E. Renesas Electronics America Inc - M30291FATHP#U3AAJ3 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30291fathp-u3aaj3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table			acteristic	CS TOP OU-PIN	Package			
Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	Timer S Pin	UART/CAN Pin	Multi-master I ² C bus Pin	Analog Pin
1		P95				CLK4		AN25
2		P93				СТХ		AN24
3		P92		TB2IN		CRX		AN32
4		P91		TB1IN				AN31
5	CLKOUT	P90		TBOIN				AN30
6	CNVss							
7	XCIN	P87						
8	Хсоит	P86						
9	RESET							
10	Хоит							
11	Vss							
12	Xin							
13	Vcc							
14		P85	NMI	SD				
15		P84	INT ₂	ZP				
16		P83	INT ₁					
17		P82	ĪNT ₀					
18		P81		TA4IN / U				
19		P80		TA40UT / U				
20		P77		ТАзім				
21		P76		ТАзоит				
22		P75		TA2IN / W				
23		P74		ТА20UT / W				
24		P73		TA1IN / V		CTS2 / RTS2 / TxD1		
25		P72		TA10UT / V		CLK2 / RxD1		
26		P71		TAOIN		RxD2 / SCL2 / CLK1		
						<u>TxD</u> 2 / <u>SDA</u> 2 / <u>RTS</u> 1 /		
27		P70		TA00UT		CTS1 / CTS0 / CLKS1		
28		P67				TxD1		
29		P66				RxD1		
30		P65						
31		P64				CLKS1		
32		P37						
33		P36						
34		P35						
35		P34						
36		P33						
37		P32				Sout3		
38		P31				SIN3		
39		P30				CLK3		
40		P63				TxD0		

Table 1 12 Pin Characteristics for 80-Pin Package

Figure 7.1 Clock Generation Circuit

The operation of saving registers carried out in the interrupt sequence is dependent on whether the $SP^{(1)}$, at the time of acceptance of an interrupt request, is even or odd. If the stack pointer ⁽¹⁾ is even, the FLG register and the PC are saved, 16 bits at a time. If odd, they are saved in two steps, 8 bits at a time. **Figure 9.8** shows the operation of the saving registers.

NOTE:

1. When any INT instruction in software numbers 32 to 63 has been executed, this is the SP indicated by the U flag. Otherwise, it is the ISP.

Figure 9.8 Operation of Saving Register

9.4.4 Returning from an Interrupt Routine

The FLG register and PC in the state in which they were immediately before entering the interrupt sequence are restored from the stack by executing the REIT instruction at the end of the interrupt routine. Thereafter the CPU returns to the program which was being executed before accepting the interrupt request.

Return the other registers saved by a program within the interrupt routine using the POPM or similar instruction before executing the REIT instruction.

9.5 Interrupt Priority

If two or more interrupt requests are generated while executing one instruction, the interrupt request that has the highest priority is accepted.

For maskable interrupts (peripheral functions), any desired priority level can be selected using bits ILVL2 to ILVL0. However, if two or more maskable interrupts have the same priority level, their interrupt priority is resolved by hardware, with the highest priority interrupt accepted.

The watchdog timer and other special interrupts have their priority levels set in hardware. **Figure 9.9** shows the priorities of hardware interrupts.

Software interrupts are not affected by the interrupt priority. If an instruction is executed, control branches invariably to the interrupt routine.

Figure 9.9 Hardware Interrupt Priority

9.5.1 Interrupt Priority Resolution Circuit

The interrupt priority resolution circuit is used to select the interrupt with the highest priority among those requested.

Figure 9.10 shows the circuit that judges the interrupt priority level.

12.1 Timer A

Figure 12.3 shows a block diagram of the timer A. **Figures 12.4** to **12.6** show registers related to the timer A. The timer A supports the following four modes. Except in event counter mode, timers A0 to A4 all have the same function. Use bits TMOD1 to TMOD0 in the TAiMR register (i = 0 to 4) to select the desired mode.

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external device or overflows and underflows of other timers.
- One-shot timer mode: The timer outputs a pulse only once before it reaches the minimum count 000016.
- Pulse width modulation (PWM) mode: The timer outputs pulses in a given width successively.

Figure 12.3 Timer A Block Diagram

Figure 12.4 TA0MR to TA4MR Registers

12.2.1 Timer Mode

In timer mode, the timer counts a count source generated internally (see **Table 12.6**). **Figure 12.18** shows TBiMR register in timer mode.

Item	Specification					
Count source	f1, f2, f8, f32, fC32					
Count operation	Decrement					
	When the timer underflows, it reloads the reload register contents and					
	continues counting					
Divide ratio	1/(n+1) n: set value of TBi register (i= 0 to 2) 000016 to FFFF16					
Count start condition	Set TBiS bit ⁽¹⁾ to 1 (start counting)					
Count stop condition	Set TBiS bit to 0 (stop counting)					
Interrupt request generation timing	Timer underflow					
TBilN pin function	I/O port					
Read from timer	Count value can be read by reading TBi register					
Write to timer	When not counting and until the 1st count source is input after counting start					
	Value written to TBi register is written to both reload register and counter					
	When counting (after 1st count source input)					
	Value written to TBi register is written to only reload register					
	(Transferred to counter when reloaded next)					

Table 12.6	Specifications	in	Timer	Mode
------------	----------------	----	-------	------

NOTE:

1. Bits TB0S to TB2S are assigned to the bit 7 to bit 5 in the TABSR register.

b6 b5 b4 b3 b2 b1 b0	Symbol TB0MR	Address to TB2MR 039B16 to 0	After Reset 39D16 00XX00002	
	Bit Symbol	Bit Name	Function	RW
	TMOD0	Operation mode select bit	b1 b0	RW
	TMOD1		0 0: Timer mode or A/D trigger mode	RW
	MR0	No effect in timer mode	•	RW
	MR1	Can be set to 0 or 1		RW
		TB0MR register Set to 0 in timer mode		RW
	MR2	TB1MR, TB2MR registers Nothing is assigned. If nec content is undefined	essary, set to 0. When read, its	
	MR3	When write in timer mode, content is undefined	set to 0. When read in timer mode, its	RO
<u>i</u>	TCK0	Count source select bit	^{b7 b6} 0 0: f1 or f2 0 1: f8	RW
	TCK1		1 0: f32	RW

Figures 13.2 to **13.10** show registers associated with the IC/OC base timer, the time measurement function, and the waveform generating function.

Figure 13.2 G1BT and G1BCR0 Registers

b6 b5 b4 b3 b2 b1	1 b0	Symb G1IE	Address0033116	After Reset 00 ₁₆	
		Bit Symbol	Bit Name	Function	R\
		G1IE00	Interrupt enable 0, CH0	0 : IC/OC interrupt 0 request disable 1 : IC/OC interrupt 0 request enable	R
		G1IE01	Interrupt enable 0, CH1		R
		G1IE02	Interrupt enable 0, CH2		R
		G1IE03	Interrupt enable 0, CH3		R
		G1IE04	Interrupt enable 0, CH4	-	R
		G1IE05	Interrupt enable 0, CH5		R
		G1IE06	Interrupt enable 0, CH6		R
		G1IE07	Interrupt enable 0, CH7		R
terrupt Enabl	le R	egister	r 1		
terrupt Enabl	le R	egister Symb G1IE	r 1 pol Address 1 033216	After Reset 0016	
terrupt Enabl	le R	Symb G1IE Bit Symbol	r 1 ool Address 1 033216 Bit Name	After Reset 0016 Function	R
terrupt Enabl	le R	egister Symb G1IE Bit Symbol G1IE10	r 1 ool Address 1 033216 Bit Name Interrupt enable 1, CH0	After Reset 0016 Function 0 : IC/OC interrupt 1 request disable 1 : IC/OC interrupt 1 request enable	R
	le R	egister Symb G1IE Symbol G1IE10 G1IE11	r 1 pol Address 1 033216 Bit Name Interrupt enable 1, CH0 Interrupt enable 1, CH1	After Reset 0016 Function 0 : IC/OC interrupt 1 request disable 1 : IC/OC interrupt 1 request enable	R' R R
	le R	egister Symb G1IE Symbol G1IE10 G1IE11 G1IE12	r 1 bol Address 1 033216 Bit Name Interrupt enable 1, CH0 Interrupt enable 1, CH1 Interrupt enable 1, CH2	After Reset 0016 Function 0 : IC/OC interrupt 1 request disable 1 : IC/OC interrupt 1 request enable	R' R R
	le R	egister Symb G1IE Symbol G1IE10 G1IE11 G1IE12 G1IE13	r 1 Address 1 033216 Bit Name Interrupt enable 1, CH0 Interrupt enable 1, CH1 Interrupt enable 1, CH2 Interrupt enable 1, CH3	After Reset 0016 Function 0 : IC/OC interrupt 1 request disable 1 : IC/OC interrupt 1 request enable	R' R R R
	le R	egister Symb G1IE Symbol G1IE10 G1IE11 G1IE12 G1IE13 G1IE14	r 1 pol Address 1 033216 Bit Name Interrupt enable 1, CH0 Interrupt enable 1, CH1 Interrupt enable 1, CH2 Interrupt enable 1, CH3 Interrupt enable 1, CH4	After Reset 0016 Function 0 : IC/OC interrupt 1 request disable 1 : IC/OC interrupt 1 request enable	R' R R R R
	le R	egister Symb G1IE Symbol G1IE10 G1IE11 G1IE12 G1IE13 G1IE14 G1IE15	r 1 Address 1 033216 Bit Name Interrupt enable 1, CH0 Interrupt enable 1, CH1 Interrupt enable 1, CH2 Interrupt enable 1, CH3 Interrupt enable 1, CH4 Interrupt enable 1, CH4	After Reset 0016 Function 0 : IC/OC interrupt 1 request disable 1 : IC/OC interrupt 1 request enable	R' R R R R
	le R	egistel Symb G1IE Symbol G1IE10 G1IE11 G1IE12 G1IE13 G1IE14 G1IE15 G1IE16	r 1 Address 1 033216 Bit Name Interrupt enable 1, CH0 Interrupt enable 1, CH1 Interrupt enable 1, CH2 Interrupt enable 1, CH3 Interrupt enable 1, CH4 Interrupt enable 1, CH5 Interrupt enable 1, CH5	After Reset 0016 Function 0 : IC/OC interrupt 1 request disable 1 : IC/OC interrupt 1 request enable	R' R' R' R' R' R'

Figure 13.10 G1IE0 and G1IE1 Registers

14.1.1.1 Counter Measure for Communication Error Occurs

If a communication error occurs while transmitting or receiving in clock synchronous serial I/O mode, follow the procedures below.

•Resetting the UiRB register (i=0 to 2)

- (1) Set the RE bit in the UiC1 register to 0 (reception disabled)
- (2) Set bits SMD2 to SMD0 in the UiMR register to 0002 (Serial I/O disabled)
- (3) Set bits SMD2 to SMD0 in the UiMR register to 0012 (Clock synchronous serial I/O mode)
- (4) Set the RE bit in the UiC1 register to 1 (reception enabled)

•Resetting the UiTB register (i=0 to 2)

- (1) Set bits SMD2 to SMD0 in the UiMR register to 0002 (Serial I/O disabled)
- (2) Set bits SMD2 to SMD0 in the UiMR register to 0012 (Clock synchronous serial I/O mode)
- (3) 1 is written to TE bit in the UiC1 register (reception enabled), regardless to the TE bit.

14.1.1.7 CTS/RTS separate function (UART0)

This function separates $\overline{CTS}_0/\overline{RTS}_0$, outputs \overline{RTS}_0 from the P60 pin, and accepts as input the \overline{CTS}_0 from the P64 pin or P70 pin. To use this function, set the register bits as shown below.

- The CRD bit in the U0C0 register is set to 0 (enables UART0 CTS/RTS)
- The CRS bit in the U0C0 register is set to 1 (outputs UART0 RTS)
- The CRD bit in the U1C0 register is set to 0 (enables UART1 $\overline{\text{CTS}}/\overline{\text{RTS}}$)
- The CRS bit in the U1C0 register is set to 0 (inputs UART1 $\overline{\text{CTS}}$)
- The RCSP bit in the UCON register is set to 1 (inputs $\overline{\text{CTS}}_0$ from the P64 pin or P70 pin)
- The CLKMD1 bit in the UCON register is set to 0 (CLKS1 not used)

Note that when using the $\overline{\text{CTS}}/\overline{\text{RTS}}$ separate function, UART1 $\overline{\text{CTS}}/\overline{\text{RTS}}$ separate function cannot be used.

Figure 14.15 CTS/RTS separate function usage

RENESAS

16.13 Address Data Communication

This section describes data transmit control when a master transferes data or a slave receives data in 7-bit address format. **Figure 16.20 (1)** shows a master transmit format.

Figure 16.20 Address data communication format

16.13.1 Example of Master Transmit

For example, a master transmits data as shown below when following conditions are met: standard clock mode, SCL clock frequency of 100kHz and ACK clock added.

- 1) Set s slave address to the 7 high-order bits in the S0D0 register
- 2) Set 8516 to the S20 register, 0002 to bits ICK4 to ICK2 in the S4D0 register and 0016 to the S3D0 registe to generate an ACK clock and set SCL clock frequency t 100 kHz (f1=8MHz, fIIC=f1)
- 3) Set 0016 to the S10 register to reset transmit/receive
- 4) Set 0816 to the S1D0 register to enable data communication
- 5) Confirm whether the bus is free by BB flag setting in the S10 register
- 6) Set E016 to the S10 register to enter START condition standby mode
- 7) Set the destination address in 7 high-order bits and 0 to a least significant bit in the S00 register to generate START condition. At this time, the first byte consisting of SCL and ACK clock are automatically generated
- 8) Set a transmit data to the S00 register. At this time, SCL and an ACK clock are automatically generated
- 9) When transmitting more than 1-byte control data, repeat the above step 8).
- 10) Set C016 in the S10 register to enter STOP condition standby mode if ACK is not returned from the slave receiver or if the transmit is completed
- 11) Write dummy data to the S00 regiser to generate STOP condition

Figure 16.21 The bit reset timing (The STOP condition detection)

Figure 16.22 The bit reset timing (The START condition detection)

Figure 16.23 Bit set/reset timing (at the completion of data transfer)

Note

19. Programmable I/O Ports

Ports P04 to P07, P10 to P14, P34 to P37 and P95 to P97 are not available in 64-pin package.

The programmable input/output ports (hereafter referred to simply as "I/O ports") consist of 71 lines P0, P1, P2, P3, P6, P7, P8, P9, P10 (except P94) for the 80-pin package, or 55 lines P00 to P03, P15 to P17, P2, P30 to P33, P6, P7, P8, P90 to P93, P10 for the 64-pin package. Each port can be set for input or output every line by using a direction register, and can also be chosen to be or not be pulled high in sets of 4 lines. **Figures 19.1** to **19.4** show the I/O ports. **Figure 19.5** shows the I/O pins.

Each pin functions as an I/O port, a peripheral function input/output.

For details on how to set peripheral functions, refer to each functional description in this manual. If any pin is used as a peripheral function input, set the direction bit for that pin to 0 (input mode). Any pin used as an output pin for peripheral functions is directed for output no matter how the corresponding direction bit is set.

19.1 Port Pi Direction Register (PDi Register, i = 0 to 3, 6 to 10)

Figure 19.6 shows the direction registers.

This register selects whether the I/O port is to be used for input or output. The bits in this register correspond one for one to each port.

19.2 Port Pi Register (Pi Register, i = 0 to 3, 6 to 10)

Figure 19.7 shows the Pi registers.

Data input/output to and from external devices are accomplished by reading and writing to the Pi register. The Pi register consists of a port latch to hold the output data and a circuit to read the pin status. For ports set for input mode, the input level of the pin can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register.

For ports set for output mode, the port latch can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register. The data written to the port latch is output from the pin. The bits in the Pi register correspond one for one to each port.

19.3 Pull-up Control Register 0 to 2 (PUR0 to PUR2 Registers)

Figure 19.8 shows registers PUR0 to PUR2.

Registers PUR0 to PUR2 select whether the pins, divided into groups of four pins, are pulled up or not. The pins, selected by setting the bits in registers PUR0 to PUR2 to 1 (pull-up), are pulled up when the direction registers are set to 0 (input mode). The pins are pulled up regardless of the pins' function.

19.4 Port Control Register (PCR Register)

Figure 19.9 shows the port control register.

When the P1 register is read after setting the PCR0 bit in the PCR register to 1, the corresponding port latch can be read no matter how the PD1 register is set.

Figure 19.5 I/O Pins

Pin Name Descriptio I/O Apply the voltage guaranteed for Program and Erase to Vcc pin and 0 Vcc,Vss Power input V to Vss pin. **CNVss CNVs** T Connect to Vcc pin. RESET Reset input I Reset input pin. While RESET pin is "L", wait for td(ROC). Connect a ceramic resonator or crystal oscillator between XIN and XIN Clock input 1 XOUT pins. To input an externally generated clock, input it to XIN pin XOUT Clock output 0 and open XOUT pin. AVcc, AVss Connect AVss to Vss and AVcc to Vcc, respectively. Analog power supply input VREF Reference voltage input Т Enter the reference voltage for AD conversion. P00 to P07 Input port P0 I Input "H" or "L" signal or leave open. P10 to P15, P17 Input port P1 Т Input "H" or "L" signal or leave open. P16 Input port P1 I Connect this pin to Vcc while RESET pin is "L". (2) P20 to P27 Input port P2 I Input "H" or "L" level signal or leave open. Input "H" or "L" level signal or leave open. P30 to P37 Input port P3 Т P60 to P63 Input "H" or "L" level signal or leave open. Input port P6 T Standard serial I/O mode 1: BUSY signal output pin P64 **BUSY** output 0 Standard serial I/O mode 2: Monitor signal output pin for boot program operation check Standard serial I/O mode 1: Serial clock input pin T P65 SCLK input Standard serial I/O mode 2: Input "L" P66 RxD input T Serial data input pin Serial data output pin (1) P67 \cap TxD output P70 to P77 Input "H" or "L" signal or leave open. Input port P7 1 P80 to P84, Input port P8 Т Input "H" or "L" signal or leave open. P87 Connect this pin to Vss while RESET pin is "L". (2) P85 RP input T P86 CE input T Connect this pin to Vcc while RESET pin is "L". (2)

Table 20.8 Pin Descriptions (Flash Memory Standard Serial I/O Mode)

NOTES:

P100 to P107

P90 to P92,

P95 to P97 P93

> 1. When using standard serial I/O mode 1, to input "H" to the TxD pin is necessary while the RESET pin is held "L". Therefore, connect this pin to Vcc via a resistor. Adjust the pull-up resistor value on a system not to affect a data transfer after reset, because this pin changes to a data-output pin

Input "H" or "L" signal or leave open.

Input "H" or "L" signal or leave open.

Input "H" or "L" signal or leave open.

"H" signal is output for specific time. Input "H" signal or leave open.

T

I/O

Т

I

2. Set the following, either or both.

Input port P9

Input port P10

-Connect the CE pin to Vcc.

-Connect the RP pin to VSS and P16 pin to Vcc.

Input port P93 Normal-ver.

T-ver./V-ver

Figure 20.15 Pin Connections for Serial I/O Mode (1)

21.2 T version

Symbol		Parameter	Condition	Value	Unit	
Vcc	Supply Voltage		Vcc=AVcc	-0.3 to 6.5	V	
AVcc	Analog Supply \	/oltage	Vcc=AVcc	-0.3 to 6.5	V	
Vı	Input Voltage	P00 to P07, P10 to P17, P2 P30 to P37, P60 to P67, P7 P80 to P87, P90 to P93, P9 P100 to P107, XIN, VREF, RESET, CNVss	20 to P27, 70 to P77, 95 to P97,		-0.3 to Vcc+0.3	v
Vo	Output Voltage	Р00 to P07, P10 to P17, P2 P30 to P37, P60 to P67, P7 P80 to P87, P90 to P93, P9 P100 to P107, Холт	20 to P27, 70 to P77, 95 to P97,		-0.3 to Vcc+0.3	v
Pd	Power Dissipation	on	-40 <u>≺</u> Topr <u><</u> 85° C	300	mW	
Topr		during CPU operation			-40 to 85	°C
	Operating Ambient	during flash memory	Program Space (Block 0 to Block 5)		0 to 60	°C
	Temperature	operation	Data Space (Block A, Block B)		-40 to 85	°C
Tstg	Storage Temper	rature			-65 to 150	°C

Table 21.40 Absolute Maximum Ratings

22.12 Programmable I/O Ports

- 1. If a low-level signal is applied to the \overline{SD} pin when the IVPCR1 bit in the TB2SC register is set to 1 (three-phase output forcible cutoff by input on \overline{SD} pin enabled), the P72 to P75, P80 and P81 pins go to a high-impedance state.
- 2. The input threshold voltage of pins differs between programmable input/output ports and peripheral functions.

Therefore, if any pin is shared by a programmable input/output port and a peripheral function and the input level at this pin is outside the range of recommended operating conditions VIH and VIL (neither "high" nor "low"), the input level may be determined differently depending on which side—the programmable input/output port or the peripheral function—is currently selected.

- 3.When the SM32 bit in the S3C register is set to 1, the P32 pin goes to high-impedance state. When the SM42 bit in the S4C register is set to 1, the P96 pin goes to high-impedance state.
- 4. When the INV03 bit in the INVC0 register is 1(three-phase motor control timer output enabled), an "L" input on the P85 /NMI/SD pin, has the following effect.
 - •When the TB2SC register IVPCR1 bit is set to 1 (three-phase output forcible cutoff by input on \overline{SD} pin enabled), the U/ \overline{U} / V/ \overline{V} / W/ \overline{W} pins go to a high-impedance state.
 - •When the TB2SC register IVPCR1 bit is set to 0 (three-phase output forcible cutoff by input on \overline{SD} pin disabled), the U/ \overline{U} / V/ \overline{V} / W/ \overline{W} pins go to a normal port.

Therefore, the P85 pin can not be used as programmable I/O port when the INV03 bit is set to 1. When the \overline{SD} function isn't used, set to 0 (Input) in PD85 and pullup to H in the P85 $\overline{\text{/NMI/SD}}$ pin from outside.

REVISION HISTORY

M16C/29 Hardware Manual

Date	Data		Description
Rev.	Date		Description
		Page	Summary
			note 1 is added
		160	• Figure 13.21 Prescaler Function and Gate Function Note 1 modified
		166	• Table 13.10 SR Waveform Output Mode Specifications Specification modified
		167	• Figure 13.24 Set/Reset Waveform Output Mode Description for (1) Free-run-
			ning operation modified, register names modified
		168	Table 13.11 Pin Setting for Time Measurement and Waveform Generating
			Functions Description of port direction modified
			Serial I/O
		170	Note is modified
		171	• Figure 14.1 Block Diagram of UARTi (i = 0 to 2) PLL clock is added to the
			upper portion of diagram
		174	• Figure 14.4 U0TB to U2TB, U0RB to U2RB, U0BRG to U2BRG Registers
			Note 2 is modified, note 3 is newly added
		175	• Figure 14.5 U0MR Register. U1MR Register Bit map is modified
		176	• Figure 14.6 U0C0 Register Note 3 modified. Note 4 to 7 are added
			• Figure 14.6 U2C0 Register Note 2 is added
		177	• Figure 14.7 PACR Register added
		180	• Table 14.1 Clock Synchronous Serial I/O Mode Specifications Select func-
			tion modified, note 2 modified
		182	• Table 14.3 Pin Functions Note 1 added
			• Table 14.4 P64 Pin Functions Note 1 added
		183	• Figure 14.10 Typical transmit/receive timings in clock synchronous serial I/
			O mode Example of receive timing: figure modified
		184	• 14.1.1.1 Counter Measre for Communication Error Occurs newly added
		185	• 14 1 1 2 CI K Polarity Select Function Newly added
		186	• Figure 14 14 Transfer Clock Output From Multiple Pins Note 2 added
		187	• 14.1.1.7 CTS/RTS separate function (IIARTO) modified
			Figure 14 15 CTS/RTS Separate Function Usage Note 1 added
		188	• Table 14 5 UART Mode Specifications Select function modified note 1 modi-
		100	fied
		190	• Table 14 7 I/O Pin Functions in LIART Mode Note 1 added
		100	• Table 14.8 P64 Pin Functions in UART Mode Note 2 added
		102	• Figure 14 17 Receive Operation RTSi line is modified
		192	• 14.1.2.1 Bit Rates newly added
			• Table 14 9 Example of Bit Rates and Settings newly added
		103	• 1/ 1 2 2 Counter Measure for Communication Error newly added
		105	• 1/ 1 2 6 CTS/RTS Senarate Function (IIAPTO) D70 pin is added
		195	• Figure 14 21 CTS/RTS Separate Function Note 1 added
		106	Table 14.10 120 mode Specifications. Note 2 modified
		190	· rapie 14.10 FC mode operindations Note 2 modified