

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	M16C/60
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, I ² C, IEBus, SIO, UART/USART
Peripherals	DMA, POR, PWM, Voltage Detect, WDT
Number of I/O	55
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30291fchp-u5a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notes regarding these materials

- This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
 You should not use the products or the technology described in this document for the purpose of military
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below: (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

9.3.1 I Flag

The I flag enables or disables the maskable interrupt. Setting the I flag to 1 (= enabled) enables the maskable interrupt. Setting the I flag to 0 (= disabled) disables all maskable interrupts.

9.3.2 IR Bit

The IR bit is set to 1 (= interrupt requested) when an interrupt request is generated. Then, when the interrupt request is accepted and the CPU branches to the corresponding interrupt vector, the IR bit is cleared to 0 (= interrupt not requested).

The IR bit can be cleared to 0 in a program. Note that do not write 1 to this bit.

9.3.3 ILVL2 to ILVL0 Bits and IPL

Interrupt priority levels can be set using bits ILVL2 to ILVL0.

Table 9.3 shows the settings of interrupt priority levels and **Table 9.4** shows the interrupt priority levels enabled by the IPL.

The following are conditions under which an interrupt is accepted:

- · I flag = 1
- · IR bit = 1
- · interrupt priority level > IPL

The I flag, IR bit, bits ILVL2 to ILVL0, and IPL are independent of each other. In no case do they affect one another.

ILVL2 to ILVL0 bits	Interrupt priority level	Priority order
0002	Level 0 (interrupt disabled)	
0012	Level 1	Low
0102	Level 2	
0112	Level 3	
1002	Level 4	
1012	Level 5	
1102	Level 6	↓
1112	Level 7	High

Table 9.3 Settings of Interrupt Priority Levels

Table 9.4 Interrupt Priority Levels Enabled by IPL

IPL	Enabled interrupt priority levels
0002	Interrupt levels 1 and above are enabled
0012	Interrupt levels 2 and above are enabled
0102	Interrupt levels 3 and above are enabled
0112	Interrupt levels 4 and above are enabled
1002	Interrupt levels 5 and above are enabled
1012	Interrupt levels 6 and above are enabled
1102	Interrupt levels 7 and above are enabled
1112	All maskable interrupts are disabled

The operation of saving registers carried out in the interrupt sequence is dependent on whether the $SP^{(1)}$, at the time of acceptance of an interrupt request, is even or odd. If the stack pointer ⁽¹⁾ is even, the FLG register and the PC are saved, 16 bits at a time. If odd, they are saved in two steps, 8 bits at a time. **Figure 9.8** shows the operation of the saving registers.

NOTE:

1. When any INT instruction in software numbers 32 to 63 has been executed, this is the SP indicated by the U flag. Otherwise, it is the ISP.

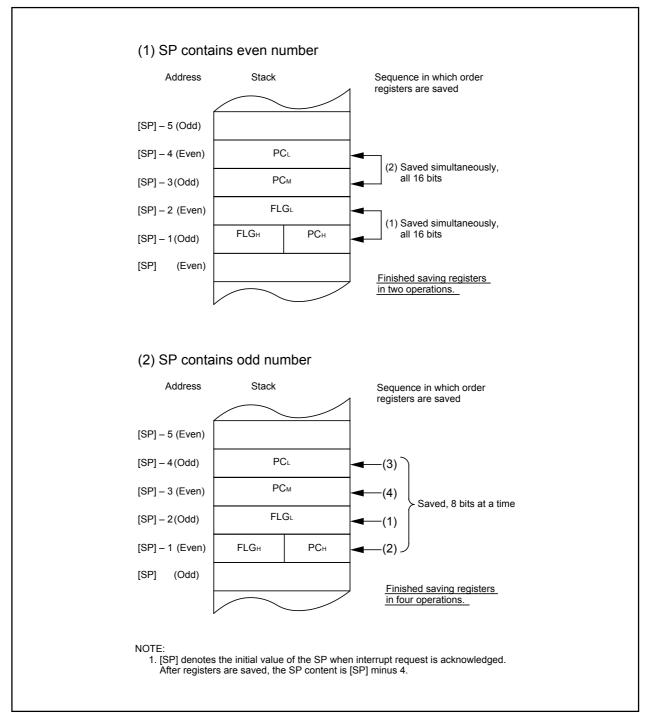


Figure 9.8 Operation of Saving Register

12.1.2 Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers. Timers A2, A3, and A4 can count two-phase external signals. **Table 12.2** lists specifications in event counter mode (when not processing two-phase pulse signal). **Table 12.3** lists specifications in event counter mode (when processing two-phase pulse signal with the timers A2, A3 and A4). **Figure 12.8** shows TAiMR register in event counter mode (when <u>not</u> processing two-phase pulse signal with the timers A2, A3 and A4). **Figure 12.9** shows TA2MR to TA4MR registers in event counter mode (when processing two-phase pulse signal with the timers A2, A3 and A4).

Item	Specification						
Count source	• External signals input to TAiIN pin (i=0 to 4) (effective edge can be selected						
	in program)						
	Timer B2 overflows or underflows,						
	timer Aj (j=i-1, except j=4 if i=0) overflows or underflows,						
	timer Ak (k=i+1, except k=0 if i=4) overflows or underflows						
Count operation	Increment or decrement can be selected by external signal or program						
	• When the timer overflows or underflows, it reloads the reload register con-						
	tents and continues counting. When operating in free-running mode, the						
	timer continues counting without reloading.						
Divided ratio	1/ (FFFF16 - n + 1) for increment						
	1/ (n + 1) for down-count n : set value of TAi register 000016 to FFF16						
Count start condition	Set TAiS bit in the TABSR register to 1 (start counting)						
Count stop condition	Set TAiS bit to 0 (stop counting)						
Interrupt request generation timing	Timer overflow or underflow						
TAilN pin function	I/O port or count source input						
TAIOUT pin function	I/O port, pulse output, or up/down-count select input						
Read from timer	Count value can be read by reading TAi register						
Write to timer	When not counting and until the 1st count source is input after counting start						
	Value written to TAi register is written to both reload register and counter						
	 When counting (after 1st count source input) 						
	Value written to TAi register is written to only reload register						
	(Transferred to counter when reloaded next)						
Select function	Free-run count function						
	Even when the timer overflows or underflows, the reload register content is						
	not reloaded to it						
	Pulse output function						
	Whenever the timer underflows or underflows, the output polarity of TAiOUT						
	pin is inverted . When not counting, the pin outputs a low.						

 Table 12.2 Specifications in Event Counter Mode (when not processing two-phase pulse signal)

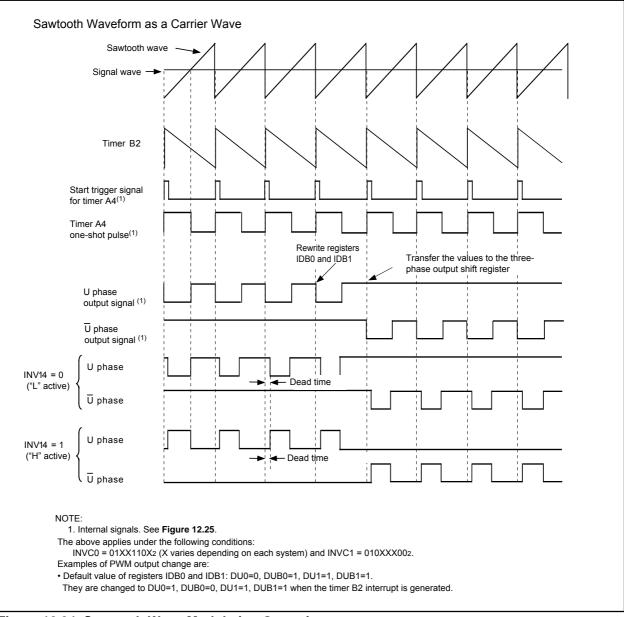


Figure 12.34 Sawtooth Wave Modulation Operation

Table 14.3 lists pin functions for the case where the multiple transfer clock output pin select function is deselected. **Table 14.4** lists the P64 pin functions during clock synchronous serial I/O mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs an "H". (If the N-channel open-drain output is selected, this pin is in a high-impedance state.)

Pin Name	Function	Method of Selection
TxDi (i = 0 to 2) (P63, P67, P70)		(Outputs dummy data when performing reception only)
RxDi (P62, P66, P71)	Serial data input	Set the PD6_2 bit and PD6_6 bit in the PD6 register, and PD7_1 bit in the PD7 register to 0 (Can be used as an input port when performing transmission only)
CLKi	Transfer clock output	Set the CKDIR bit in the UiMR register to 0
(P61, P65, P72)	Transfer clock input	Set the CKDIR bit in the UiMR register to 1 Set the PD6_1 bit and PD6_5 bit in the PD6 register, and the PD7_2 bit in the PD7 register to 0
CTSi/RTSi (P60, P64, P73)	CTS input	Set the CRD bit in the UiC0 register to 0 Set the CRS bit in the UiC0 register to 0 Set the PD6_0 bit and PD6_4 bit in the PD6 register is set to 0, the PD7_3 bit in the PD7 register to 0
	RTS output	Set the CRD bit in the UiC0 register to 0 Set the CRS bit in the UiC0 register to 1
	I/O port	Set the CRD bit in the UiC0 register to 1

NOTE:

1: When the U1MAP bit in PACR register is 1 (P73 to P70), UART1 pin is assgined to P73 to P70.

Table 14.4 P64 Pin Functions⁽¹⁾

			Bit Se	et Value		
Pin Function	U1C0	U1C0 register UCON register				PD6 register
	CRD	CRS	RCSP	CLKMD1	PD6_4	
P64	1		0	0		Input: 0, Output: 1
CTS1	0	0	0	0		0
RTS ₁	0	1	0	0	—	—
CTS ₀ ⁽²⁾	0	0	1	0		0
CLKS1		_		1 ⁽³⁾	1	

NOTES:

1. When the U1MAP bit in PACR register is 1 (P73 to P70), this table lists the P70 functions.

2. In addition to this, set the CRD bit in the U0C0 register to 0 (CT00/RT00 enabled) and the CRS bit in the U0C0 register to 1 (RTS0 selected).

3. When the CLKMD1 bit is set to 1 and the CLKMD0 bit is set to 0, the following logic levels are output:
High if the CLKPOL bit in the U1C0 register is set to 0

. Low if the CLKPOL bit in the U1C0 register is set to 1

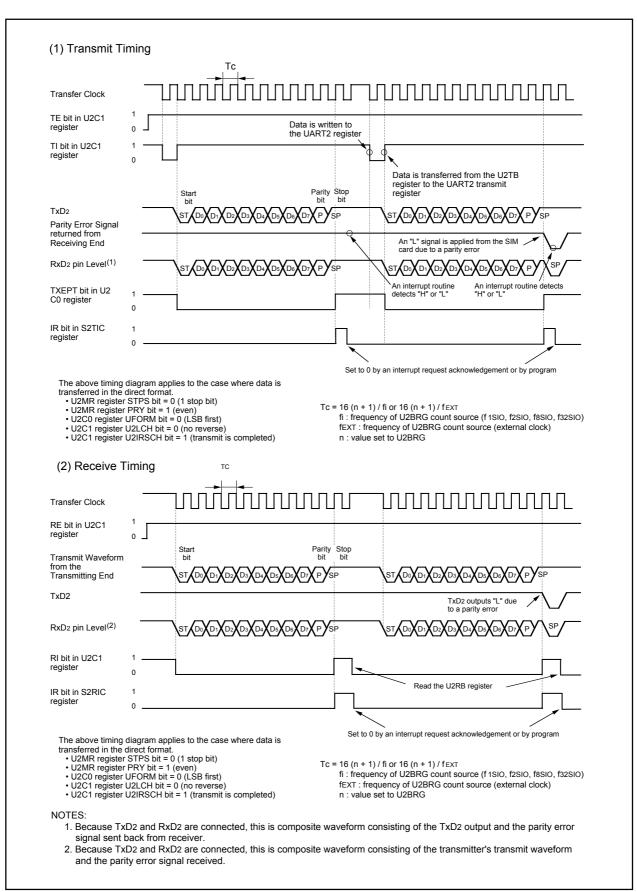
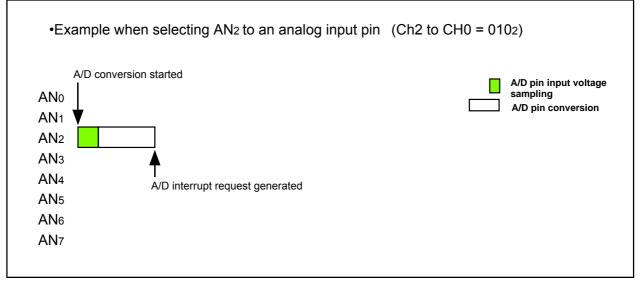
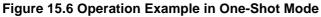


Figure 14.31 Transmit and Receive Timing in SIM Mode

RENESAS


15.1 Operating Modes


15.1.1 One-Shot Mode

In one-shot mode, analog voltage applied to a selected pin is once converted to a digital code. **Table 15.3** shows the one-shot mode specifications. **Figure 15.6** shows the operation example in one-shot mode. **Figure 15.7** shows registers ADCON0 to ADCON2 in one-shot mode.

Table 15.3	One-shot	Mode	Specifications
------------	----------	------	----------------

Item	Specification					
Function	Bits CH2 to CH0 in the ADCON0 register and registers ADGSEL1 and					
	ADGSEL0 in the ADCON2 register select pins. Analog voltage applied to a					
	selected pin is once converted to a digital code					
A/D Conversion Start	When the TRG bit in the ADCON0 register is 0 (software trigger)					
Condition	Set the ADST bit in the ADCON0 register to 1 (A/D conversion started)					
	When the TRG bit in the ADCON0 register is 1 (hardware trigger)					
	The ADTRG pin input changes state from "H" to "L" after setting the					
	ADST bit to 1 (A/D conversion started)					
A/D Conversion Stop	A/D conversion completed (If a software trigger is selected, the ADST bit is					
Condition	set to 0 (A/D conversion halted)).					
	Set the ADST bit to 0					
Interrupt Request Generation Timing	A/D conversion completed					
Analog Input Pin	Select one pin from AN0 to AN7, AN00 to AN07, AN20 to AN27, AN30 to AN32					
Readout of A/D Conversion Result	Readout one of registers AD0 to AD7 that corresponds to the selected pin					

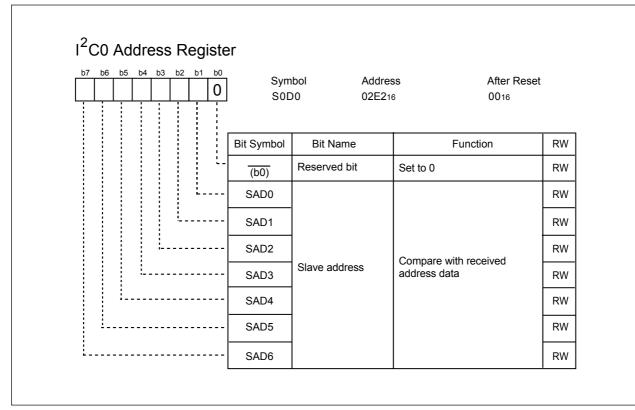


Figure 16.2 S0D0 Register

16.13 Address Data Communication

This section describes data transmit control when a master transferes data or a slave receives data in 7-bit address format. **Figure 16.20 (1)** shows a master transmit format.

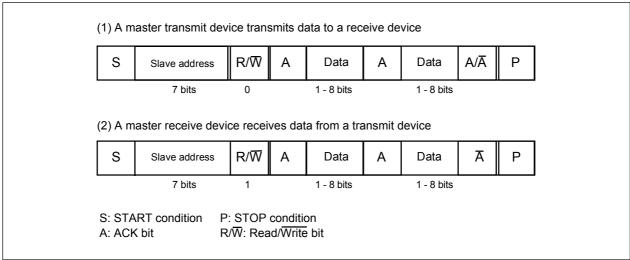


Figure 16.20 Address data communication format

16.13.1 Example of Master Transmit

For example, a master transmits data as shown below when following conditions are met: standard clock mode, SCL clock frequency of 100kHz and ACK clock added.

- 1) Set s slave address to the 7 high-order bits in the S0D0 register
- 2) Set 8516 to the S20 register, 0002 to bits ICK4 to ICK2 in the S4D0 register and 0016 to the S3D0 registe to generate an ACK clock and set SCL clock frequency t 100 kHz (f1=8MHz, fIIC=f1)
- 3) Set 0016 to the S10 register to reset transmit/receive
- 4) Set 0816 to the S1D0 register to enable data communication
- 5) Confirm whether the bus is free by BB flag setting in the S10 register
- 6) Set E016 to the S10 register to enter START condition standby mode
- 7) Set the destination address in 7 high-order bits and 0 to a least significant bit in the S00 register to generate START condition. At this time, the first byte consisting of SCL and ACK clock are automatically generated
- 8) Set a transmit data to the S00 register. At this time, SCL and an ACK clock are automatically generated
- 9) When transmitting more than 1-byte control data, repeat the above step 8).
- 10) Set C016 in the S10 register to enter STOP condition standby mode if ACK is not returned from the slave receiver or if the transmit is completed
- 11) Write dummy data to the S00 regiser to generate STOP condition

17.7 Return from Bus off Function

When the protocol controller enters bus off state, it is possible to make it forced return from bus off state by setting the RetBusOff bit in the COCTLR register to 1 (Force return from bus off). At this time, the error state changes from bus off state to error active state. If the RetBusOff bit is set to 1, registers CORECR and COTECR are initialized and the State_Reset bit in the COSTR register is set to 0 (The CAN module is not in error bus off state). However, registers of the CAN module such as COCONR register and the content of each slot are not initialized.

17.8 Time Stamp Counter and Time Stamp Function

When the C0TSR register is read, the value of the time stamp counter at the moment is read. The period of the time stamp counter reference clock is the same as that of 1 bit time that is configured by the C0CONR register. The time stamp counter functions as a free run counter.

The 1 bit time period can be divided by 1 (undivided), 2, 4 or 8 to produce the time stamp counter reference clock. Use the TSPreScale bit in the COCTLR register to select the divide-by-n value.

The time stamp counter is equipped with a register that captures the counter value when the protocol controller regards it as a successful reception. The captured value is stored when a time stamp value is stored in a reception slot.

17.9 Listen-Only Mode

When the RXOnly bit in the COCTLR register is set to 1, the module enters listen-only mode.

In listen-only mode, no transmission -- data frames, error frames, and ACK response -- is performed to bus. When listen-only mode is selected, do not request the transmission.

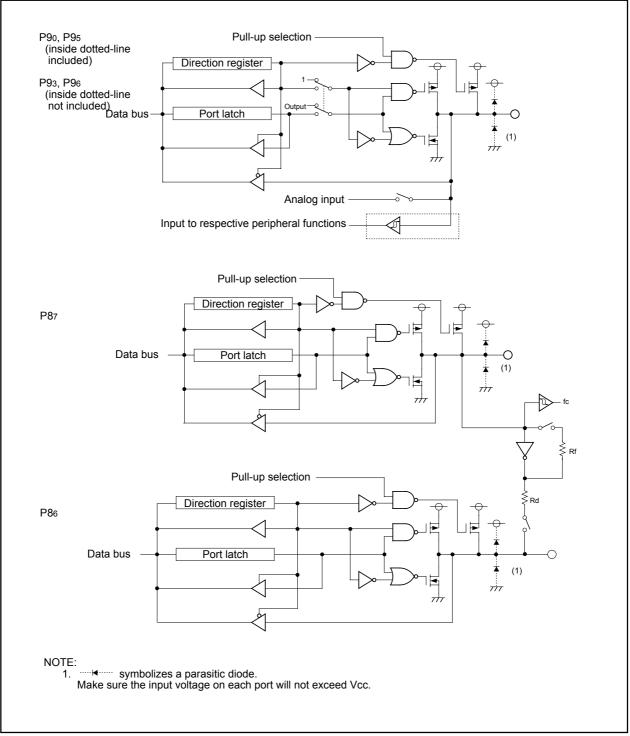


Figure 19.4 I/O Ports (4)

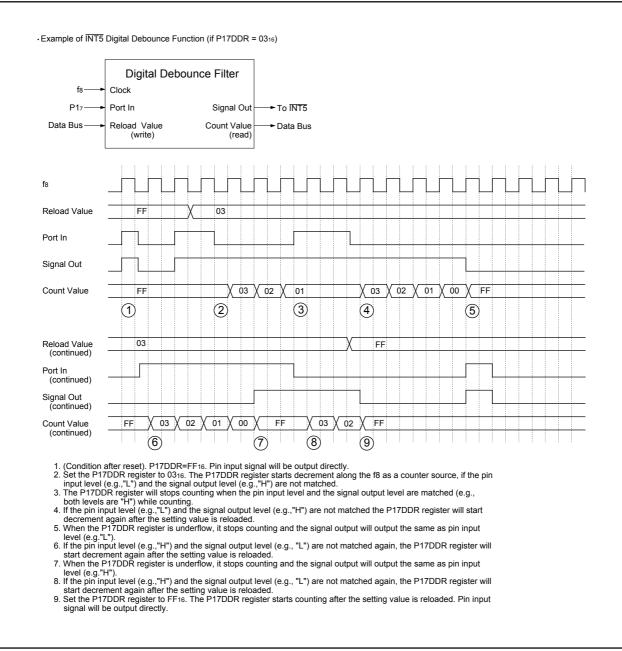


Figure 19.12 Functioning of Digital Debounce Filter

Flash Memory Cont	0	er O		
b7 b6 b5 b4 b3 b2 b1 b0	Symbo FMR0		After Reset 000000012	
	Bit Symbol	Bit Name	Function	RW
	FMR00	RY/BY status flag	0: Busy (during writing or erasing) 1: Ready	RO
	FMR01	CPU rewrite mode select bit ⁽¹⁾	0: Disables CPU rewrite mode (Disables software command) 1: Enables CPU rewrite mode (Enables software commands)	RW
	FMR02	Block 0, 1 rewrite enable bit (2)	Set write protection for user ROM area (see Table 20.4)	RW
	FMSTP	Flash memory stop bit (3, 5)	0: Starts flash memory operation 1: Stops flash memory operation (Enters low-power consumption state and flash memory reset)	RW
	(b5-b4)	Reserved bit	Set to 0	RW
	FMR06	Program status flag (4)	0: Successfully completed 1: Completion error	RO
L	FMR07	Erase status flag (4)	0: Successfully completed 1: Completion error	RO

NOTES:

 Set the FMR01 bit to 1 immediately after setting it first to 0. Do not generate an interrupt or a DMA transfer between setting the bit to 0 and setting it to 1. Set this bit while the P85/NMI/SD pin is held "H" when selecting the NMI function. Set by program in a space other than the flash memory in EW mode 0. Set this bit to read alley mode and 0.

2. Set this bit to 1 immediately after setting it first to 0 while the FMR01 bit is set to 1. Do not generate an interrupt or a DMA transfer between setting this bit to 0 and setting it to 1.

3. Set this bit in a space other than the flash memory by program. When this bit is set to 1, access to flash memory will be denied. To set this bit to 0 after setting it to 1, wait for 10 usec. or more after setting it to 1. To read data from flash memory after setting this bit to 0, maintain tps wait time before accessing flash memory.

4. This bit is set to 0 by executing the clear status command.

5. This bit is enabled when the FMR01 bit is set to 1 (CPU rewrite mode). If the FMR01 bit is set to 0, this bit can be set to 1 by writing 1 to the FMR01 bit. However, the flash memory does not enter low-power consumption status and it is not initialized.

Flash Memory Control Register 1

b7 b6 b5 b4 b3 b2 b1 b0	Symbo FMR1		After Reset 000XXX0X2	
	Bit Symbol	Bit Name	Function	RW
	(b0)	Reserved bit	When read, the content is undefined	RO
L	FMR11	EW mode 1 select bit ⁽¹⁾	0: EW mode 0 1: EW mode 1	RW
	(b3-b2)	Reserved bit	When read, the content is undefined	RO
· · · · · · · · · · · · · · · · · · ·	(b4)	Nothing is assigned. If necessar When read, the content is under		—
	(b5)	Reserved bit	Set to 0	RW
L	FMR16	Block 0 to 5 rewrite enable bit ⁽²⁾	Set write protection for user ROM space (see Table 20.4) 0: Disable 1: Enable	RW
l	FMR17	Block A, B access wait bit ⁽³⁾	0: PM17 enabled 1: With wait state (1 wait)	RW

NOTES:

1. Set the FMR11 bit to 1 immediately after setting it first to 0 while the FMR01 bit is set to 1. Do not generate an interrupt or a DMA transfer between setting the bit to 0 and setting it to 1. Set this bit while the P85/NMI/SD pin is held "H" when the NMI function is selected. If the FMR01 bit is set to 0, the FMR01 bit and FMR11 bit are both set to 0.

2. Set this bit to 1 immediately after setting it first to 0 while the FMR01 bit is set to 1. Do not generate an interrupt or a DMA transfer between setting this bit to 0 and setting it to 1.

3. When rewriting more than 100 times, set this bit to 1 (with wait state). When the FMR17 bit is set to1(with wait state), regardless of the PM17 bit setting, 1 wait state is inserted when accessing to blocks A and B. The PM17 bit setting is enabled, regardless of the FMR17 bit setting, as to the access to other block and the internal RAM.

Figure 20.6 FMR0 and FMR1 Registers

Timing Requirements

Vcc = 5V

(VCC = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Symbol	Parameter	Standard clock mode		High-speed clock mode		Unit
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tBUF	Bus free time	4.7		1.3		μs
tHD;STA	The hold time in start condition	4.0		0.6		μs
tLOW	The hold time in SCL clock 0 status	4.7		1.3		μs
tR	SCL, SDA signals' rising time		1000	20+0.1Cb	300	ns
tHD;DAT	Data hold time	0		0	0.9	μs
tHIGH	The hold time in SCL clock 1 status	4.0		0.6		μs
tF	SCL, SDA signals' falling time		300	20+0.1Cb	300	ns
tsu;DAT	Data setup time	250		100		ns
tsu;STA	The setup time in restart condition	4.7		0.6		μs
tsu;STO	Stop condition setup time	4.0		0.6		μs

Table 21.23 Multi-master I²C bus Line

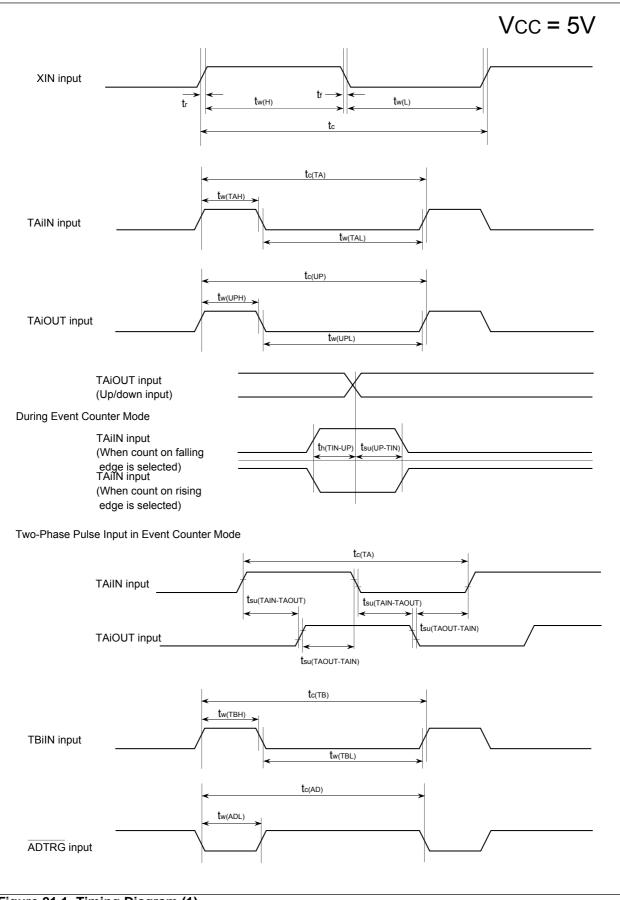


Figure 21.1 Timing Diagram (1)

Timing Requirements

Vcc = 5V

(Vcc=5V, Vss=0V, at Topr=-40 to 125°C unless otherwise specified)

Symbol	Deremeter		Standard		Linit
	Parameter		Min.	Max.	– Unit
tc	External Clock Input Cycle Time	Topr=-40° C to 105° C	50		ns
		Topr=-40° C to 125° C	62.5		ns
tw(H)	External Clock Input High ("H") Width	Topr=-40° C to 105° C	20		ns
		Topr=-40° C to 125° C	25		ns
tw(∟)	External Clock Input Low ("L") Width	Topr=-40° C to 105° C	20		ns
		Topr=-40° C to 125° C	25		ns
tr	External Clock Rise Time	Topr=-40° C to 105° C		9	ns
		Topr=-40° C to 125° C		15	ns
tf	External Clock Fall Time	Topr=-40° C to 105° C		9	ns
		Topr=-40° C to 125° C		15	ns

Table 21.86 External Clock Input (XIN input)

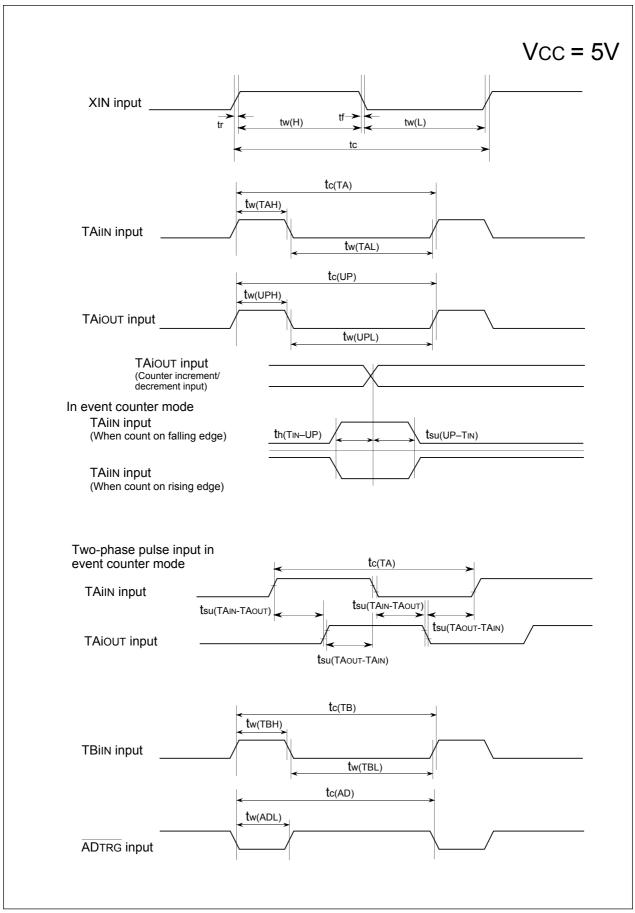


Figure 21.13 Timing Diagram (1)

REVISION HISTORY

M16C/29 Hardware Manual

Rev.	Date		Description	
		Page	e Summary	
			4 deleted	
		401	• Table 21.63 Elctrical Characteristics measurement condition modified, note 4	
			deleted	
		411	•Tables 21.81 and 21.82 Flash Memory Version Electrical Characteristics	
			note 10 modified	
		412	•Timing figure for td(P-R) and td(ROC) modified	
		414	•Table 21.85 Electrical Characteristics measurment condition modified, note 4	
			deleted	
			Usage Notes	
		439	•Figure 22.4 Use of Capacitors to Reduce Noise note 1 modified	
		449	•22.15.10 How to Access description modified	
		450	•22.15.15 Flash Memory Version Electrical Characteristics 10,000 E/W Cycle	
			Products description modified	

RENESAS 16-BIT SINGLE-CHIP MICROCOMPUTER HARDWARE MANUAL M16C/29 Group

Publication Data : Rev.0.70 Mar. 29, 2004 Rev.1.12 Mar. 30, 2007

Published by : Sales Strategic Planning Div. Renesas Technology Corp.

© 2007. Renesas Technology Corp., All rights reserved. Printed in Japan.