E. Renesas Electronics America Inc - M30291FATHP#U3AAI1 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30291fathp-u3aai1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Quick Reference to Pages Classified by Address

Address	Register	Symbol	Page	Address	Register	Symbol	Page
018016				024016			
018116				024116			
018216				024216	CAN0 acceptance filter support register	C0AFS	299
018316				024316			
018416				024416			
018516				024516			
018616				024616			
				024716			
			I.	024816			
				024916			
01B016				024A16			
01B116				024C16			
01B216				024D16			
01B316	Flash memory control register 4 (Note 2)	FMR4	342	024E16			
01B4 ₁₆				024F16			
01B516	Flash memory control register 1 (Note 2)	FMR1	341	025016			
01B616				025116			
01B7 ₁₆	Flash memory control register 0 (Note 2)	FMR0	341	025216			
01B816				025316			
01B916				025416			
01BA16				025516			
01BB16				025616			+
01BC16				025716			
				025816			
			1	025916			
				025A16	Three-phase protect control register	TPRC	139
		COMCTLO	292	025B16			
020116	CAN0 message control register 1	C0MCTL1	292		On-chip oscillator control register	ROCR	50
	CAN0 message control register 2	C0MCTL2	292		Pin assignment control register	PACR	177, 3
020316	CAN0 message control register 3	COMCTL3	292		Peripheral clock select register	PCLKR	52
	CAN0 message control register 4	COMCTL4	292	025F16	CAN0 clock select register	CCLKR	53
020516	CAN0 message control register 5	C0MCTL5	292				
020616	CAN0 message control register 6	COMCTL6	292				
020716	CAN0 message control register 7	C0MCTL7	292				
020816	CAN0 message control register 8	COMCTL8	292				
020916	CAN0 message control register 9	C0MCTL9	292				
020A16	CAN0 message control register 10	C0MCTL10	292				
020B16	CAN0 message control register 11	C0MCTL11	292				
020C16	CAN0 message control register 12	C0MCTL12	292				
020D16	CAN0 message control register 13	C0MCTL13	292				
020E16	CAN0 message control register 14	C0MCTL14	292				
020F16	CAN0 message control register 15	C0MCTL15	292				
021016			202				
021116	CAN0 control register	C0CTLR	293				
021216	CAN0 status register	COSTR	294				
021316							
021416	CAN0 slot status register	COSSTR	295				
021516				0	1200 data abiti na siat	000	0.50
021616	CAN 0 interrupt control register	COICR	296		I ² C0 data shift register	S00	258
021716				02E116	1200	0000	
021816	CAN0 extended ID register	COIDR	296		I ² C0 address register	S0D0	257
021916			•		I ² C0 control register 0	S1D0	259
021A16	CAN0 configuration register	C0CONR	297		I ² C0 clock control register	S20	258
021B16					I ² C0 start/stop condition control register	S2D0	263
021C16	CAN0 receive error count register	CORECR	298		I ² C0 control register 1	S3D0	261
021D16	CAN0 transmit error count register	COTECR	298		I ² C0 control register 2	S4D0	262
021E16	CAN0 time stamp register	COTSR	299	02E816	I ² C0 status register	S10	260
021F16	יראיט נווויב אמוויף ובטואנבו	SUISK	233	02E916			
021016				02EA16			
02FE16				02FE16			
			7	02FF16			1

Note 1: The blank areas are reserved and cannot be accessed by users. Note 2: This register is included in the flash memory version.

Table 1.5 Product List (3) -V Version

As of March, 2007

Type Number	ROM Capacity	RAM Capacity	Package Type	Remarks	Product Code
M30290FAVHP	96 K + 4 K	8 K	PLQP0080KB-A (80P6Q-A)	Flash Memory	
M30290FCVHP	128 K + 4 K	12 K			U3, U5,
M30291FAVHP	96 K + 4 K	8 K	PLQP0064KB-A (64P6Q-A)		U7, U9
M30291FCVHP	128 K + 4 K	12 K	FLQF0004RD-A(04F0Q-A)		
M30290M8V-XXXHP	64 K	4 K			
M30290MAV-XXXHP	96 K	8 K	PLQP0080KB-A (80P6Q-A)		
M30290MCV-XXXHP	128 K	12 K	-	Mask	UO
M30291M8V-XXXHP	64 K	4 K		ROM	00
M30291MAV-XXXHP	96 K	8 K	PLQP0064KB-A (64P6Q-A)		
M30291MCV-XXXHP	128 K	12 K			

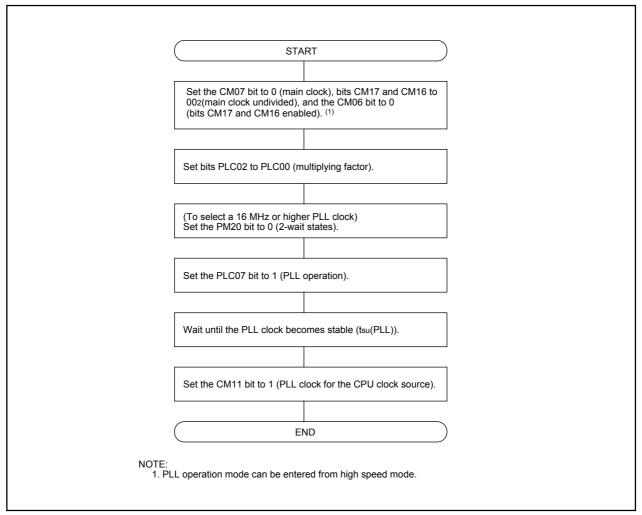


Figure 7.10 Procedure to Use PLL Clock as CPU Clock Source

Figure 7.11 shows the state transition from normal operation mode to stop mode and wait mode. Figure 7.12 shows the state transition in normal operation mode.

Table 7.7 shows a state transition matrix describing allowed transition and setting. The vertical line shows current state and horizontal line shows state after transition.

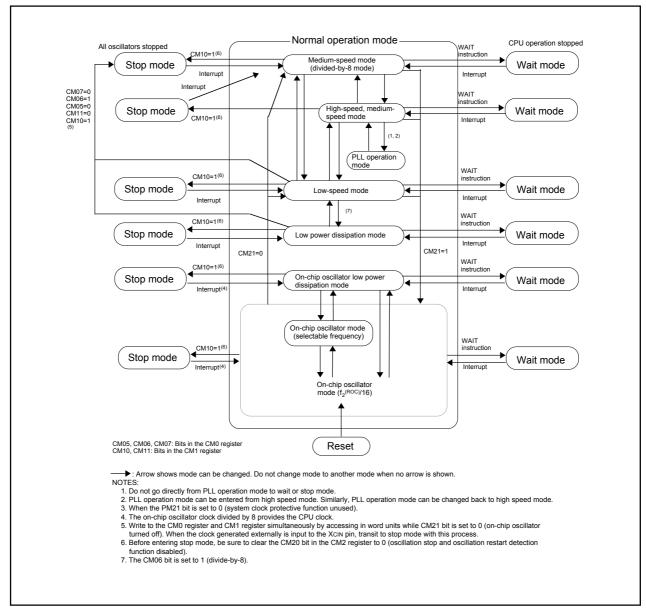


Figure 7.11 State Transition to Stop Mode and Wait Mode

9.3.1 I Flag

The I flag enables or disables the maskable interrupt. Setting the I flag to 1 (= enabled) enables the maskable interrupt. Setting the I flag to 0 (= disabled) disables all maskable interrupts.

9.3.2 IR Bit

The IR bit is set to 1 (= interrupt requested) when an interrupt request is generated. Then, when the interrupt request is accepted and the CPU branches to the corresponding interrupt vector, the IR bit is cleared to 0 (= interrupt not requested).

The IR bit can be cleared to 0 in a program. Note that do not write 1 to this bit.

9.3.3 ILVL2 to ILVL0 Bits and IPL

Interrupt priority levels can be set using bits ILVL2 to ILVL0.

Table 9.3 shows the settings of interrupt priority levels and **Table 9.4** shows the interrupt priority levels enabled by the IPL.

The following are conditions under which an interrupt is accepted:

- · I flag = 1
- · IR bit = 1
- · interrupt priority level > IPL

The I flag, IR bit, bits ILVL2 to ILVL0, and IPL are independent of each other. In no case do they affect one another.

ILVL2 to ILVL0 bits	Interrupt priority level	Priority order
0002	Level 0 (interrupt disabled)	
0012	Level 1	Low
0102	Level 2	
0112	Level 3	
1002	Level 4	
1012	Level 5	
1102	Level 6	↓
1112	Level 7	High

Table 9.3 Settings of Interrupt Priority Levels

Table 9.4 Interrupt Priority Levels Enabled by IPL

IPL	Enabled interrupt priority levels
0002	Interrupt levels 1 and above are enabled
0012	Interrupt levels 2 and above are enabled
0102	Interrupt levels 3 and above are enabled
0112	Interrupt levels 4 and above are enabled
1002	Interrupt levels 5 and above are enabled
1012	Interrupt levels 6 and above are enabled
1102	Interrupt levels 7 and above are enabled
1112	All maskable interrupts are disabled

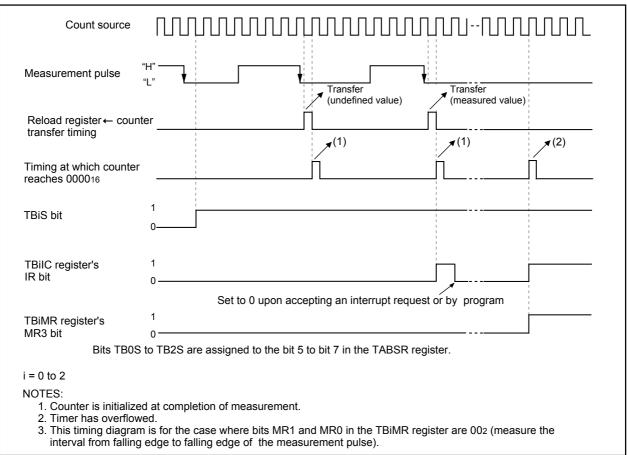


Figure 12.21 Operation timing when measuring a pulse period

Count source	
Measurement pulse	"H" "L" Transfer Transfer Transfer
Reload register ← coun transfer timing	
Timing at which counter reaches 000016	
TBiS bit	
TBilC register's IR bit	
	Set to 0 upon accepting an interrupt request or by program
The MR3 bit in the TBiMR register	0
Bits T	B0S to TB2S are assigned to the bit 5 to bit 7 in the TABSR register.
i = 0 to 2	
 Timer has overflow This timing diagra 	m is for the case where bits MR1 to MR0 in the TBiMR register are 102 (measure the interval to the next rising edge and the interval from a rising edge to the next falling edge of the

Figure 12.22 Operation timing when measuring a pulse width

RENESAS

b6 b5 b4 b3 b2 b1 b0	Symbol INVC0	Address 034816	After Reset 0016	
	Bit Symbol	Bit Name	Function	RW
	INV00	Effective interrupt output polarity select bit ⁽³⁾	 0: ICTB2 counter is incremented by 1 on the rising edge of timer A1 reload control signal 1: ICTB2 counter is incremented by 1 on the falling edge of timer A1 reload control signal 	RW
	INV01	Effective interrupt output specification bit ^(2, 3)	0: ICTB2 counter incremented by 1 at a timer B2 underflow 1: Selected by INV00 bit	RW
	INV02	Mode select bit ⁽⁴⁾	0: Three-phase motor control timer function unused 1: Three-phase motor control timer function (5)	RW
	INV03	Output control bit ⁽⁶⁾	0: Three-phase motor control timer output disabled (5) 1: Three-phase motor control timer output enabled	RW
	INV04	Positive and negative phases concurrent output disable bit	0: Simultaneous active output enabled 1: Simultaneous active output disabled	RW
	INV05	Positive and negative phases concurrent output detect flag	0: Not detected yet 1: Already detected ⁽⁷⁾	RW
	INV06	Modulation mode select bit ⁽⁸⁾	0: Triangular wave modulation mode 1: Sawtooth wave modulation mode ⁽⁹⁾	RW
	INV07	Software trigger select bit	Setting this bit to 1 generates a transfer trigger. If the INV06 bit is 1, a trigger for the dead time timer is also generated. The value of this bit when read is 0	RW

NOTES:

1. Write to this register after setting the PRC1 bit in the PRCR register to 1 (write enable). Note also that bits INV00 to INV02, bits INV04 and INV06 can only be rewritten when timers A1, A2, A4 and B2 are idle.

2. If this bit needs to be set to 1, set any value in the ICTB2 register before writing to it.

3. Effective when the INV11 bit in the INV1 register is 1 (three-phase mode 1). If INV11 is set to 0 (three-phase mode 0), the ICTB2 counter is incremented by 1 each time the timer B2 underflows, regardless of whether the INV00 and INV01 bits are set. When setting the INV01 bit to 1, the first interrupt is generated when the timer B2 underflows n-1 times, if n is the value set in the ICTB2 counter. Subsequent interrupts are generated every n times the timer B2 underflow.

4. Setting the INV02 bit to 1 activates the dead time timer, U/V/W-phase output control circuits and ICTB2 counter.

5. When the INV02 bit is set to 1 and the INV03 bit is set to 0, Ū, U, ∇, V, ₩, W pins, including pins shared with other output functions, enter a high-impedance state. When INV03 is set to 1, U/V/W corresponding pins generate the three-phase PWM output.

6. The INV03 bit is set to 0 in the following cases:

When reset

• When positive and negative go active (INV05 = 1) simultaneously while INV04 bit is 1

• When set to 0 by program

• When input on the SD pin changes state from "H" to "L" regardless of the value of the INVCR1 bit. (The INV03 bit cannot be set to 1 when SD input is "L".) INV03 is set to 0 when both bits INV05 and INV04 are set to 1.

Item	INV06=0	INV06=1	
Mode	Triangular wave modulation mode	Sawtooth wave modulation mode	
Timing at which transferred from registers IDB0 to IDB1 to three-phase output shift register	Transferred only once synchronously with the transfer trigger after writing to registers IDB0 to IDB1	Transferred every transfer trigger	
Timing at which dead time timer trigger is generated when INV16 bit is 0	Synchronous with the falling edge of timer A1, A2, or A4 one-shot pulse	Synchronous with the transfer trigger and the falling edge of timer A1, A2, or A4 one-shot pulse	
INV13 bit	Effective when INV11 is set to 1 and INV06 is set to 0	No effect	

Transfer trigger: Timer B2 underflow, write to the INV07 bit or write to the TB2 register when the INV10 bit is set to 1.

9: If the INV06 bit is set to 1, set the INV11 bit to 0 (three-phase mode 0) and set the PWCON bit to 0 (timer B2 reloaded by a timer B2 underflow)

10. When the PFCi (i = 0 to 5) bit in the PFCR register is set to 1 (three-phase PWM output), individual pins are enabled to output.

Figure 12.26 INVC0 Register

12.3.2 Three-phase/Port Output Switch Function

When the INVC03 bit in the INVC0 register set to 1 (Timer output enabled for three-phase motor control) and setting the PFCi (i=0 to 5) in the PFCR register to 0 (I/O port), the three-phase PWM output pin (U, \overline{U} , V, \overline{V} , W and \overline{W}) functions as I/O port. Each bit of the PFCi bits (i=0 to 5) is applicable for each one of three-phase PWM output pins. **Figure 12.37** shows the example of three-phase/port output switch function. **Figure 12.38** shows the PFCR register and the three-phase protect control register.

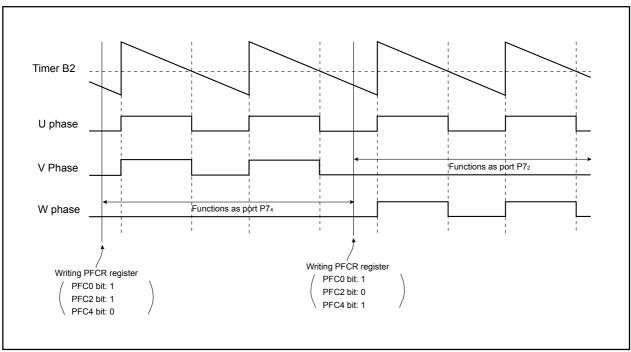


Figure 12.37 Usage Example of Three-phse/Port Output Switch Function

13.1.1 Base Timer Reset Register(G1BTRR)

The G1BTRR register provides the capability to reset the base timer when the base timer count value matches the value stored in the G1BTRR register. The G1BTRR register is enabled by the RST4 bit in the G1BCR0 register. This function is identical in operation to the G1PO0 base timer reset that is enabled by the RST1 bit in the G1BCR0 register. If the free-running operation is not selected, the channel 0 can be used for a waveform generation when the base timer is reset by the G1BTRR register. Do not enable bits RST1 and RST4 simultaneously.

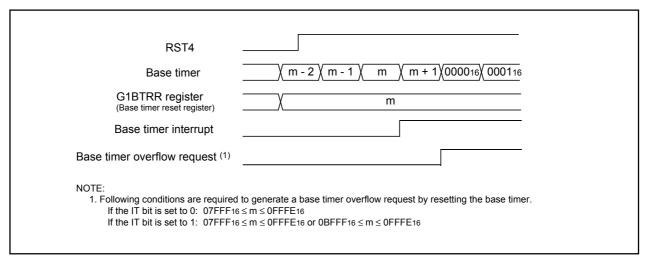


Figure 13.15 Base Timer Reset operation by Base Timer Reset Register

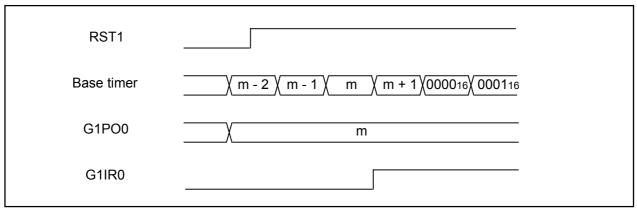


Figure 13.16 Base Timer Reset operation by G1PO0 register

RST2	
Base timer	<u> m - 2 m - 1 m m m + 1 000016 000116</u>
P83/INT1	
NOTE: 1. INT1 Base Timer reset does	s not generate a Base Timer interrupt. INT1 may generate an interrupt if enabled.

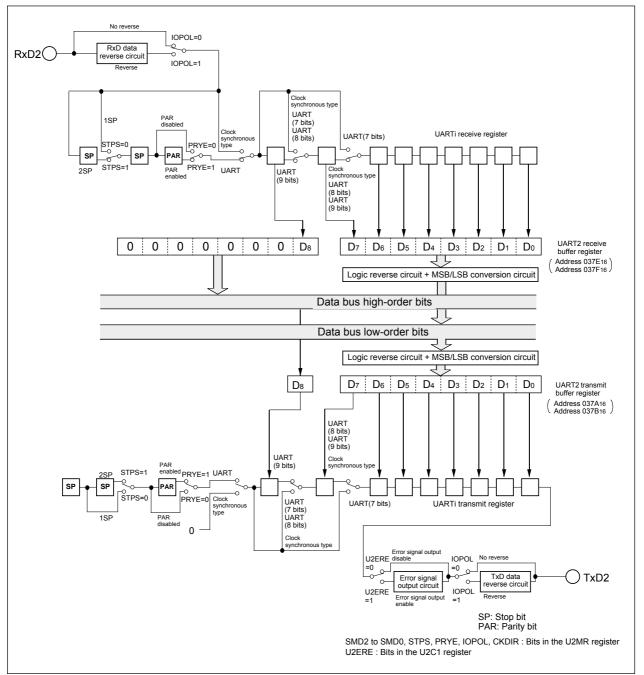


Figure 14.3 Block diagram of UART2 transmit/receive unit

14.1.2.4 Serial Data Logic Switching Function (UART2)

The data written to the U2TB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the U2RB register. **Figure 14.19** shows serial data logic.

(1) When the	U2LCH bit in the U2C1 register is set to 0 (no reverse)	
Transfer clock		
TxD2 (no reverse)	"H"	
(2) When the	U2LCH bit in the U2C1 register is set 1 (reverse)	
Transfer clock		
TxD2 (reverse)	"H" <u>ST (D0) D1) D2 (D3) D4) D5) D6 (D7) P</u> SP	
(transmit the U2C0	ies to the case where the CKPOL bit in the U2C0 register is set to 0 P: Parity bit data output at the falling edge of the transfer clock), the UFORM bit in SP: Stop bit 0 register is set to 0 (LSB first), the STPS bit in the U2MR register is set op bit) and the PRYE bit in the U2MR register is set to 1 (parity	

Figure 14.19 Serial Data Logic Switching

14.1.2.5 TxD and RxD I/O Polarity Inverse Function (UART2)

This function inverses the polarities of the TxD2 pin output and RxD2 pin input. The logic levels of all input/output data (including the start, stop and parity bits) are inversed. **Figure 14.20** shows the TxD pin output and RxD pin input polarity inverse.

(1) When the IOPOL bit in the U2MR register is set to 0 (no reverse)
TxD2 "H" ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / P / SP
RxD2 "H" ST (D0) D1) D2) D3) D4) D5) D6) D7) P) SP (no reverse) "L"
(2) When the IOPOL bit in the U2MR register is set to 1 (reverse)
ТхD2 "H" (reverse) "L" ST <u>V D0 V D1 V D2 V D3 V D4 V D5 V D6 V D7 V</u> P V SP
RxD2 "H" ST D0 D1 D2 D3 D4 D5 D6 D7 P SP (reverse)
NOTE: 1. This applies to the case where the UFORM bit in the U2C0 register is set to 0 (LSB first), the STPS bit in the U2MR register is set to 0 (1 stop bit) and the PRYE bit in the U2MR register is set to 1 (parity enabled). ST: Start bit P: Parity bit SP: Stop bit

Figure 14.20 TxD and RxD I/O Polarity Inverse

15.1.7 Delayed Trigger Mode 0

In delayed trigger mode 0, analog voltages applied to the selected pins are converted one-by-one to a digital code. The delayed trigger mode 0 used in combination with A/D trigger mode of Timer B. The Timer B0 underflow starts a single sweep conversion. After completing the ANo pin conversion, the AN1 pin is not sampled and converted until the Timer B1 underflow is generated. When the Timer B1 underflow is generated, the single sweep conversion is restarted with the AN1 pin. **Table 15.10** shows the delayed trigger mode 0 specifications. **Figure 15.19** shows the operation example in delayed trigger mode 0. **Figures 15.20** and **15.21** show each flag operation in the ADSTAT0 register that corresponds to the operation example. **Figure 15.22** shows registers ADCON0 to ADCON2 in delayed trigger mode 0. **Figure 15.23** shows the ADTRGCON register in delayed trigger mode 0 and **Table 15.11** shows the trigger select bit setting in delayed trigger mode 0.

Item	Specification
Function	Bits SCAN1 and SCAN0 in the ADCON1 register and bits ADGSEL1 and ADGSEL0
	in the ADCON2 register select pins. Analog voltage applied to the input voltage of
	the selected pins are converted one-by-one to the digital code. At this time, timer B0
	underflow generation starts ANo pin conversion. Timer B1 underflow generation
	starts conversion after the AN1 pin. ⁽¹⁾
A/D Conversion Start	ANo pin conversion start condition
	•When Timer B0 underflow is generated if Timer B0 underflow is generated again
	before Timer B1 underflow is generated , the conversion is not affected
	•When Timer B0 underflow is generated during A/D conversion of pins after the
	AN1 pin, conversion is halted and the sweep is restarted from the AN0 pin again
	AN1 pin conversion start condition
	•When Timer B1 underflow is generated during A/D conversion of the ANo pin, the
	input voltage of the AN1 pin is sampled. The AN1 conversion and the rest of the
	sweep start when AN ₀ conversion is completed.
A/D Conversion Stop	•When single sweep conversion from the AN0 pin is completed
Condition	•Set the ADST bit to 0 (A/D conversion halted) ⁽²⁾
Interrupt request	A/D conversion completed
generation timing	
Analog input pin	Select from AN0 to AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins)
	and AN₀ to AN⁊ (8 pins) ⁽³⁾
Readout of A/D conversion	Readout one of registers AN0 to AN7 that corresponds to the selected pins
result	

Table 15.10 Delayed Trigger Mode 0 Specifications

NOTES:

- 1. Set the larger value than the value of the timer B0 register to the timer B1 register. The count source for timer B0 and timer B1 must be the same.
- 2. Do not write 1 (A/D conversion started) to the ADST bit in delayed trigger mode 0. When write 1, unexpected interrupts may be generated.
- 3. AN00 to AN07, AN 20 to AN27, and AN30 to AN32 can be used in the same way as AN0 to AN7. However, all input pins need to belong to the same group.

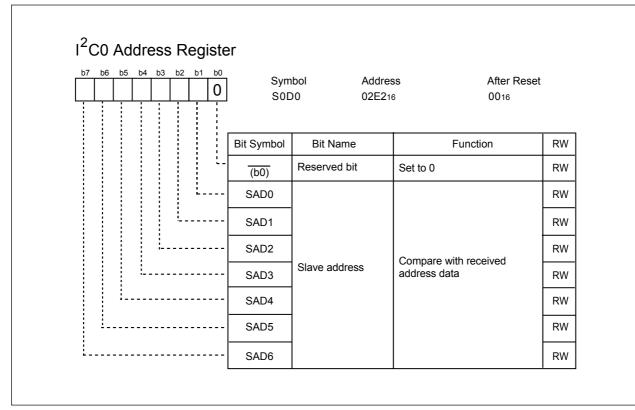


Figure 16.2 S0D0 Register

SCL	7 clock	8 clock	ACI		1 c	ock		
SDA	7 bit	8 bit	Даск в) 1 bi	: X		
ACKBIT bit	,				/ \			
-								
PIN flag								
Internal WAIT flag								
I ² C bus interface								
The writing signal of								
the S00 register		L H _ d						
receive mode, ACK	bit = 1 WIT	bit = 1 8 clock		ACK clock				
receive mode, ACK							1 bit	 X
receive mode, ACK	7 clock	8 clock] _X				1 bit	X
receive mode, ACK	7 clock	8 clock					1 bit	X X
receive mode, ACK	7 clock	8 clock					1 bit	X X
receive mode, ACK	7 clock	8 clock	1)		2)			X X
receive mode, ACK	7 clock	8 clock	1)		2)		1 bit	X

Figure 16.12 The timing of the interrupt generation at the completion of the data receive

16.6.3 Bits 2,3 : Port Function Select Bits PED, PEC

If the ES0 bit in the S1D0 register is set to 1 (I²C bus interface enabled), the SDAMM functions as an output port. When the PED bit is set to 1 and the SCLMM functions as an output port when the PEC bit is set to 1. Then the setting values of bits P2_0 and P2_1 in the port P2 register are output to the I²C bus, regardless of he internal SCL/SDA output signals. (SCL/SDA pins are onnected to I²C bus interface circuit)

The bus data can be read by reading the port pi direction register in input mode, regardless of the setting values of the PED and PEC bits. **Table 16.5** shows the port specification.

Pin Name	ES9 Bit	PED Bit	P20 Port Direction Register	Function
	0	-	0/1	Port I/O function
P20	1	0	-	SDA I/O function
	1	1	-	SDA input function, port output function
Pin Name	ES0 Bit	PEC Bit	P21 Port Direction Register	Function
	0	-	0/1	Port I/O function
P21	1	0	-	ScL I/O function
	1	1	-	ScL input function, port output funcion

Table 16.5 Port specifications

20.7 Software Commands

Read or write 16-bit commands and data from or to even addresses in the user ROM area. When writing a command code, 8 high-order bits (D15–D8) are ignored.

Table 20.5 Software Commands

		First bus cycle	e	Se	econd bus cy	cle
Command	Mode	Address	Data (D15 to D0)	Mode	Address	Data (D15 to D0)
Read array	Write	Х	xxFF16			
Read status register	Write	Х	xx70 16	Read	Х	SRD
Clear status register	Write	Х	xx50 16			
Program	Write	WA	xx40 16	Write	WA	WD
Block erase	Write	Х	xx20 16	Write	BA	xxD016

SRD: Status register data (D7 to D0)

WA : Write address (However, even address)

WD : Write data (16 bits)

BA : Highest-order block address (However, even address)

 $X\,$: Any even address in the user ROM area

xx : 8 high-order bits of command code (ignored)

20.7.1 Read Array Command (FF16)

The read array command reads the flash memory.

Read array mode is entered by writing command code xxFF16 in the first bus cycle. Content of a specified address can be read in 16-bit unit after the next bus cycle. The MCU remains in read array mode until an another command is written. Therefore, contents of multiple addresses can be read consecutively.

20.7.2 Read Status Register Command (7016)

The read status register command reads the status register.

By writing command code xx7016 in the first bus cycle, the status register can be read in the second bus cycle (Refer to **20.8 Status Register**). Read an even address in the user ROM area. Do not execute this command in EW mode 1.

20.7.3 Clear Status Register Command (5016)

The clear status register command clears the status register to 0.

By writing xx5016 in the first bus cycle, and bits FMR06 to FMR07 in the FMR0 register and bits SR4 to SR5 in the status register are set to 0.

Timing Requirements

Vcc = 5V

(VCC = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 21.17	Timer B Input (Counter Input in Event Counter Mode)
-------------	---

Symbol	Parameter	Standard		Unit
Symbol	Parameter	Min.	Max.	Unit
tc(TB)	TBin input cycle time (counted on one edge)	100		ns
tw(TBH)	TBin input HIGH pulse width (counted on one edge)	40		ns
tw(TBL)	TBin input LOW pulse width (counted on one edge)	40		ns
tc(TB)	TBin input cycle time (counted on both edges)	200		ns
tw(TBH)	TBin input HIGH pulse width (counted on both edges)	80		ns
tw(TBL)	TBin input LOW pulse width (counted on both edges)	80		ns

Table 21.18 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter		dard	Unit
Symbol			Max.	Unit
tc(TB)	TBin input cycle time	400		ns
tw(TBH)	TBilN input HIGH pulse width	200		ns
tw(TBL)	TBin input LOW pulse width	200		ns

Table 21.19 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter		dard	Unit
Gynibol	Falditieter	Min.	Max.	Unit
tc(TB)	TBin input cycle time	400		ns
tw(TBH)	TBiin input HIGH pulse width	200		ns
tw(TBL)	TBin input LOW pulse width	200		ns

Table 21.20 A /D Trigger Input

Symbol	Parameter	Stan	dard	Unit
Gymbol	i didificici	Min.	Max.	Offic
tc(AD)	ADTRG input cycle time (trigger able minimum)	1000		ns
tw(ADL)	ADTRG input LOW pulse width	125		ns

Table 21.21 Serial I/O

Symbol	Parameter	Standard		Unit
Symbol	Falameter	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	200		ns
tw(CKH)	CLKi input HIGH pulse width	100		ns
tw(CKL)	CLKi input LOW pulse width	100		ns
td(C-Q)	TxDi output delay time		80	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	70		ns
th(C-D)	RxDi input hold time	90		ns

Table 21.22 External Interrupt INTi Input

Symbol	Parameter		Standard	
Gymbol			Max.	Unit
tw(INH)	INTi input HIGH pulse width	250		ns
tw(INL)	INTi input LOW pulse width	250		ns

22.6.1.4 Timer A (Pulse Width Modulation Mode)

- The timer remains idle after reset. Set the mode, count source, counter value, etc. using bits TA0TGL and TA0TGH in the TAiMR (i = 0 to 4) register, the TAi register, the ONSF register and the TRGSR register before setting the TAiS bit in the TABSR register to 1 (count starts).
 Always make sure bits TA0TGL and TA0TGH in the TAiMR register, the ONSF register and the TRGSR register are modified while the TAiS bit remains 0 (count stops) regardless whether after reset or not.
- 2. The IR bit is set to 1 when setting a timer operation mode with any of the following procedures:
 - Select the PWM mode after reset.
 - Change an operation mode from timer mode to PWM mode.
 - Change an operation mode from event counter mode to PWM mode.

To use the timer Ai interrupt (interrupt request bit), set the IR bit to 0 by program after the above listed changes have been made.

- 3. When setting TAiS register to 0 (count stop) during PWM pulse output, the following action occurs:Stop counting.
 - When TAiout pin is output "H", output level is set to "L" and the IR bit is set to 1.
 - When TAiout pin is output "L", both output level and the IR bit remains unchanged.
- 4. If a low-level signal is applied to the \overline{SD} pin when the IVPCR1 bit in the TB2SC register is set to 1 (three-phase output forcible cutoff by input on \overline{SD} pin enabled), the TA10UT, TA20UT and TA40UT pins go to a high-impedance state.

22.7.2 Rewrite the ICOCiIC Register

When the interrupt request to the ICOCiIC register is generated during the instruction process, the IR bit may not be set to 1 (interrupt requested) and the interrupt request may not be acknowledged. At that time, when the bit in the G1IR register is held to 1 (interrupt requested), the following IC/OC interrupt request will not be generated. When changing the ICOCiIC register settiing, use the following instruction.

Subject instructions: AND, OR, BCLR, BSET

When initializing Timer S, change the ICOCiIC register setting with the request again after setting registers IOCiIC and G1IR to 0016.

22.7.3 Waveform Generating Function

1. If the BTS bit in the G1BCR1 register is set to 0 (base timer is reset) when the waveform is generating and the base timer is stopped counting, the waveform output pin keeps the same output level. The output level will be changed when the base timer and the G1POj register match the setting value next time after the base timer starts counting again.

2. If the G1POCRj register is set when the waveform is generated, the same setting value of the IVL bit is applied to the waveform generating pin. Do not set the G1POCRj register when the waveform is generating.

3. When the RST1 bit in the G1BCR1 register is set to 1 (the base timer is reset by matching the G1PO0 register), the base timer is reset after two clock cycles of fBT1 when the base timer value matches the G1PO0 register value. A high-level ("H") signal is applied to the OUTC10 pin between the base timer value match to the base timer reset.

22.7.4 IC/OC Base Timer Interrupt

If the MCU is operated in the combination selected from **Table 22.1** for use when the RST4 bit in the G1BCR0 register is set to 1 (reset the base timer that matches the G1BTRR register) to reset the base timer, an IC/OC base timer interrupt request is generated twice.

IT Bit in the G1BCR0 Register	G1BTRR Register
0 (bit 15 in the base timer overflows)	07FFF16 to 0FFFE16
1 (bit 14 in the base timer overflows)	03FFF16 to 0FFFE16 or 0BFFF16 to 0FFFE16

The second IC/OC base timer interrupt request is generated because the base timer overflow request is generated after one fBT1 clock cycle as soon as the base timer is reset.

One of the following conditions must be met in order not to generate the IC/OC base timer interrupt request twice:

- 1) When the RST4 bit is set to 1, set the G1BTRR register with a combination other than what is listed in **Table 22.1**.
- 2) Do not reset the base timer by matching the G1BTRR register. Reset the base timer by matching the G1P00 register. In other words, do not set the RST4 bit to 1 to reset the base timer. Set the RST1 bit in the G1BCR1 register to 1 (reset the base timer that matches the G1P00 register).

REVISION HISTORY

M16C/29 Hardware Manual

Rev.	Date	Description	
		Page	Summary
		360	Table 21.1 is partly revised.
		368	Section "21.4.2 EW1 Mode" is partly revised.
0.80	Sep/03/Y04	2,3	Table 1.2.1 and Table 1.2.2 are partly revised.
		6,7	Table 1.4.1 to Table 1.4.3 are partly revised.
		7	Figure 1.4.1 is partly revised.
		8,9	Figure 1.5.1 and Figure 1.5.2 are partly revised.
		21	Figure 4.7 is partly revised.
		24	Figure 4.10 is partly revised.
		26	Section "5.1.2 Hardware Reset 2" is partly revised.
		29 to 34	Section "5.5 Voltage Detection Circuit" is revised.
		80	Section "10.2 Cold start / Warm start" is added.
		322	Table 20.2 is partly revised.
		323	Table 20.3 is partly revised.
		325	Table 20.6 and Table 20.7 are partly revised.
		327	Table 20.9 is partly revised.
		331	Title of Table 20.23 is partly revised.
		335	Table 20.25 is partly revised.
		339	Title of Table 20.39 is partly revised.
		343	Table 20.41 is partly revised.
		344	Table 20.42 is partly revised.
		346	"Low Voltage Detection Circuit Electrical Characteristics" is deleted.
			Talbe 20.45 is partly revised.
		348	Table 20.47 is partly revised.
		352	Title of Table 20.61 is partly revised.
		356	Talbe 20.63 is partly revised.
		360	Title of Table 20.77 is partly revised.
		398	64P6Q-A package is revised.
1.00	Nov/01/Y04	All pages	Words standardized (on-chip oscillator, A/D)
		2, 3	Table1.2.1 and Table 1.2.2 are partly revised.
		8, 9	Table 1.4.4 to 1.4.6 and figure 1.4.2 to 1.4.6 are added.
		28	"5.1.2 Hardware Reset 2" is partly revised.
		29	"5.4 Oscillation Stop Detection Reset" is partly revised.
		38	Table 7.1 is partly revised.
		41	Note 6 in Figure 7.3 is partly revised. b7 to b4 bit in Figure 7.4 is revised.
		42	Figure 7.5 is partly revised.
		43	"PCLKR register" in Figure 7.6 is partly revised.
		50	"7.6.1 Normal Operation Mode" is partly revised.
		51	Note 1 in Table 7.6.1.1 is partly revised.
		57	"7.8 Oscillation Stop and Re-oscillation Detect Function" is partly revised.

REVISION HISTORY

M16C/29 Hardware Manual

Rev.	Date	Description	
		Page	Summary
		9	Tables 1.6 to 1.8 Product Codes modified
		19, 20	Table 1.14 Pin Description pin description on I/O ports modified
			Reset
		37	Figure 5.2 Reset Sequence Vcc and ROC timings modified
			Processor Mode
		45	• Figure 6.2 PM2 Register Description on notes 5 and 6 modified
			Clock Generation Circuit
		52	Figure 7.6 PM2 Register Description on notes 5 and 6 modified
		64	Figure 7.12 State Transition in Normal Mode note 2 modified
			Protection
		69	Description on protection modified
			Figure 8.1 PRCR Register note 1 modified
			Interrupts
		88	Table 9.6 PC Value Saved in Stack Area When Address Match Interrupt
			Request I Acknowledged instruction modified
			Watchdog Timer
		90	Figure10.2 WDTS Register modified
			10.1 Count Source Protective Mode description modified
			Timer
		129	Figure 12.28 ICTB2 Register modified
			Multi-Master I ² C bus Interface
		256	• Figure 16.1 Block Diagram of Multi-Master I ² C bus Interface modified
		005	Flash Memory Version
		335	• 20.3.1 ROM Code Protect Function register name modified
		340	• 20.5.2 Flash Memory Control Register 1 description on FMR17 bit modified
		341	Figure 20.6 FMR1 Register note 2 modified
		343	Figure 20.9 Setting and Resetting of EW Mode 1 modified Electrical Characteristics
		369	
		309	• Table 21.5 Flash Memory Version Electrical Characteristics note 10 modi-
		370	fied
		370	 Timing figure for td(P-R) and td(ROC) modified Table 21.9 Electrical Characteristics parameter and measurement condition
		572	modified, note 5 deleted
		380	• Table 21.25 Electrical Characteristics measurement condition modified, note
		500	5 deleted
		390	• Tables 21.43 and 44 Flash Memory Version Electrical Characteristics note
		000	10 modified
		391	Timing figure for td(P-R) and td(ROC) modified
		393	• Table 21.47 Electrical Characteristics parameter and condition modified, note
		293	- Table 21.47 Electrical characteristics parameter and condition modified, note