

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-·XE

Details	
Product Status	Obsolete
Core Processor	M16C/60
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, I ² C, IEBus, SIO, UART/USART
Peripherals	DMA, POR, PWM, Voltage Detect, WDT
Number of I/O	55
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30291fahp-u7a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Quick Reference to Pages Classified by Address	B-1
1. Overview	1
1.1 Features	
1.1.1 Applications	1
1.1.2 Specifications	2
1.2 Block Diagram	4
1.3 Product List	
1.4 Pin Assignments	12
1.5 Pin Description	
2. Central Processing Unit (CPU)	21
2.1 Data Registers (R0, R1, R2 and R3)	21
2.2 Address Registers (A0 and A1)	21
2.3 Frame Base Register (FB)	22
2.4 Interrupt Table Register (INTB)	22
2.5 Program Counter (PC)	22
2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)	22
2.7 Static Base Register (SB)	22
2.8 Flag Register (FLG)	22
2.8.1 Carry Flag (C Flag)	22
2.8.2 Debug Flag (D Flag)	22
2.8.3 Zero Flag (Z Flag)	
2.8.4 Sign Flag (S Flag)	22
2.8.5 Register Bank Select Flag (B Flag)	22
2.8.6 Overflow Flag (O Flag)	22
2.8.7 Interrupt Enable Flag (I Flag)	22
2.8.8 Stack Pointer Select Flag (U Flag)	22
2.8.9 Processor Interrupt Priority Level (IPL)	22
2.8.10 Reserved Area	22
3. Memory	23
4. Special Function Registers (SFRs)	24

Quick Reference to Pages Classified by Address

Address	Register	Symbol	Page	Address	Register	Symbol	Page
018016				024016			
018116				024116			
018216				024216	CAN0 acceptance filter support register	C0AFS	299
018316				024316			
018416				024416			
018516				024516			
018616				024616			
				024716			
			I.	024816			
				024916			
01B016				024A16			
01B116				024C16			
01B216				024D16			
01B316	Flash memory control register 4 (Note 2)	FMR4	342	024E16			
01B4 ₁₆				024F16			
01B516	Flash memory control register 1 (Note 2)	FMR1	341	025016			
01B616				025116			
01B7 ₁₆	Flash memory control register 0 (Note 2)	FMR0	341	025216			
01B816				025316			
01B916				025416			
01BA16				025516			
01BB16				025616			+
01BC16				025716			
				025816			
			1	025916			
				025A16	Three-phase protect control register	TPRC	139
		COMCTLO	292	025B16			
020116	CAN0 message control register 1	C0MCTL1	292		On-chip oscillator control register	ROCR	50
	CAN0 message control register 2	C0MCTL2	292		Pin assignment control register	PACR	177, 3
020316	CAN0 message control register 3	COMCTL3	292		Peripheral clock select register	PCLKR	52
	CAN0 message control register 4	COMCTL4	292	025F16	CAN0 clock select register	CCLKR	53
020516	CAN0 message control register 5	C0MCTL5	292				
020616	CAN0 message control register 6	COMCTL6	292				
020716	CAN0 message control register 7	C0MCTL7	292				
020816	CAN0 message control register 8	C0MCTL8	292				
020916	CAN0 message control register 9	C0MCTL9	292				
020A16	CAN0 message control register 10	C0MCTL10	292				
020B16	CAN0 message control register 11	C0MCTL11	292				
020C16	CAN0 message control register 12	C0MCTL12	292				
020D16	CAN0 message control register 13	C0MCTL13	292				
020E16	CAN0 message control register 14	C0MCTL14	292				
020F16	CAN0 message control register 15	C0MCTL15	292				
021016			202				
021116	CAN0 control register	C0CTLR	293				
021216	CAN0 status register	COSTR	294				
021316							
021416	CAN0 slot status register	COSSTR	295				
021516				0	1200 data abiti na niat	000	0.50
021616	CAN 0 interrupt control register	COICR	296		I ² C0 data shift register	S00	258
021716				02E116	1200	0000	
021816	CAN0 extended ID register	COIDR	296		I ² C0 address register	S0D0	257
021916			•		I ² C0 control register 0	S1D0	259
021A16	CAN0 configuration register	C0CONR	297		I ² C0 clock control register	S20	258
021B16					I ² C0 start/stop condition control register	S2D0	263
021C16	CAN0 receive error count register	CORECR	298		I ² C0 control register 1	S3D0	261
021D16	CAN0 transmit error count register	COTECR	298		I ² C0 control register 2	S4D0	262
021E16	CAN0 time stamp register	COTSR	299	02E816	I ² C0 status register	S10	260
021F16	יראיט נווויב אמוויף ובטואנבו	SUISK	233	02E916			
021016				02EA16			
02FE16				02FE16			
			1	02FF16			1

Note 1: The blank areas are reserved and cannot be accessed by users. Note 2: This register is included in the flash memory version.

Figure 5.8 Low Voltage Detection Interrupt Generation Block

Figure 5.9 Low voltage Detection Interrupt Generation Circuit Operation Example

3. When the two-phase pulse signal processing function is not used, set the corresponding bit to 0.

Figure 12.5 TA0 to TA4 Registers, TABSR Register, and UDF Register

RENESAS

Figure 13.9 G1IR Register

14.1.3.1 Detection of Start and Stop Condition

Whether a start or a stop condition has been detected is determined.

A start condition-detected interrupt request is generated when the SDA2 pin changes state from high to low while the SCL2 pin is in the high state. A stop condition-detected interrupt request is generated when the SDA2 pin changes state from low to high while the SCL2 pin is in the high state.

Because the start and stop condition-detected interrupts share the interrupt control register and vector, check the BBS bit in the U2SMR register to determine which interrupt source is requesting the interrupt.

Figure 14.24 Detection of Start and Stop Condition

14.1.3.2 Output of Start and Stop Condition

A start condition is generated by setting the STAREQ bit in the U2SMR4 register to 1 (start). A restart condition is generated by setting the RSTAREQ bit in the U2SMR4 register to 1 (start). A stop condition is generated by setting the STPREQ bit in the U2SMR4 register to 1 (start). The output procedure is described below.

(1) Set the STAREQ bit, RSTAREQ bit or STPREQ bit to 1 (start).

(2) Set the STSPSEL bit in the U2SMR4 register to 1 (output).

Make sure that no interrupts or DMA transfers will occur between (1) and (2).

The function of the STSPSEL bit is shown in Table 14.14 and Figure 14.25.

b7 b6	5 b4 b	3 b2 b	1 b0	Symbo ADSTA		After res	set	
				Bit Symbol	Bit Name		Function I	٦W
				ADERR0	AN1 trigger status flag	AN0 1: AN1	trigger did not occur during conversion trigger occured during conversion	٦W
				ADERR1	Conversion termination flag	1: Conv	version not terminated version terminated by f er B0 underflow	٦W
		L		(b2)	Nothing is assigned. If nece When read, its content is 0	essary, so	et to 0.	
				ADTCSF	Delayed trigger sweep status flag		ep not in progress ep in progress	RO
	·			ADSTT0	AN0 conversion status flag		conversion not in progress conversion in progress	RO
				ADSTT1	AN1 conversion status flag		conversion not in progress conversion in progress	RO
				ADSTRT0	AN0 conversion completion status flag		conversion not completed conversion completed	RW
l				ADSTRT1	AN1 conversion completion status flag		conversion not completed conversion completed	٦W
A/D R		eri(i=	0 to	AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7	Address 03C116 to 03C016 03C316 to 03C216 03C516 to 03C416 03C716 to 03C616 03C916 to 03C816 03CD16 to 03C410 03CD16 to 03C410 03CF16 to 03C410 03CF16 to 03C410	5 l 5 l 5 l 5 l 6 l 6 l	After Reset Jndefined Jndefined Jndefined Jndefined Jndefined Jndefined Jndefined	
						Funct	ion	R
					When the BITS bit in the Al register is 1 (10-bit mode)	DCON1	When the BITS bit in the ADCON1 register is 0 (8-bit mode)	R
				L.	Eight low-order bits of A/D conversion result		A/D conversion result	R
					Two high-order bits of A/D conversion result		When read, its content is undefined	R

Figure 15.4 ADSTAT0 Register and AD0 to AD7 Registers

<u>b3 b2 t</u>		Symbol TB2SC	Address 039E16	After Reset X0000002	
	[Bit Symbol	Bit Name	Function	RW
		PWCON	Timer B2 reload timing switch bit ⁽²⁾	0: Timer B2 underflow 1: Timer A output at odd-numbered	RW
		IVPCR1	Three-phase output port SD control bit 1 (3, 4, 7)	 O: Three-phase output forcible cutoff by SD pin input (high impedance) disabled Three-phase output forcible cutoff by SD pin input (high impedance) enabled 	RW
	[TB0EN	Timer B0 operation mode select bit	0: Other than A/D trigger mode 1: A/D trigger mode ⁽⁵⁾	RW
ו ו נ		TB1EN	Timer B1 operation mode select bit	0: Other than A/D trigger mode 1: A/D trigger mode ⁽⁵⁾	RW
		TB2SEL	Trigger select bit ⁽⁶⁾	0: TB2 interrupt 1: Underflow of TB2 interrupt generation frequency setting counter [ICTB2]	RW
		(b6-b5)	Reserved bits	Set to 0	RW
 		(b7)	Nothing is assigned. If no When read, its content is		_

- 1. Write to this register after setting the PRC1 bit in the PRCR register to 1 (write enabled).
- 2. If the INV11 bit is 0 (three-phase mode 0) or the INV06 bit is 1 (triangular wave modulation mode), set this bit to 0 (timer B2 underflow).
- 3. When setting the IVPCR1 bit to 1 (three-phase output forcible cutoff by SD pin input enabled), Set the PD85 bit to 0 (= input mode).
- 4. Related pins are U(P80), Ū(P81), V(P72), ∇(P73), W(P74), Ŵ(P75). When a high-level ("H") signal is applied to the SD pin and set the IVPCR1 bit to 0 after forcible cutoff, pins U, \overline{U} , ∇ , ∇ , W, and \overline{W} are exit from the high-impedance state. If a low-level ("L") signal is applied to the SD pin, three-phase motor control timer output will be disabled (INV03=0). At this time, when the IVPCR1 bit is 0, pins U, D, V, ∇ , W, and \overline{W} become programmable I/O ports. When the IVPCR1 bit is set to 1, pins U, D, V, ∇ , W, and \overline{W} are placed in a high-impedance state regardless of which function of those pins is used.

5. When this bit is used in delayed trigger mode 0, set bits TB0EN and TB1EN to 1 (A/D trigger mode).

6. When setting the TB2SEL bit to 1 (underflow of TB2 interrupt generation frequency setting counter[ICTB2]), set the INV02 bit to 1 (three-phase motor control timer function).

Figure 15.5 TB2SC Register

17.1.1 CAN0 Message Box

Table 17.1 shows the memory mapping of the CAN0 message box.

It is possible to access to the message box in byte or word.

Mapping of the message contents differs from byte access to word access. Byte access or word access can be selected by the MsgOrder bit of the C0CTLR register.

Table 17.1	Memory Mapping of CAN0 Message Box
------------	------------------------------------

A distance.	Message content (Memory mapping)
Address	Byte access (8 bits)	Word access (16 bits)
0060 ₁₆ + n • 16 + 0	SID ₁₀ to SID ₆	SID₅ to SID₀
0060 ₁₆ + n • 16 + 1	SID₅ to SID₀	SID ₁₀ to SID ₆
0060 ₁₆ + n • 16 + 2	EID17 to EID14	EID13 to EID6
0060 ₁₆ + n • 16 + 3	EID ₁₃ to EID ₆	EID ₁₇ to EID ₁₄
0060 ₁₆ + n • 16 + 4	EID₅ to EID₀	Data Length Code (DLC)
0060 ₁₆ + n • 16 + 5	Data Length Code (DLC)	EID₅ to EID₀
0060 ₁₆ + n • 16 + 6	Data byte 0	Data byte 1
0060 ₁₆ + n • 16 + 7	Data byte 1	Data byte 0
:		
0060 ₁₆ + n • 16 + 13	Data byte 7	Data byte 6
0060 ₁₆ + n • 16 + 14	Time stamp high-order byte	Time stamp low-order byte
0060 ₁₆ + n • 16 + 15	Time stamp low-order byte	Time stamp high-order byte

n = 0 to 15: the number of the slot

Figure 19.4 I/O Ports (4)

20.2 Memory Map

The flash memory contains the user ROM area and the boot ROM area (reserved area). **Figures 20.1** to **20.3** show a block diagram of the flash memory. The user ROM area has space to store the MCU operation program in single-chip mode and two 2-Kbyte spaces: the block A and B.

The user ROM area is divided into several blocks. The user ROM area can be rewritten in CPU rewrite, standard serial I/O, parallel I/O, or CAN I/O mode.

However, to rewrite program in block 0 and 1 in CPU rewrite mode, set the FMR02 bit in the FMR0 register to 1 (block 0, 1 rewrite enabled) and the FMR16 bit in the FMR1 register to 1 (blocks 0 to 5 rewrite enabled). Also, to rewrite program in blocks 2 to 5 in CPU rewrite mode, set the FMR16 bit in the FMR1 register to 1 (blocks 0 to 5 rewrite enabled). When the PM10 bit in the PM1 register is set to 1 (data space access enabled), blocks A and B can be available for use.

Figure 20.1 Flash Memory Block Diagram (ROM capacity 64 Kbytes)

RENESAS

20.8.4 Full Status Check

If an error occurs, bits FMR06 to FMR07 in the FMR0 register are set to 1, indicating a specific error. Therefore, execution results can be comfirmed by verifying these status bits (full status check). **Table 20.7** lists errors and FMR0 register state. **Figure 20.14** shows a flow chart of the full status check and handling procedure for each error.

FMR0	register					
(SRD register)						
status		Error	Error occurrence condition			
FMR07 FMR06						
(SR5) (SR4)						
1	1	Command	An incorrect commands is written			
sequence erro		sequence error	• A value other than xxD016 or xxFF16 is written in the second but			
			cycle of the block erase command ⁽¹⁾			
			When the block erase command is executed on an protected block			
			When the program command is executed on protected blocks			
1 0 Erase error		Erase error	The block erase command is executed on an unprotected block			
			but the program operation is not successfully completed			
0	1	Program error	The program command is executed on an unprotected block but			
			the program operation is not successfully completed			

Note 1: The flash memory enters read array mode by writing command code xxFF16 in the second bus cycle of these commands. The command code written in the first bus cycle becomes invalid.

Pin Name Descriptio I/O Apply the voltage guaranteed for Program and Erase to Vcc pin and 0 Vcc,Vss Power input V to Vss pin. **CNVss CNVs** T Connect to Vcc pin. RESET Reset input I Reset input pin. While RESET pin is "L", wait for td(ROC). Connect a ceramic resonator or crystal oscillator between XIN and XIN Clock input 1 XOUT pins. To input an externally generated clock, input it to XIN pin XOUT Clock output 0 and open XOUT pin. AVcc, AVss Connect AVss to Vss and AVcc to Vcc, respectively. Analog power supply input VREF Reference voltage input Т Enter the reference voltage for AD conversion. P00 to P07 Input port P0 I Input "H" or "L" signal or leave open. P10 to P15, P17 Input port P1 Т Input "H" or "L" signal or leave open. P16 Input port P1 I Connect this pin to Vcc while RESET pin is "L". (2) P20 to P27 Input port P2 I Input "H" or "L" level signal or leave open. Input "H" or "L" level signal or leave open. P30 to P37 Input port P3 Т P60 to P63 Input "H" or "L" level signal or leave open. Input port P6 T Standard serial I/O mode 1: BUSY signal output pin P64 **BUSY** output 0 Standard serial I/O mode 2: Monitor signal output pin for boot program operation check Standard serial I/O mode 1: Serial clock input pin T P65 SCLK input Standard serial I/O mode 2: Input "L" P66 RxD input T Serial data input pin Serial data output pin (1) P67 \cap TxD output P70 to P77 Input "H" or "L" signal or leave open. Input port P7 1 P80 to P84, Input port P8 Т Input "H" or "L" signal or leave open. P87 Connect this pin to Vss while RESET pin is "L". (2) P85 **RP** input T P86 CE input T Connect this pin to Vcc while RESET pin is "L". (2)

Table 20.8 Pin Descriptions (Flash Memory Standard Serial I/O Mode)

NOTES:

P100 to P107

P90 to P92,

P95 to P97 P93

> 1. When using standard serial I/O mode 1, to input "H" to the TxD pin is necessary while the RESET pin is held "L". Therefore, connect this pin to VCC via a resistor. Adjust the pull-up resistor value on a system not to affect a data transfer after reset, because this pin changes to a data-output pin

Input "H" or "L" signal or leave open.

Input "H" or "L" signal or leave open.

Input "H" or "L" signal or leave open.

"H" signal is output for specific time. Input "H" signal or leave open.

T

I/O

Т

I

2. Set the following, either or both.

Input port P9

Input port P10

-Connect the CE pin to Vcc.

-Connect the RP pin to VSS and P16 pin to Vcc.

Input port P93 Normal-ver.

T-ver./V-ver

20.10 Parallel I/O Mode

In parallel input/output mode, the user ROM can be rewritten by a parallel programmer supporting the M16C/29 group. Contact your parallel programmer manufacturer for more information on the parallel programmer. Refer to the user's manual included with your parallel programmer for instructions.

20.10.1 ROM Code Protect Function

The ROM code protect function prevents the flash memory from being read or rewritten. (Refer to **20.3 Functions To Prevent Flash Memory from Rewriting**).

Figure 21.1 Timing Diagram (1)

Timing Requirements

Vcc = 3V

(VCC = 3V, VSS = 0V, at Topr = - 40 to 85°C unless otherwise specified)

Oursels al	Deservator	Standard of	clock mode	High-speed	clock mode	1.1
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tBUF	Bus free time	4.7		1.3		μs
tHD;STA	The hold time in start condition	4.0		0.6		μs
tLOW	The hold time in SCL clock 0 status	4.7		1.3		μs
tR	SCL, SDA signals' rising time		1000	20+0.1Cb	300	ns
tHD;DAT	Data hold time	0		0	0.9	μs
tHIGH	The hold time in SCL clock 1 status	4.0		0.6		μs
tF	SCL, SDA signals' falling time		300	20+0.1Cb	300	ns
tsu;DAT	Data setup time	250		100		ns
tsu;STA	The setup time in restart condition	4.7		0.6		μs
tsu;STO	Stop condition setup time	4.0		0.6		μs

Table 21.77 Multi-master I²C bus Line

Timing Requirements

Vcc = 5V

(Vcc=5V, Vss=0V, at Topr=-40 to 125°C unless otherwise specified)

Table 21.93 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Star	Unit	
Symbol	Falanielei	Min.	Max.	
tc(tb)	TBin Input Cycle Time (counted on one edge)	100		ns
tw (твн)	TBin Input High ("H") Width (counted on one edge)	40		ns
tw(TBL)	TBin Input Low ("L") Width (counted on one edge)	40		ns
tc(tb)	TBin Input Cycle Time (counted on both edges)	200		ns
tw(твн)	TBin Input High ("H") Width (counted on both edges)	80		ns
tw(tbl)	TBin Input Low ("L") Width (counted on both edges)	80		ns

Table 21.94 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	Unit	
Symbol	Falameter	Min.	Max.	
tc(tb)	TBin Input Cycle Time	400		ns
tw(твн)	TBi⊪ Input High ("H") Width	200		ns
tw(TBL)	TBiiN Input Low ("L") Width	200		ns

Table 21.95 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Stan	Idard	- Unit
	Falameter	Min.	Max.	
tc(TB)	TBin Input Cycle Time	400		ns
tw(твн)	TBin Input High ("H") Width			ns
tw(TBL)	TBin Input Low ("L") Width	200		ns

Table 21.96 A/D Trigger Input

Symbol	Parameter –	Standard		Unit
	Falance	Min. Max		
tC(AD)	ADTRG Input Cycle Time (required for trigger)			ns
tw(ADL)	ADTRG Input Low ("L") Width			ns

Table 21.97 Serial I/O

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tc (СК)	CLKi Input Cycle Time	200		ns
tw(CKH)	CLKi Input High ("H") Width	100		ns
tw(CKL)	CLKi Input Low ("L") Width	100		ns
td(C-Q)	TxDi Output Delay Time		80	ns
th(C-Q)	TxDi Hold Time	0		ns
tsu(D-C)	RxDi Input Setup Time	70		ns
th(C-Q)	RxDi Input Hold Time	90		ns

Table 21.98 External Interrupt INTi Input

Symbol	Parameter	Stan	Standard	
	Falanelei	Min.	Max.	Unit
tw(INH)	INTi Input High ("H") Width	250		ns
tw(INL)	INTi Input Low ("L") Width	250		ns

22.11.2 CAN Transceiver in Boot Mode

When programming the flash memory in boot mode via CAN bus, the operation mode of CAN transceiver should be set to "high-speed mode" or "normal operation mode". If the operation mode is controlled by the MCU, CAN transceiver must be set the operation mode to "high-speed mode" or "normal operation mode" before programming the flash memory by changing the switch etc. **Tables 22.3 and 22.4** show pin connections of CAN transceiver.

Table 22.3 Pin Connections of CAN Transceiver (In case of PCA82C250: Philips product)

Note 1: The pin which controls the operation mode of CAN transceiver. Note 2: Connect to enabled port to control CAN transceiver.

	Sleep mode	Normal operation mode	
STB pin (Note 1)	"L"	"H"	
EN pin (Note 1)	"L"	"H"	
CAN communication	impossible	possible	
Connection	M16C/29 CTx0 CTx0 CRx0 Port ⁽²⁾ Port ⁽²⁾ Switch OFF	M16C/29 CTxo CTxo CRxo Port ⁽²⁾ Port ⁽²⁾ Witch ON Port ⁽²⁾	

Table 22.4 Pin Connections of CAN Transceiver (In case of PCA82C252: Philips product)

Note 1: The pin which controls the operation mode of CAN transceiver. Note 2: Connect to enabled port to control CAN transceiver.

22.14 Mask ROM Version

22.14.1 Internal ROM Area

In the masked ROM version, do not write to internal ROM area. Writing to the area may increase power consumption.

22.14.2 Reserved Bit

The b3 to b0 in addresses 0FFFF16 are reserved bits. Set these bits to 11112.

Appendix 2. Functional Comparison

Appendix 2.1 Difference between M16C/28 Group and M16C/29 Group (Normal-ver.)⁽¹⁾

•		-	
Item	Description	M16C/28(Normal-ver.)	M16C/29(Normal-ver.)
Clock Generation Circuit	Clock output function (function of b1 to b0 bits in the CM0 register)	Not available (reserved bit)	Available (clock output function select bit)
Protection	Function of the PRC0 bit	Enable to set the CM0, CM1, CM2, POCR, PLC0 and PCLKR registers	Enable to set the CM0, CM1, CM2, POCR, PLC0, PCLKR and CCLKR registers
Interrupt	The IFSR20 bit setting in the IFSR2A register	Set to 1	Set to 0
	The b1 bit in the IFSR2A register	Not available (reseved bit)	Interrupt cause switching bit (0: A/D conversion, 1:key input)
	The b2 bit in the IFSR2A register	Not available (reseved bit)	Interrupt cause switching bit (0: CAN0 wake-up/ error)
	Interrupt cause in the Interrupt number 13	Key input interrupt	CAN0 error
	Interrupt cause in the Interrupt number 14	Key input interrupt	A/D, key input interrupt
Three-phase Motor Control Timer	Three-phase port switching function (function of 035816)	Not available (reserved register)	Available (port function select register)
A/D	Number of A/D input pin	24 channels (excluding AN ₃₀ to AN ₃₂)	27 channels (including AN30 to AN32)
	Delayed trigger mode 0	Not available in the 1st chip version and chip version A	Available
	Delayed trigger mode 1	Not available in the 1st chip version and chip version A	Available
CAN module	compatible to 2.0B	Not available (all related registers are reserved registers)	Available (1 channel)
CRC Calculation	Available (compatible to CRC- CCITT and CRC-16 methods)	Not available (all related registers are reserved registers)	Available (1 circuit)
Pin Function	2 pins (80-pin/85-pin package), 62 pins (64-pin package)	P93/AN24	P93/AN24/CTX
	3 pins (80-pin/85-pin package), 64 pins (64-pin package)	P92/TB2in	P92/AN32/TB2IN/CRX
	4 pins (80-pin/85-pin package), 1 pin (64-pin package)	P91/TB1IN	P91/AN31/TB1IN
	5 pins (80-pin/85-pin package), 2 pins (64-pin package)	P90/TB0IN	P90/AN30/TB0IN/CLKOUT
Flash Memory	P93 in standard serial I/O mode	I (other than 128 Kbyte version) I/O (128 Kbyte version)	CTX output

I: Input O: Output I/O: Input and output

NOTE:

 Since the M16C/28 group uses the common emulator used in the M16C/29 group, all the functions are available for M16C/28. When evaluating M16C/28 group, do not access to the SFR which is not built-in the M16C/28 gorup. Refere to hardware manual for details and electrical characteristics.

