

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, I ² C, IEBus, SIO, UART/USART
Peripherals	DMA, POR, PWM, Voltage Detect, WDT
Number of I/O	55
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30291fchp-u3a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4. List of Abbreviations and Acronyms

Abbreviation	Full Form
ACIA	Asynchronous Communication Interface Adapter
bps	bits per second
CRC	Cyclic Redundancy Check
DMA	Direct Memory Access
DMAC	Direct Memory Access Controller
GSM	Global System for Mobile Communications
Hi-Z	High Impedance
IEBus	Inter Equipment bus
I/O	Input/Output
IrDA	Infrared Data Association
LSB	Least Significant Bit
MSB	Most Significant Bit
NC	Non-Connection
PLL	Phase Locked Loop
PWM	Pulse Width Modulation
SFR	Special Function Registers
SIM	Subscriber Identity Module
UART	Universal Asynchronous Receiver/Transmitter
VCO	Voltage Controlled Oscillator

All trademarks and registered trademarks are the property of their respective owners. IEBus is a registered trademark of NEC Electronics Corporation.

Quick Reference to Pages Classified by Address

Address	Register	Symbol	Page
038016	Count start flag	TABSR	104, 118, 132
038116	Clock prescaler reset flag	CPSRF	105,118
038216	One-shot start flag	ONSF	105
038316	Trigger select register	TRGSR	105,132
038416	Up-down flag	UDF	104
038516			
038616 038716	Timer A0 register	TA0	104
038816	Timer A1 register	TA1	104
038A16	Timer A2 register	TA2	104
038C16	Timer A3 register	ТАЗ	104
038E16	Timer A4 register	TA4	104
039016	Timer B0 register	ТВ0	118
039116	Timer B1 register	TB1	118
0393 ₁₆ 0394 ₁₆	Timer B2 register	TB2	118
039516			
039616	Timer A0 mode register	TAOMR	103
039716	Timer A1 mode register	TA1MR	133
039816	Timer A2 mode register	TA2MR	133
039916	Timer A3 mode register	TA3MR	103
039A16	Timer A4 mode register	TA4MR	133
039B16	Timer B0 mode register	TBOMR	117
039C16	Timer B1 mode register	TB1MR	117
039D16	Timer B2 mode register	TB2MR	133
039E16	Timer B2 special mode register	TB2SC	131
039F16			475
03A016	UARIU transmit/receive mode register		1/5
03A116	UAR TO bit rate generator	UUBRG	174
03A216 03A316	UART0 transmit buffer register	UOTB	174
03A416	UART0 transmit/receive control register 0	UOCO	176
03A516	UART0 transmit/receive control register 1	U0C1	177
03A616 03A716	UART0 receive buffer register	U0RB	174
03A816	UART1 transmit/receive mode register	U1MR	175
03A916	UART1 bit rate generator	U1BRG	174
03AA16 03AB16	UART1 transmit buffer register	U1TB	174
03AC16	UART1 transmit/receive control register 0	U1C0	176
03AD16	UART1 transmit/receive control register 1	U1C1	177
03AE16 03AF16	UART1 receive buffer register	U1RB	174
03B016	UART transmit/receive control register 2	UCON	176
03B216			
03B316			
03B416	CRC snoop address register	CRCSAR	314
03B616	CRC mode register	CRCMR	314
03B716			
03B816	DMA0 request cause select register	DM0SL	93
03B916			
03BA16	DMA1 request cause select register	DM1SL	94
03BB16			
03BC16	CRC data register	CRCD	314
038016	CPC input register		211
0205-16		GRUIN	514
UJDF16		l	

Address	Register	Symbol	Page
03C016 03C116	A/D register 0	AD0	226
03C216 03C316	A/D register 1	AD1	226
03C416 03C516	A/D register 2	AD2	226
03C616 03C716	A/D register 3	AD3	226
03C816 03C916	A/D register 4	AD4	226
03CA16 03CB16	A/D register 5	AD5	226
03CC16 03CD16	A/D register 6	AD6	226
03CE16 03CF16	A/D register 7	AD7	226
03D016			
03D240	A/D trigger control register	ADTRGCON	225
03D216	A/D convert status register 0		220
03D316	A/D control register 2	ADCOND	220
03D416	A/D control register 2	ADCONZ	224
03D516			
03D616	A/D control register 0	ADCON0	224
03D716	A/D control register 1	ADCON1	224
03D816			
03D916			
03DA16			
03DB16			
03DC16			
030010			
0300.0			
03DE16			
03DF16	Deat D0 as sister	D0	00.4
03E016	Port PU register	PU	324
03E116	Port P1 register	P1	324
03E216	Port P0 direction register	PD0	323
03E316	Port P1 direction register	PD1	323
03E416	Port P2 register	P2	324
03E516	Port P3 register	P3	324
03E616	Port P2 direction register	PD2	323
03E716	Port P3 direction register	PD3	323
03E816			
03E916			
03EA16			
03EB46			
03EC	Port P6 register	P6	304
03E016	Port P7 register		204
032016	Port DC direction register		200
U3EE16			<u> </u>
03EF16			323
03F016	Port P8 register	<u> </u>	324
03F116	Port P9 register	P9	324
03F216	Port P8 direction register	PD8	323
03F316	Port P9 direction register	PD9	323
03F416	Port P10 register	P10	324
03F516			
03F616	Port P10 direction register	PD10	323
03F716			
03F816			
03F042			
0254			
0255			
03FB16	Dull up control register 0		205
U3FC16		PURU	325
03FD16	Puil-up control register 1	PUR1	325
03FE16	Pull-up control register 2	PUR2	325
03FF16	Port control register	PCR	326

Note : The blank areas are reserved and cannot be accessed by users.

Table 1.5 Product List (3) -V Version

As of March, 2007

Type Number	ROM Capacity	RAM Capacity	Package Type	Remarks	Product Code
M30290FAVHP	96 K + 4 K	8 K			
M30290FCVHP	128 K + 4 K	12 K	PLQP0060KB-A (60P6Q-A) Flash U Memory U PLQP0064KB-A (64P6Q-A)	Flash	U3, U5,
M30291FAVHP	96 K + 4 K	8 K		U7, U9	
M30291FCVHP	128 K + 4 K	12 K			
M30290M8V-XXXHP	64 K	4 K			
M30290MAV-XXXHP	96 K	8 K	PLQP0080KB-A (80P6Q-A)		
M30290MCV-XXXHP	128 K	12 K		Mask	110
M30291M8V-XXXHP	64 K	4 K		ROM	00
M30291MAV-XXXHP	96 K	8 K	PLQP0064KB-A (64P6Q-A)		
M30291MCV-XXXHP	128 K	12 K			

Table 9.6 PC Value Saved in Stack Area When Address Match Interrupt Request Is Acknowledged

	Instruction a	at the addre	ss indicated by the RM	/IADi regist	er	Value of the PC that is saved to the stack area
2-byte op-cod 1-byte op-cod ADD.B:S OR.B:S STNZ.B CMP.B:S JMPS MOV.B:S	de instruction de instructions w #IMM8,dest #IMM8,dest #IMM8,dest #IMM8 #IMM8	hich are follo SUB.B:S MOV.B:S STZX.B PUSHM JSRS owever, dest	wed: #IMM8,dest #IMM8,dest #IMM81,#IMM82,dest src #IMM8 =A0 or A1)	AND.B:S STZ.B POPM de	#IMM8,dest #IMM8,dest st	The address indicated by the RMADi register +2
Instructions oth	ner than the abo	ve				The address indicated by the RMADi register +1

Value of the PC that is saved to the stack area : Refer to "Saving Registers".

Op-code is an abbreviation of Operation Code. It is a portion of instruction code.

Refer to Chapter 4 Instruction Code/Number of Cycles in M16C/60, M16C/20 Series Software Manual. Op-code is shown as a bold-framed figure directly below the Syntax.

Table 9.7 Relationship Between Address Match Interrupt Sources and Associated Registers

Address match interrupt sources	Address match interrupt enable bit	Address match interrupt register
Address match interrupt 0	AIER0	RMAD0
Address match interrupt 1	AIER1	RMAD1

Figure 9.14 AIER Register, RMAD0 and RMAD1 Registers

04 b3 b2 b1 b0	Symbol TB2SC	Address 039E16	After Reset X00000002	
	Bit Symbol	Bit Name	Function	RW
	PWCON	Timer B2 reload timing switch bit (2)	0: Timer B2 underflow 1: Timer A output at odd-numbered	RW
	IVPCR1	Three-phase output port SD control bit 1 (3, 4, 7)	 0: Three-phase output forcible cutoff by SD pin input (high impedance) disabled 1: Three-phase output forcible cutoff by SD pin input (high impedance) enabled 	RW
	TB0EN	Timer B0 operation mode select bit	0: Other than A/D trigger mode 1: A/D trigger mode (5)	RW
	TB1EN	Timer B1 operation mode select bit	0: Other than A/D trigger mode 1: A/D trigger mode (5)	RW
	TB2SEL	Trigger select bit (6)	0: TB2 interrupt 1: Underflow of TB2 interrupt generation frequency setting counter [ICTB2]	RW
 	(b6-b5)	Reserved bits	Set to 0	RW
 	(b7)	Nothing is assigned. If ne When read, the content is	ccessary, set to 0. s 0.	_

1. Write to this register after setting the PRC1 bit in the PRCR register to 1 (write enabled).

2. If the INV11 bit is 0 (three-phase mode 0) or the INV06 bit is 1 (triangular wave modulation mode), set this bit to 0 (timer B2 underflow).

3. When setting the IVPCR1 bit to 1 (three-phase output forcible cutoff by SD pin input enabled), Set the PD85 bit to 0 (= input mode).

4. Related pins are U(P8₀), U(P8₁), V(P7₂), V(P7₃), W(P7₄), W(P7₅). When a high-level ("H") signal is applied to the SD pin and set the IVPCR1 bit to 0 after forcible cutoff, pins U, U, V, V, w, and W are exit from the high-impedance state. If a lowlevel ("L") signal is applied to the \overline{SD} pin, three-phase motor control timer output will be disabled (INV03=0). At this time, when the IVPCR1 bit is 0, pins U, U, V, W, and W become programmable I/O ports. When the IVPCR1 bit is 50, pins U, U, V, W, and W become programmable I/O ports. When the IVPCR1 bit is 50, pins U, U, V, W, and W become programmable I/O ports. When the IVPCR1 bit is 50, pins U, U, V, W, and W become programmable I/O ports. pins U, U, V, V, W, and W are placed in a high-impedance state regardless of which function of those pins is used.

5. When this bit is used in delayed trigger mode 0, set bits TB0EN and TB1EN to 1 (A/D trigger mode).

6. When setting the TB2SEL bit to 1 (underflow of TB2 interrupt generation frequency setting counter[ICTB2]), set the INV02 bit to 1 (three-phase motor control timer function).

7. Refer to "19.6 Digital Debounce Function" for the SD input.

The effect of SD pin input is below.

1.Case of INV03 = 1(Three-phase motor control timer output enabled)	Three-phase motor control timer output enabled)
---	---

IVPCR1 bit	SD pin inputs ⁽³⁾	Status of U/V/W pins	Remarks
1 (Three phase output	Н	Three-phase PWM output	
forcrible cutoff enable)	L ⁽¹⁾	High impedance ⁽⁴⁾	Three-phase output forcrible cutoff
0 (Three phase output	Н	Three-phase PWM output	
forcrible cutoff disable)	L ⁽¹⁾	Input/output port ⁽²⁾	

NOTES:

1. When "L" is applied to the SD pin, INV03 bit is changed to 0 at the same time.

2. The value of the port register and the port direction register becomes effective.

3. When SD function is not used, set to 0 (Input) in PD85 and pullup to "H" in SD pin from outside.

4. To leave the high-impedance state and restart the three-phase PWM signal output after the three-phase PWM signal output forced cutoff, set the IVPCR1 bit to 0 after the SD pin input level becomes high ("H").

2 Case of INV03 = 0 (Three-phase motor control timer output disabled)

	ee phace meter control am	or output aloabioa/	
IVPCR1 bit	SD pin inputs	Status of U/V/W pins	Remarks
1 (Three phase output	н	Peripheral input/output or input/output port	
forcrible cutoff enable)	L	High impedance	Three-phase output forcrible cutoff ⁽¹⁾
0 (Three phase output	н	Peripheral input/output or input/output port	
forcrible cutoff disable)	L	Peripheral input/output or input/output port	

NOTE:

1. The three-phase output forcrible cutoff function becomes effective if the INPCR1 bit is set to 1 (three-phase output forcrible cutoff function enable) even when the INV03 bit is 0 (three-phase motor control timer output disalbe)

Figure 12.30 TB2SC Register

(a) When sel (Bits CTS	ecting the rising edge as a timer measurement trigger \$1 and CTS0 in the G1TMCRj register (j=0 to 7)=012)
fBT1	
Base timer	<u></u>
INPC1j pin ir trigger signa passing the o filter	iput or l after digital
G1IRj bit ⁽¹⁾	Pelaved by 1 clock write 0 by program if setting to 0
G1TMj regis	ter $n + 5$ $n+8$
NOTE 1. E 2. I	S : 3its in the G1IR register. nput pulse applied to the INPC1j pin requires 1.5 fBT1 clock cycles or more.
(b) When sel (Bits CTS	ecting both edges as a timer measurement trigger S1 and CTS0 = 112)
fBT1	
Base timer	<u> </u>
INPC1j pin in trigger signa passing the filter	nput or I after digital
G1IRj bit ⁽¹⁾	write 0 by progra if setting to 0
G1TMj register (2)	n x n+2 x n+5 x n+8 x n+12
NOTE 1. E 2. N H	S : bits in the G1IR register. Io interrupt is generated if the MCU receives a trigger signal when the G1IRj bit is set to 1. However, the value of the G1TMj register is updated.
(c) Trigger si (Bits DF1	gnal when using digital filter I to DF0 in the G1TMCRj register =102 or 112)
f1 or f2 or fBT1 ⁽¹⁾	
INPC1j pin	Maximum 3.5 f1 or f2 or fBT1
Trigger signa passing the filter	al after Signals, which do not match 3 clock cycles ⁽¹⁾
	by the digital filter
NOTE 1. f	: BT1 when bits DF1 to DF0 are set to 10₂, and f1 or f2 when set to 11₂.

14.1.1.4 Continuous receive mode

When the UiRRM bit (i=0 to 2) is set to 1 (continuous receive mode), the TI bit in the UiC1 register is set to 0 (data present in the UiTB register) by reading the UiRB register. In this case, i.e., UiRRM bit is set to 1, do not write dummy data to the UiTB register in a program. The U0RRM and U1RRM bits are the bit 2 and bit 3 in the UCON register, respectively, and the U2RRM bit is the bit 5 in the U2C1 register.

14.1.1.5 Serial data logic switch function (UART2)

When the U2LCH bit in the U2C1 register is set to 1 (reverse), the data written to the U2TB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the U2RB register. **Figure 14.13** shows serial data logic.

Figure 14.13 Serial data logic switch timing

14.1.1.6 Transfer clock output from multiple pins function (UART1)

The CLKMD1 to CLKMD0 bits in the UCON register can choose one from two transfer clock output pins. (See **Figure 14.14**) This function is valid when the internal clock is selected for UART1.

Figure 14.14 Transfer Clock Output From Multiple Pins

RENESAS

16.5.7 Bit 6: Communication Mode Select Bit (Transfer Direction Select Bit: TRX)

This TRX bit decides a transfer direction for data communication. When the TRX bit is set to 0, receive mode is entered and data is received from a transmit device. When the TRX bit is set to 1, transmit mode is entered, and address data and control data are output to the SDAMM, synchronized with a clock generated in the SCLMM.

The TRX bit is set to 1 automatically in the following condition:

•In slave mode, when the ALS in the S1D0 register to 0(addressing format), the AAS flag is set to

1 (address match) after the address data is received, and the received R/W bit is set to 1 The TRX bit is set to 0 in one of the following conditions:

•When an arbitration lost is detected

•When a STOP condition is detected

•When a START condition is detected

•When a START condition is disabled by the START condition duplicate protect function ⁽¹⁾

•When the MST bit in the S10 register is set to 0(slave mode) and a start condition is detected

•When the MST bit is set to 0 and the ACK non-return is detected

•When the ES0 bit is set to 0(I²C bus interface disabled)

•When the IHR bit in the S1D0 register is set to 1(reset)

16.5.8 Bit 7: Communication mode select bit (master/slave select bit: MST)

The MST bit selects either master mode or slave mode for data communication. When the MST bit is set to 0, slave mode is entered and the START/STOP condition generated by a master device are received. The data communication is synchronized with the clock generted by the master. When the MST bit is set to 1, master mode is entered and the START/STOP condition is generated.

Additionally, clocks required for the data communication are generated on the SCLMM.

The MST bit is set to 0 in one of the following conditions.

•After 1-byte data of a master whose arbtration is lost if arbitration lost is detected

•When a STOP condition is detected

•When a START condition is detected

•When a start condition is disabled by the START condition duplicate protect function ⁽¹⁾

•When the IHR bit in the S1D0 register is set to 1(reset)

•When the ES0 bit is set to 0(I²C bus interface disabled)

NOTE:

1. START condition duplicate protect function:

When the START condition is generated, after confirming that the BB flag in the S1D0 register is set to 0 (bus free), all the MST, TRX and BB flags are set to 1 at the same time. However, if the BB flag is set to 1 immediately after the BB flag setting is confirmed because a START condition is generated by other master device, bits MST and TRX cannot be written. The duplicate protect function is valid from the rising edge of the BB flag until slave address is received. Refer to **16.9 START Condition Generation Method** for details.

17.1.3.7 C0CONR Register

Figure 17.12 shows the COCONR register.

Figure 17.12 C0CONR Register

Figure 19.5 I/O Pins

Figure 20.2 Flash Memory Block Diagram (ROM capacity 96 Kbytes)

Figure 20.3 Flash Memory Block Diagram (ROM capacity 128 Kbytes)

RENESAS

Pin Name Descriptio I/O Apply the voltage guaranteed for Program and Erase to Vcc pin and 0 Vcc,Vss Power input V to Vss pin. **CNVss CNVs** T Connect to Vcc pin. RESET Reset input I Reset input pin. While RESET pin is "L", wait for td(ROC). Connect a ceramic resonator or crystal oscillator between XIN and XIN Clock input 1 XOUT pins. To input an externally generated clock, input it to XIN pin XOUT Clock output 0 and open XOUT pin. AVcc, AVss Connect AVss to Vss and AVcc to Vcc, respectively. Analog power supply input VREF Reference voltage input Т Enter the reference voltage for AD conversion. P00 to P07 Input port P0 I Input "H" or "L" signal or leave open. P10 to P15, P17 Input port P1 Т Input "H" or "L" signal or leave open. P16 Input port P1 I Connect this pin to Vcc while RESET pin is "L". (2) P20 to P27 Input port P2 I Input "H" or "L" level signal or leave open. Input "H" or "L" level signal or leave open. P30 to P37 Input port P3 Т P60 to P63 Input "H" or "L" level signal or leave open. Input port P6 T Standard serial I/O mode 1: BUSY signal output pin P64 **BUSY** output 0 Standard serial I/O mode 2: Monitor signal output pin for boot program operation check Standard serial I/O mode 1: Serial clock input pin T P65 SCLK input Standard serial I/O mode 2: Input "L" P66 RxD input T Serial data input pin Serial data output pin (1) P67 \cap TxD output P70 to P77 Input "H" or "L" signal or leave open. Input port P7 1 P80 to P84, Input port P8 Т Input "H" or "L" signal or leave open. P87 Connect this pin to Vss while RESET pin is "L". (2) P85 **RP** input T P86 CE input T Connect this pin to Vcc while RESET pin is "L". (2)

Table 20.8 Pin Descriptions (Flash Memory Standard Serial I/O Mode)

NOTES:

P100 to P107

P90 to P92,

P95 to P97 P93

> 1. When using standard serial I/O mode 1, to input "H" to the TxD pin is necessary while the RESET pin is held "L". Therefore, connect this pin to VCC via a resistor. Adjust the pull-up resistor value on a system not to affect a data transfer after reset, because this pin changes to a data-output pin

Input "H" or "L" signal or leave open.

Input "H" or "L" signal or leave open.

Input "H" or "L" signal or leave open.

"H" signal is output for specific time. Input "H" signal or leave open.

T

I/O

Т

I

2. Set the following, either or both.

Input port P9

Input port P10

-Connect the CE pin to Vcc.

-Connect the RP pin to VSS and P16 pin to Vcc.

Input port P93 Normal-ver.

T-ver./V-ver

Cumphal			Standard			1.1 14		
Symbol	Parameter			Min.	Тур.	Max.	Unit	
Vcc	Supply Voltage				2.7		5.5	V
AVcc	Analog Supply Voltage					Vcc		V
Vss	Supply Voltage					0		V
AVss	Analog Supply Vo	ltage				0		V
Vih	Input High ("H") Voltage	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P60 to P67,		0.7Vcc		Vcc	V	
		P70 to P77, P80 to P87, P90 to P93, P95 to P97, P100 to P107						
		XIN, RESET, CNVSS		0.8Vcc		Vcc	V	
			When I ² C bus input I	level is selected	0.7Vcc		Vcc	V
		SDAMM, SCLMM	When SMBUS input	level is selected	1.4		Vcc	V
V⊫	Input Low ("L")	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P60 to P67,			0		0.3Vcc	V
	Voltage	P70 to P77, P80 to P87, P90 to P93, P95 to P97, P100 to P107						
		XIN, RESET, CNVSS		0		0.2Vcc	V	
		SDAMM, SCLMM	When I ² C bus input I	level is selected	0		0.3Vcc	V
			When SMBUS input	level is selected	0		0.6	V
OH(peak)	Peak Output High ("H") Current	P00 to P07, P10 t	o P17, P20 to P27, P30	o to P37, P60 to P67,			-10.0	mA
		P70 to P77, P80 to P87, P90 to P93, P95 to P97, P100 to P107						
IOH(avg)	Average Output High ("H") Current	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P60 to P67,				-5.0	mA	
		P70 to P77, P80 to P87, P90 to P93, P95 to P97, P100 to P107						
OL(peak)	Peak Output Low ("L") Current	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P60 to P67,				10.0	mA	
_		P70 to P77, P80 to P87, P90 to P93, P95 to P97, P100 to P107						
IOL(avg)	Average Output	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P60 to P67,				5.0	mA	
()())		P70 to P77, P80 t	o P87, P90 to P93, P9	5 to P97, P100 to P107				
f(XiN)	Main Clock Input Oscillation Frequency $V \infty = 3.0$ to 5.5V $V \infty = 2.7$ to 3.0V		Vcc=3.0 to 5.5V	0		20	MHZ	
			0		33 X Vcc-80	MHz		
t(XCIN)	Sub Clock Oscillation Frequency					32.768	50	kHz
f1(ROC)	On-chip Oscillator Frequency 1			0.5	1	2	MHz	
f2(ROC)	On-chip Oscillator Frequency 2			1	2	4	MHz	
f3(ROC)	On-chip Oscillator Frequency 3			8	16	26	MHz	
f(PLL)	PLL Clock Oscillation Frequency ⁽⁴⁾ $V \infty$ =3.0 to 5.5V $V \infty$ =2.7 to 3.0V			Vcc=3.0 to 5.5V	10		20	MHz
				10		33 X Vcc-80	MHz	
f(BCLK)	CPU Operation Clock Frequency			0		20	MHz	
tsu(PLL)	Wait Time to Stabilize PLL Frequency Synthesizer Vcc=5.0V				20	ms		
	Vcc=3.0V					50	ms	

Table 21.2 Recommended Operating Conditions (Note 1)

NOTES:

1. Referenced to V ∞ = 2.7 to 5.5V at Topr = -20 to 85 ° C / -40 to 85 ° C unless otherwise specified. 2. The mean output current is the mean value within 100ms.

3. The total IOL(peak) for all ports must be 80mA or less. The total IOH(peak) for all ports must be -80mA or less.

4. Relationship among main clock oscillation frequency, PLL clock oscillation frequency and supply voltage.

15

20

Unit cycles µs s s s s ms

μs

vears

Table 21.4 Flash Memory Version Electrical Characteristics ⁽¹⁾ for 100/1000 E/W cycle products

[Program Space and Data Space in US and US: Program Space in U7 and U9]								
Symbol	Parameter			Standard				
Symbol				Typ. ⁽²⁾	Max.			
-	Program and Erase Endurance ⁽³⁾			100/1000 ^(4, 11)				
-	Word Program Time (Vcc=5.0V, Topr=25° C)			75	600			
-	Block Erase Time (V ∞ =5.0V, Topr=25° C)	2-Kbyte Block		0.2	9			
		8-Kbyte Block		0.4	9			
		16-Kbyte Block		0.7	9			
		32-Kbyte Block		1.2	9			
td(SR-ES)	3) Duration between Suspend Request and Erase Suspend				8			

[Program Space and Data Space in U3 and U5: Program Space in U7 and U9]

Wait Time to Stabilize Flash Memory Circuit

Data Hold Time (5)

 Table 21.5
 Flash Memory Version Electrical Characteristics ⁽⁶⁾
 10000 E/W cycle products (Option)

 [Data Space in U7 and U9⁽⁷⁾]

Symbol	Deremeter		Linit			
Symbol	Faianielei		Typ. ⁽²⁾	Max.	Unit	
-	Program and Erase Endurance ^(3, 8, 9)	10000 ^(4, 10)			cycles	
-	Word Program Time (V ∞ = 5.0 V, Topr = 25° C)100				μs	
-	Block Erase Time (V ∞ = 5.0 V, Topr = 25° C) (2-Kbyte block)		0.3		S	
td(SR-ES)	Duration between Suspend Request and Erase Suspend			8	ms	
tps	Wait Time to Stabilize Flash Memory Circuit			15	μs	
-	Data Hold Time ⁽⁵⁾	20			years	

NOTES:

t_{PS}

1. Referenced to V ∞ = 2.7 to 5.5 V at Topr = 0 to 60° C (program space), unless otherwise specified.

2. Vcc = 5.0 V; Topr = 25° C

3. Program and erase endurance is defined as number of program-erase cycles per block.

If program and erase endurance is n cycle (n = 100, 1000, 10000), each block can be erased and programmed n cycles.

For example, if a 2-Kbyte block A is erased after programming one-word data to each address 1,024 times, this counts as one program and erase endurance. Data cannot be programmed to the same address more than once without erasing the block. (rewrite prohibited).

4. Number of E/W cycles for which operation is guranteed (1 to minimum value are guaranteed).

5. Topr = 55° C

6. Referenced to Vcc= 2.7 to 5.5 V at Topr= -40 to 85° C(U7) / -20 to 85° C (U9) unless otherwise specifie.

7. **Table 21.5** applies for data space in U7 and U9 when program and erase endurance is more than 1,000 cycles. Otherwise, use **Table 21.4**.

8. To reduce the number of program and erase endurance when working with systems requiring numerous rewrites, write to unused word addresses within the block instead of rewrite. Erase block only after all possible addresses are used. For example, an 8-word program can be written 128 times maximum before erase becomes necessary. Maintaining an equal number of times erasure between block A and block B will also improve efficiency. It is recommended to track the total number of erasure performed per block and to limit the number of erasure.

9. If an erase error is generated during block erase, execute the clear status register command and block erase command at least 3 times until an erase error is not generated.

10. When executing more than 100 times rewrites, set one wait state per block access by setting the FMR17 bit in the FMR1 register 1 to 1 (wait state). When accessing to all other blocks and internal RAM, wait state can be set by the PM17 bit, regardless of the FMR17 bit setting value.

11. The program and erase endurance is 100 cycles for program space and data space in U3 and U5; 1,000 cycles for program space in U7 and U9.

12. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for further details on the E/W failure rate.

Figure 21.8 Timing Diagram (2)

22.11 CAN Module

22.11.1 Reading COSTR Register

The CAN module on the M16C/29 Group updates the status of the C0STR register in a certain period. When the CPU and the CAN module access to the C0STR register at the same time, the CPU has the access priority; the access from the CAN module is disabled. Consequently, when the updating period of the CAN module matches the access period from the CPU, the status of the CAN module cannot be updated. (See **Figure 22.5**)

Accordingly, be careful about the following points so that the access period from the CPU should not match the updating period of the CAN module:

- (1) There should be a wait time of 3fCAN or longer (see **Table 22.2**) before the CPU reads the C0STR register. (See **Figure 22.6**)
- (2) When the CPU polls the C0STR register, the polling period must be 3fCAN or longer. (See **Figure 22.7**)

3fcan period = 3 x XIN (Original oscillation period) x Division value of the CAN clock (CCLK)					
(Example 1) Condition X _{IN} 16 MHz CCLK: Divided by 1	$3f_{CAN}$ period = 3 x 62.5 ns x 1 = 187.5 ns				
(Example 2) Condition X _{IN} 16 MHz CCLK: Divided by 2	$3f_{CAN}$ period = 3 x 62.5 ns x 2 = 375 ns				
(Example 3) Condition X _{IN} 16 MHz CCLK: Divided by 4	$3f_{CAN}$ period = 3 x 62.5 ns x 4 = 750 ns				
(Example 4) Condition X _{IN} 16 MHz CCLK: Divided by 8	$3f_{CAN}$ period = 3 x 62.5 ns x 8 = 1.5 µs				
(Example 5) Condition X _{IN} 16 MHz CCLK: Divided by 16	$3f_{CAN}$ period = 3 x 62.5 ns x 16 = 3 μ s				

Table 22.2 CAN Module Status Updating Period

22.17 Instruction for a Device Use

When handling a device, extra attention is necessary to prevent it from crashing during the electrostatic discharge period.

REVISION HISTORY

M16C/29 Hardware Manual

Rev.	Date		Description		
		Page	Summary		
	66		"9.3 Interrupt Control" is partly revised.		
		76	"9.6 INT Interrupt" and "9.7 INMI Interrupt" are partly revised.		
		77	"9.8 Key Input Interrupt" and "9.9 CAN0 Wake-up Interrupt" are partly revised.		
		80	"10. Watchdog Timer" is partly revised.		
		80, 81	"10.1 Count source protective mode" is partly revised.		
		81	Note 2 in Figure 10.2 is revised.		
		118	Figure 12.3.1 is partly revised.		
		121	"Three-phase output buffer register" in Figure 12.3.4 is partly revised.		
		133 to 138	Figure 13.1 to 13.6 are partly revised.		
		141	"Function enable register" in Figure 13.9 is partly revised.		
		150	Table 13.4.1 is partly revised.		
		161	"13.6 I/O Port Function Select" is partly revised.		
		198	Figure 14.1.4.1 is partly revised.		
		209	Figure 14.2.1 is partly revised.		
		210	Figure 14.2.2 is partly revised.		
		214	"Integral Nonlinearity Error" in Table 15.1 is partly revised.		
		253,254	Figure 16.6 and Figure 16.7 are partly revised.		
		261	"16.5.4 Bit 3: Arbitration lost detection flag" is partly revised.		
		266	"16.6.5 I2C system clock select bits" and Talbe 16.6 are partly revised.		
		275	"9)" in "16.13.2 Example of Slave Receive" is revised.		
		296	"17.3 Configuration of the CAN Module System Clock" is partly revised.		
		306	"18.1 CRC snoop" is partly revised.		
		337	Table 20.25 is partly revised.		
		368	"21.1 Flash Memory Performance" is partly revised.		
		367,368	"21.2 Memory Map" is partly revised.		
		372	"21.4 CPU Rewrite Mode" is partly revised.		
		373	"21.4.1 EW0 Mode" and "21.4.2 EW1 Mode" are partly revised.		
		374	"FMR01 Bit" is partly revised.		
		375	"FMR17 Bit" is partly revised.		
		383	"21.7.4 Program Command (4016)" is partly revised.		
		390	Table 21.9.1 and Note 2 are partly revised.		
		391,392	Figure 21.9.1 and Figure 21.9.2 are partly revised.		
		393,394	Figure 21.9.2.1 and Figure 21.9.2.2 are partly revised.		
		396	Table 21.11.1 and Note 1 are partly revised.		
		397,398	Figure 21.11.1 and Figure 21.11.2 are partly revised.		
		399	Figure 21.11.3 is partly revised.		
1.10	10/10/06	All Pages	Package code changed: 80P6Q-A to PLQP0080KB-A, 64P6Q-A to PLQP0064KB-A		
			Words standardized: Low voltage detection, CPU clock, MCU, SDA2, SCL2		