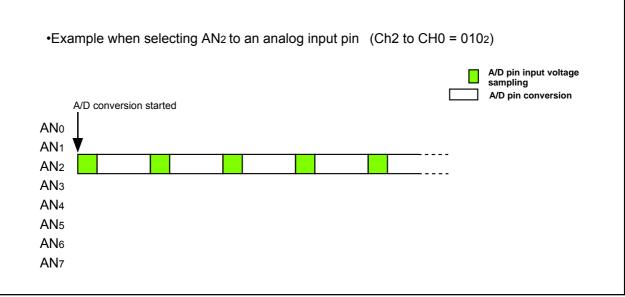

Table 14.1 Clock Synchronous Serial I/O Mode Specifications

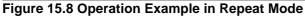
Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	• The CKDIR bit in the UiMR(i=0 to 2) register is set to 0 (internal clock) : fj/ (2(n+1))
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of UiBRG register 0016 to FF16
	• CKDIR bit is set to 1 (external clock): Input from CLKi pin
Transmission, reception control	Selectable from CTS function, RTS function or CTS/RTS function disable
Transmission start condition	 Before transmission can start, the following requirements must be met ⁽¹⁾
	– The TE bit in the UiC1 register is set to 1 (transmission enabled)
	– The TI bit in the UiC1 register is set to 0 (data present in UiTB register)
	– If $\overline{\text{CTS}}$ function is selected, input on the $\overline{\text{CTS}}$ i pin is set to "L"
Reception start condition	Before reception can start, the following requirements must be met ⁽¹⁾
	– The RE bit in the UiC1 register is set to 1 (reception enabled)
	– The TE bit in the UiC1 register is set to 1 (transmission enabled)
	- The TI bit in the UiC1 register is set to 0 (data present in the UiTB register)
Interrupt request	For transmission, one of the following conditions can be selected
generation timing	– The UiIRS bit ⁽³⁾ is set to 0 (transmit buffer empty): when transferring data from the
	UiTB register to the UARTi transmit register (at start of transmission)
	- The UiIRS bit is set to 1 (transfer completed): when the serial I/O finished sending
	data from the UARTi transmit register
	For reception
	When transferring data from the UARTi receive register to the UiRB register (at
	completion of reception)
Error detection	Overrun error ⁽²⁾
	This error occurs if the serial I/O started receiving the next data before reading the
	UiRB register and received the 7th bit in the the next data
Select function	CLK polarity selection
	Transfer data input/output can be chosen to occur synchronously with the rising or
	the falling edge of the transfer clock
	LSB first, MSB first selection
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7
	can be selected
	Continuous receive mode selection
	Reception is enabled immediately by reading the UiRB register
	Switching serial data logic (UART2)
	This function reverses the logic value of the transmit/receive data
	Transfer clock output from multiple pins selection (UART1)
	The output pin can be selected in a program from two UART1 transfer clock pins that
	have been set
	Separate CTS/RTS pins (UART0)
	CTS0 and RTS0 are input/output from separate pins
	UART1 pin remapping selection
	The UART1 pin can be selected from the P67 to P64 or P73 to P70
IOTES:	

1. When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register is set to 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register is set to 1 (transmit data output at the rising edge and the receive data taken in at the rising edge and the receive data taken in at the set to 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register is set to 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.

2. If an overrun error occurs, bits 8 to 0 in the UiRB register are undefined. The IR bit in the SiRIC register remains unchanged.

3. The U0IRS and U1IRS bits respectively are the bits 0 and 1 in the UCON register; the U2IRS bit is bit 4 in the U2C1 register.





15.1.2 Repeat mode

In repeat mode, analog voltage applied to a selected pin is repeatedly converted to a digital code. **Table 15.4** shows the repeat mode specifications. **Figure 15.8** shows the operation example in repeat mode. **Figure 15.9** shows the ADCON0 to ADCON2 registers in repeat mode.

Item	Specification
Function	Bits CH2 to CH0 in the ADCON0 register and the ADGSEL1 to ADGSEL0 bits
	in the ADCON2 register select pins. Analog voltage applied to a selected pin
	is repeatedly converted to a digital code
A/D Conversion Start	When the TRG bit in the ADCON0 register is 0 (software trigger)
Condition	Set the ADST bit in the ADCON0 register to 1 (A/D conversion started)
	 When the TRG bit in the ADCON0 register is 1 (hardware trigger)
	The ADTRG pin input changes state from "H" to "L" after setting the ADST bit
	to 1 (A/D conversion started)
A/D Conversion Stop Condition	Set the ADST bit to 0 (A/D conversion halted)
Interrupt Request Generation Timing	None generated
Analog Input Pin	Select one pin from AN0 to AN7, AN00 to AN07, AN20 to AN27, and AN30 to AN32
Readout of A/D Conversion Result	Readout one of the AD0 to AD7 registers that corresponds to the selected pin

	Function RV
	1 diffetion
	bus sample sweep mode or RV gger mode 0, 1
DTE A/D operation mode select 0: Other than bit 3	delayed trigger mode 0, 1 RV
HPTRG0 AN0 trigger select bit See Table 1	5.9 RV
HPTRG1 AN1 trigger select bit Set to 0 in simode	nultaneous sample sweep RV
(b7-b4) Nothing is assigned. If necessary, set to When read, the content is 0	0

Figure 15.18 ADTRGCON Register in Simultaneous Sample Sweep Mode

Table 15.9 Trigger Select Bit Setting in Simultaneous Sample Sweep Mode

	TRG	TRG1	HPTRG0	TRIGGER
	0	-	-	Software trigger
	1	-	1	Timer B0 underflow ⁽¹⁾
Γ	1	0	0	ADTRG
Γ	1	1	0	Timer B2 or Timer B2 interrupt generation frequency setting
		•	5	counter underflow ⁽²⁾

NOTES:

1. A count can be started for Timer <u>B2</u>, Timer B2 interrupt generation frequency setting counter underflow or the INT5 pin falling edge as count start conditions of Timer B0.

 Select Timer B2 or Timer B2 interrupt generation frequency setting counter using the TB2SEL bit in the TB2SC register.

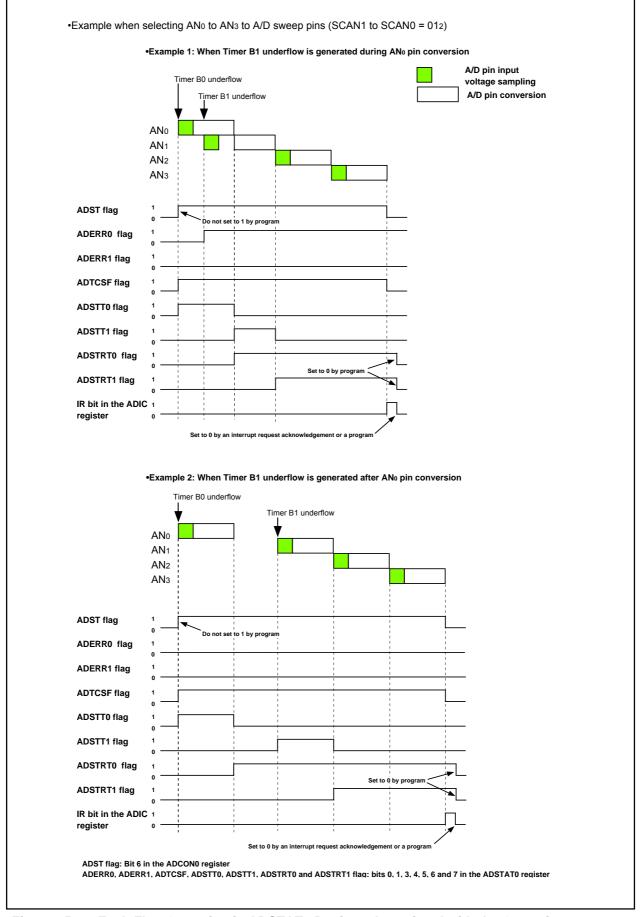


Figure 15.20 Each Flag Operation in ADSTAT0 Register Associated with the Operation Example in Delayed Trigger Mode 0 (1)

RENESAS

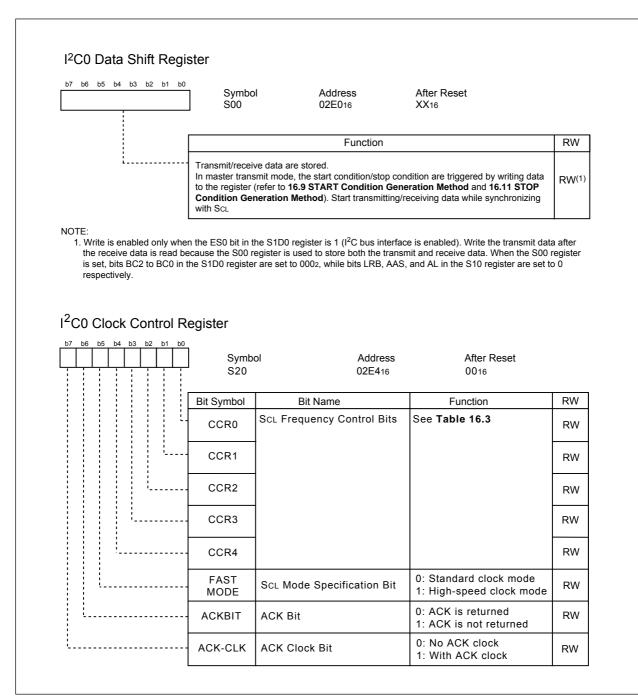


Figure 16.3 S00 and S20 Registers

Г

b7 b6 b5	b4 b3 b2 b1 b0] Symbo S10	Address 02E816	After Reset 0001000X2	
		Bit Symbol	Bit Name	Function	RW
		LRB	Last receive bit	0: Last bit = 0 1: Last bit = 1	RO ⁽¹
		ADR0	General call detecting flag	0: No general call detected 1: General call detected	RO ⁽¹⁾
		AAS	Slave address comparison flag	0: No address matched 1: Address matched	RO ⁽¹
	l	AL	Arbitration lost detection flag	0: Not detected 1: Detected	RO ⁽²⁾
	,	PIN	I ² C bus interface interrupt request bit	0: Interrupt request issued 1: No interrupt request issued	R0 ⁽²⁾
		BB	Bus busy flag	0: Bus free 1: Bus busy	RO ⁽¹⁾
		TRX	Communication mode select bits 0	0: Receive mode 1: Transmit mode	RW ⁽³
		MST	Communication mode select bit 1	0: Slave mode 1: Master mode	RW ⁽³

Read only. If necessary, set to 0.
 To write to these bits, refer to 16.9 START Condition Generation Method and 16.11 STOP Condition Generation Method.

Figure 16.5 S10 Register

17.1.3.4 C0SSTR Register

Figure 17.9 shows the COSSTR register.

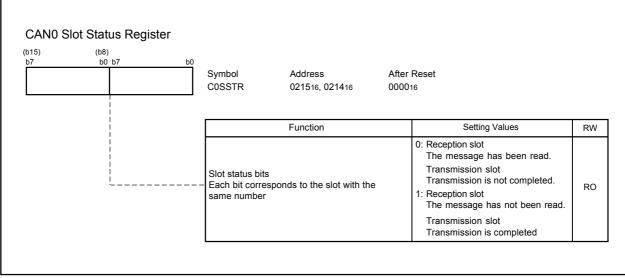
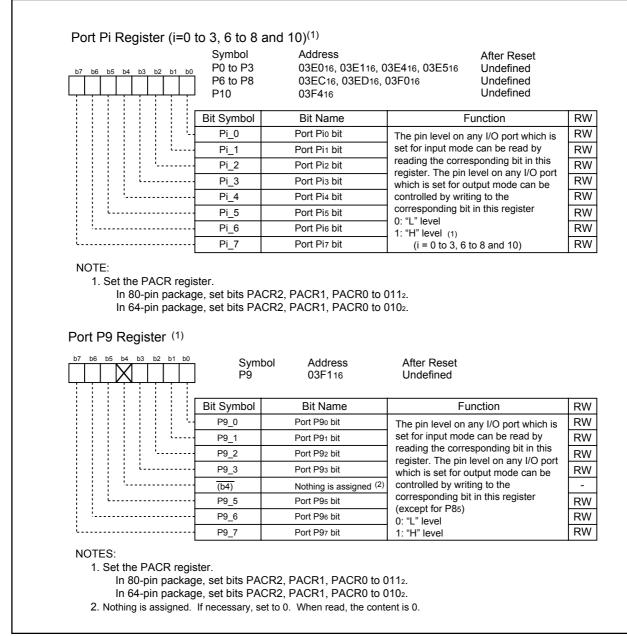
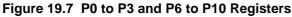




Figure 17.9 C0SSTR Register

Γ

0 0	6 b5 0			0	b1 b0	Sym FMR		Address 01B316	After Reset 010000002	
						Bit Symbol	Bit	Name	Function	RW
					ļ.	FMR40	Erase sus enable b	pend function it ⁽¹⁾	0: Disabled 1: Enabled	RW
					i	FMR41	Erase sus request b		0: Erase restart 1: Suspend request	RW
	<u>.</u>	!	. <u>.</u>			(b5-b2)	Reserved	bit	Set to 0	RO
						FMR46	Erase stat	us	0: During auto-erase operation 1: Auto-erase stop (erase suspend mode)	RO
						(b7)	Reserved	bit	Set to 0	RW

- memory in EW mode 0.
- 2. The FMR41 bit is valid only when the FMR40 bit is set to 1. The FMR41 bit can be written only between executing an erase command and completing erase (this bit is set to 0 other than the above duration). The FMR41 bit can be set to 0 or 1 by program in EW mode 0. In EW mode 1, the FMR41 bit is automatically set to 1 when the FMR40 bit is 1 and a maskable interrupt is generated during erasing. The FMR41 bit cannot be set to 1 by program (it can be set to 0 by program).

Figure 20.7 FMR4 Register

20.6 Precautions in CPU Rewrite Mode

Described below are the precautions to be observed when rewriting the flash memory in CPU rewrite mode.

20.6.1 Operation Speed

When the CPU clock source is the main clock, set the CPU clock frequency at 10 MHz or less with the CM06 bit in the CM0 register and bits CM17 and CM16 in the CM1 register, before entering CPU rewrite mode (EW mode 0 or EW mode 1). Also, when selecting f3(ROC) of a on-chip oscillator as a CPU clock source, set bits ROCR3 and ROCR2 in the ROCR register to the CPU clock division rate at "divide-by-4" or "divide-by-8", before entering CPU rewrite mode (EW mode 0 or EW mode 1). In both cases, set the PM17 bit in the PM1 register to 1 (with wait state).

20.6.2 Prohibited Instructions

The following instructions cannot be used in EW mode 0 because the CPU tries to read data in the flash memory: UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction

20.6.3 Interrupts

EW Mode 0

- To use interrupts having vectors in a relocatable vector table, the vectors must be relocated to the RAM area.
- The NMI and watchdog timer interrupts are available since registers FMR0 and FMR1 are forcibly reset when either interrupt occurs. However, the interrupt program, which allocates the jump addresses for each interrupt routine to the fixed vector table, is needed. Flash memory rewrite operation is aborted when the NMI or watchdog timer interrupt occurs. Set the FMR01 bit to 1 and execute the rewrite and erase program again after exiting the interrupt routine.

• The address match interrupt can not be used since the CPU tries to read data in the flash memory. EW Mode 1

• Do not acknowledge any interrupts with vectors in the relocatable vector table or the address match interrupt during the auto program period or auto erase period with erase-suspend function disabled.

20.6.4 How to Access

To set bit FMR01, FMR02, FMR11 or FMR16 to 1, write 1 immediately after setting to 0. Do not generate an interrupt or a DMA transfer between the instruction to set the bit to 0 and the instruction to set it to 1. When the $\overline{\text{NMI}}$ function is selected, set the bit while an "H" signal is applied to the P85/ $\overline{\text{NMI}}$ /SD pin.

20.6.5 Writing in the User ROM Area

20.6.5.1 EW Mode 0

 If the supply voltage drops while rewriting the block where the rewrite control program is stored, the flash memory can not be rewritten, because the rewrite control program is not correctly rewritten. If this error occurs, rewrite the user ROM area in standard serial I/O mode or parallel I/O mode.

20.6.5.2 EW Mode 1

• Do not rewrite the block where the rewrite control program is stored.

20.11.2 Example of Circuit Application in CAN I/O Mode

Figure 20.21 shows example of circuit application in CAN I/O mode. Refer to the user's manual for CAN programmer to handle pins controlled by a CAN programmer.

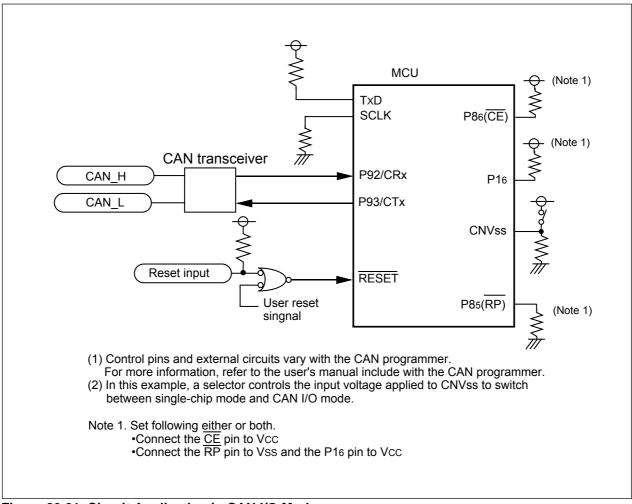


Figure 20.21 Circuit Application in CAN I/O Mode

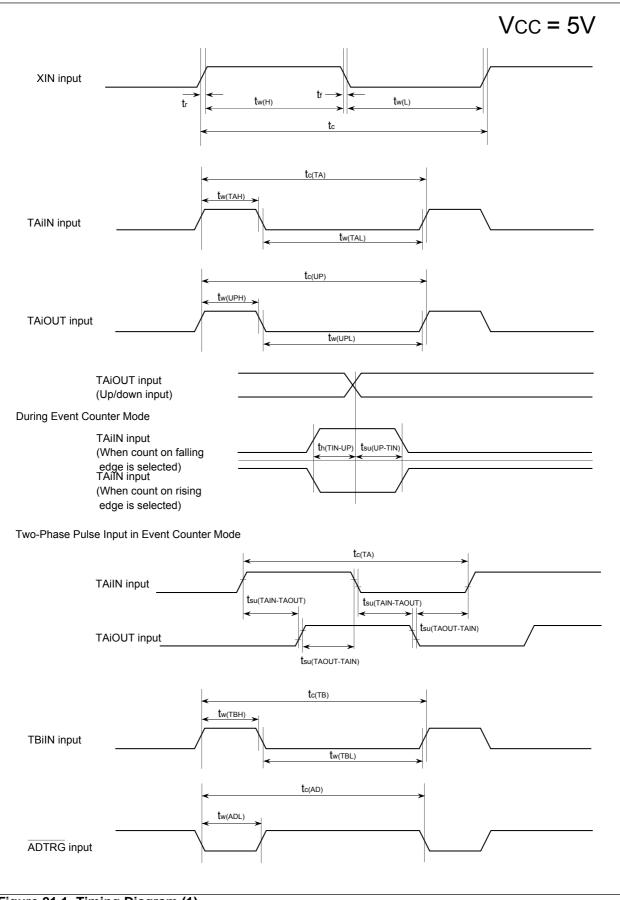


Figure 21.1 Timing Diagram (1)

Timing Requirements

Vcc = 3V

(VCC = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 21.26 External Clock Input (XIN input)
--

Symbol	Parameter	Standa	ldard	Unit
	Falanielei	Min.	Max.	Unit
tc	External clock input cycle time	100		ns
tw(H)	External clock input HIGH pulse width	40		ns
tw(L)	External clock input LOW pulse width	40		ns
tr	External clock rise time		18	ns
tr	External clock fall time		18	ns

Vcc = 3V

Timing Requirements

(VCC = 3V, VSS = 0V, at Topr = - 40 to 85°C unless otherwise specified)

Table 21.71 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Decomptor	Standard	dard	Unit
	Parameter	Min.	Max.	
tc(TB)	TBin input cycle time (counted on one edge)	150		ns
tw(TBH)	TBin input HIGH pulse width (counted on one edge)	60		ns
tw(TBL)	TBin input LOW pulse width (counted on one edge)	60		ns
tc(TB)	TBin input cycle time (counted on both edges)	300		ns
tw(TBH)	TBin input HIGH pulse width (counted on both edges)	120		ns
tw(TBL)	TBin input LOW pulse width (counted on both edges)	120		ns

Table 21.72 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard	dard	Unit
Symbol		Min.	Max.	Unit
tc(TB)	TBin input cycle time	600		ns
tw(TBH)	TBilN input HIGH pulse width	300		ns
tw(TBL)	TBin input LOW pulse width	300		ns

Table 21.73 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Standard	dard	Unit
Symbol		Min.	Max.	
tc(TB)	TBiin input cycle time	600		ns
tw(TBH)	TBiin input HIGH pulse width	300		ns
tw(TBL)	TBin input LOW pulse width	300		ns

Table 21.74 A/D Trigger Input

Symbol	Parameter	Standard	Unit	
	i didificici	Min.	in. Max.	Onit
tc(AD)	ADTRG input cycle time (trigger able minimum)	1500		ns
tw(ADL)	ADTRG input LOW pulse width	200		ns

Table 21.75 Serial I/O

Symbol	Parameter	Standar	dard	– Unit
	Falameter	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	300		ns
tw(CKH)	CLKi input HIGH pulse width	150		ns
tw(CKL)	CLKi input LOW pulse width	150		ns
td(C-Q)	TxDi output delay time		160	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	100		ns
th(C-D)	RxDi input hold time	90		ns

Table 21.76 External Interrupt INTi Input

Symbol	Parameter	Standard	Unit	
	i didireter	Min.	Min. Max.	Offic
tw(INH)	INTi input HIGH pulse width	380		ns
tw(INL)	INTi input LOW pulse width	380		ns

22.9 A/D Converter

- 1. Set registers ADCON0 (except bit 6), ADCON1, ADCON2 and ADTRGCON when A/D conversion is stopped (before a trigger occurs).
- 2. When the VCUT bit in ADCON1 register is changed from 0 (Vref not connected) to 1 (Vref connected), start A/D conversion after passing 1 μ s or longer.
- To prevent noise-induced device malfunction or latchup, as well as to reduce conversion errors, insert capacitors between the AVcc, VREF, and analog input pins (ANi, AN0i, AN2i(i=0 to 7), and AN3i(i=0 to 2)) each and the AVss pin. Similarly, insert a capacitor between the Vcc1 pin and the Vss pin. Figure 22.4 is an example connection of each pin.
- 4. Make sure the port direction bits for those pins that are used as analog inputs are set to 0 (input mode). Also, if the TGR bit in the ADCON0 register is set to 1 (external trigger), make sure the port direction bit for the ADTRG pin is set to 0 (input mode).
- **5.** When using key input interrupts, do not use any of the four AN4 to AN7 pins as analog inputs. (A key input interrupt request is generated when the A/D input voltage goes low.)
- 6. The φAD frequency must be 10 MHz or less. Without sample-and-hold function, limit the φAD frequency to 250kHz or more. With the sample and hold function, limit the φAD frequency to 1MHz or more.
- 7. When changing an A/D operation mode, select analog input pin again in bits CH2 to CH0 in the ADCON0 register and bits SCAN1 to SCAN0 in the ADCON1 register.

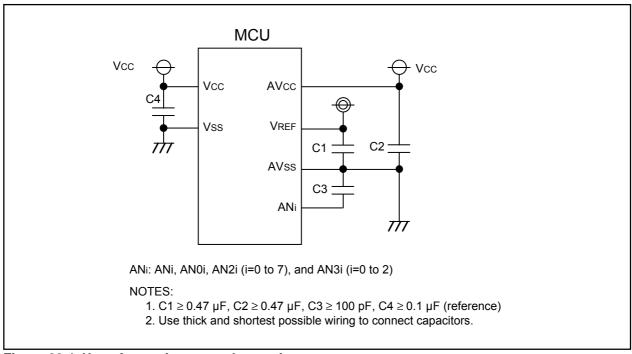


Figure 22.4 Use of capacitors to reduce noise

RENESAS