

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, I ² C, IEBus, SIO, UART/USART
Peripherals	DMA, POR, PWM, Voltage Detect, WDT
Number of I/O	55
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30291fchp-u7a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

As of March. 2007

1.3 Product List

Tables 1.3 to 1.5 list the M16C/29 Group products and Figure 1.3 shows the type numbers, memory sizes and packages. Tables 1.6 to 1.8 list the product code of flash memory version for M16C/29 Group. Figure 1.4 to Figure 1.6 show the marking diagram of flash memory version for M16C/29 Group.

		ai 011, 2007				
Type Number	ROM Capacity	RAM Capacity	Package Type	Remarks	Product Code	
M30290FAHP	96 K + 4 K	8 K	PLQP0080KB-A (80P6Q-A)			
M30290FCHP	128 K + 4 K	12 K		Flash	U3, U5,	
M30291FAHP	96 K + 4 K	8 K	PLQP0064KB-A (64P6Q-A)	Memory	U7, U9	
M30291FCHP	128 K + 4 K	12 K	FLQF0004KB-A (04F0Q-A)			
M30290M8-XXXHP	64 K	4 K				
M30290MA-XXXHP	96 K	8 K	PLQP0080KB-A (80P6Q-A)	Mask ROM		
M30290MC-XXXHP	128 K	12 K				
M30291M8-XXXHP	64 K	4 K			U3, U5	
M30291MA-XXXHP	96 K	8 K	PLQP0064KB-A (64P6Q-A)			
M30291MC-XXXHP	128 K	12 K				

Table 1.3 Product List (1) -Normal Version

Table 1.4 Product List (2) -T Version

Table 1.4 Product List (2)	able 1.4 Product List (2) -T Version					
Type Number	ROM Capacity	RAM Capacity	Package Type	Remarks	Product Code	
M30290FATHP	96 K + 4 K	8 K	PLQP0080KB-A (80P6Q-A)			
M30290FCTHP	128 K + 4 K	12 K		Flash	U3, U5,	
M30291FATHP	96 K + 4 K	8 K		Memory	U7, U9	
M30291FCTHP	128 K + 4 K	12 K	- PLQP0064KB-A (64P6Q-A)			
M30290M8T-XXXHP	64 K	4 K				
M30290MAT-XXXHP	96 K	8 K	PLQP0080KB-A (80P6Q-A)			
M30290MCT-XXXHP	128 K	12 K		Mask	UO	
M30291M8T-XXXHP	64 K	4 K		ROM	00	
M30291MAT-XXXHP	96 K	8 K	PLQP0064KB-A (64P6Q-A)			
M30291MCT-XXXHP	128 K	12 K	1			

Table 4.6 SFR Information (6)

Address			Symbol	After reset
14016	CAN0 message box 14: Identifier/DLC			XX16
14116				XX16
)14216				XX16
014316				XX16
014416				XX16
014516				XX16
014616	CAN0 message box 14 : Data field			XX16
014716				XX16
014816				XX16
014916				XX16
014A ₁₆				XX16
014B ₁₆				XX16
014C ₁₆				XX16
014D ₁₆				XX16
014E16	CAN0 message box 14 : Time stamp			XX16
014F ₁₆				XX16
015016	CAN0 message box 15 : Identifier/DLC			XX16
015116				XX16
015216				XX16
015316				XX16
015416				XX16
015516				XX16
015616	CAN0 message box 15 : Data field			XX16
015716				XX16
015816				XX16
015916				XX16
015A ₁₆				XX16
015B16				XX16
015C ₁₆				XX16
015D ₁₆				XX16
015E16	CAN0 message box 15 : Time stamp			XX16
015F ₁₆				XX16
016016	CAN0 global mask register		C0GMR	XX16
016116				XX16
016216				XX16
016316				XX16
016416				XX16
016516				XX16
016616	CAN0 local mask A register		C0LMAR	XX16
016716				XX16
016816				XX16
016916				XX16
016A ₁₆				XX16
016B16				XX16
016C16	CAN0 local mask B register		COLMBR	XX16
016D16				XX16
016E16				XX16
016F ₁₆				XX16
017016				XX16
017116				XX16
:				
		(11.7.2)		04000001/
01B316	Flash memory control register 4	(Note 2)	FMR4	0100000X2
01B4 ₁₆				00010000
01B516	Flash memory control register 1	(Note 2)	FMR1	000XXX0X2
01B616				
01B7 ₁₆	Flash memory control register 0	(Note 2)	FMR0	0116
01FD16				
01FE16				
01FF16				1

Note 1: The blank areas are reserved and cannot be used by users. Note 2: This register is included in the flash memory version.

X : Undefined

An $\overline{\text{NMI}}$ interrupt request is generated when input on the $\overline{\text{NMI}}$ pin changes state from high to low, after the $\overline{\text{NMI}}$ interrupt was enabled by writing a 1 to bit 4 in the register PM2. The $\overline{\text{NMI}}$ interrupt is a non-maskable interrupt, once it is enabled.

The input level of this $\overline{\text{NMI}}$ interrupt input pin can be read by accessing the P8_5 bit in the P8 register.

NMI is disabled by default after reset (the pin is a GPIO pin, P85) and can be enabled using bit 4 in the PM2 register. Once enabled, it can only be disabled by a reset signal.

The $\overline{\text{NMI}}$ input has a digital debounce function for noise rejection. Refer to "**19.6 Digital Debounce function**" for details. When using $\overline{\text{NMI}}$ interrupt to exit stop mode, set the NDDR register to FF16 before entering stop mode.

9.8 Key Input Interrupt

A key input interrupt is generated when input on any of the P104 to P107 pins which has had bits PD10_7 to PD10_4 in the PD10 register set to 0 (= input) goes low. Key input interrupts can be used for a key-on wakeup function to get the MCU to exit stop or wait modes. However, if you intend to use the key input interrupt, do not use P104 to P107 as analog input ports. **Figure 9.12** shows the block diagram of the key input interrupt. Note, however, that while input on any pin which has had bits PD10_7 to PD10_4 set to 0 (= input mode) is pulled low, inputs on all other pins of the port are not detected as interrupts.

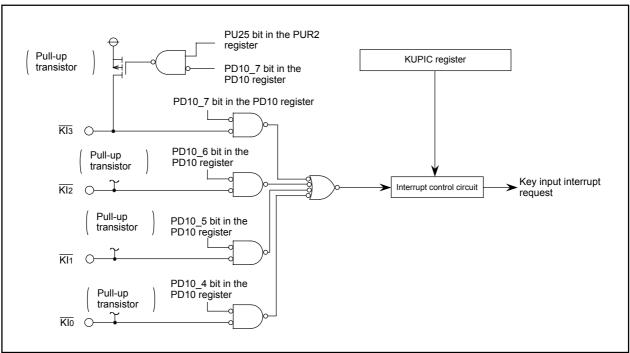
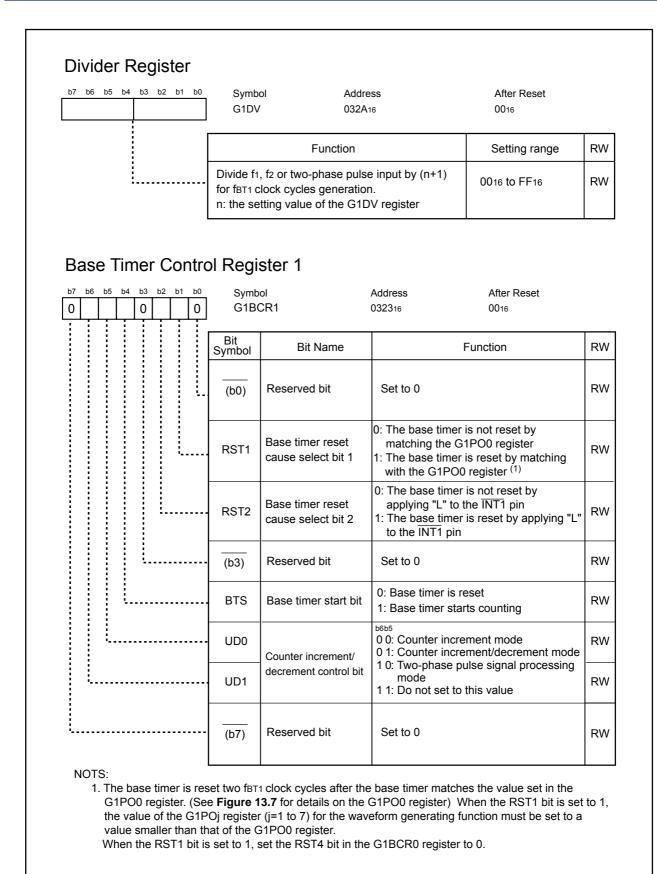



Figure 9.12 Key Input Interrupt

13.6.1 INPC17 Alternate Input Pin Selection

The input capture pin for IC/OC channel 7 can be assigned to one of two package pins. The CH7INSEL bit in the G1BCR0 register selects IC/OC INPC17 from P27/OUTC17/INPC17 or P17/INT5/INPC17/IDU.

13.6.2 Digital Debounce Function for Pin P17/INT5/INPC17

The INT5/INPC17 input from the P17/INT5/INPC17/IDU pin has an effective digital debounce function against a noise rejection. Refer to **19.6 Digital Debounce function** for this detail.

Register	Bit	Function
UITB ⁽³⁾	0 to 7	Set transmission data
UiRB ⁽³⁾	0 to 7	Reception data can be read
	OER	Overrun error flag
UiBRG	0 to 7	Set bit rate
UiMR ⁽³⁾	SMD2 to SMD0	Set to 0012
	CKDIR	Select the internal clock or external clock
	IOPOL(i=2) (4)	Set to 0
UiC0	CLK1 to CLK0	Select the count source for the UiBRG register
	CRS	Select CTS or RTS to use
	TXEPT	Transmit register empty flag
	CRD	Enable or disable the CTS or RTS function
	NCH	Select TxDi pin output mode
	CKPOL	Select the transfer clock polarity
	UFORM	Select the LSB first or MSB first
UiC1	TE	Set this bit to 1 to enable transmission/reception
	TI	Transmit buffer empty flag
	RE	Set this bit to 1 to enable reception
	RI	Reception complete flag
	U2IRS ⁽¹⁾	Select the source of UART2 transmit interrupt
	U2RRM ⁽¹⁾	Set this bit to 1 to use UART2 continuous receive mode
	U2LCH ⁽³⁾	Set this bit to 1 to use UART2 inverted data logic
	U2ERE ⁽³⁾	Set to 0
U2SMR	0 to 7	Set to 0
U2SMR2	0 to 7	Set to 0
U2SMR3	0 to 2	Set to 0
	NODC	Select clock output mode
	4 to 7	Set to 0
U2SMR4	0 to 7	Set to 0
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt
	U0RRM, U1RRM	Set this bit to 1 to use continuous receive mode
	CLKMD0	Select the transfer clock output pin when CLKMD1 is set to 1
	CLKMD1	Set this bit to 1 to output UART1 transfer clock from two pins
	RCSP	Set this bit to 1 to accept as input the UART0 $\overline{\text{CTS0}}$ signal from the P64 pin
	7	Set to 0

NOTES:

- 1. Set bits 5 and 4 in registers U0C1 and U1C1 to 0. Bits U0IRS, U1IRS, U0RRM, and U1RRM are in the UCON register.
- 2. Not all register bits are described above. Set those bits to 0 when writing to the registers in clock synchronous serial I/O mode.
- 3. Set bits 7 and 6 in registers U0C1 and U1C1 to 0.
- 4. Set the bit 7 in registers U0MR and U1MR to 0.

i=0 to 2

15. A/D Converter

Note

Ports P04 to P07(AN04 to AN07), P10 to P13(AN20 to AN23) and P95 to P97(AN25 to AN27) are not available in 64-pin package. Do not use port P04 to P07(AN04 to AN07), P10 to P13(AN20 to AN23) and P95 to P97(AN25 to AN27) as analog input pins in 64-pin package.

The MCU contains one A/D converter circuit based on 10-bit successive approximation method configured with a capacitive-coupling amplifier. The analog inputs share the pins with P100 to P107 (AN0 to AN7), P00 to P07 (AN00 to AN07), and P10 to P13, P93, P95 to P97 (AN20 to AN27), and P90 to P92 (AN30 to AN32). Similarly, ADTRG input shares the pin with P15. Therefore, when using these inputs, make sure the corresponding port direction bits are set to 0 (input mode).

When not using the A/D converter, set the VCUT bit to 0 (Vref unconnected), so that no current will flow from the Vref pin into the resistor ladder, helping to reduce the power consumption of the chip.

The A/D conversion result is stored in the ADi register bits for ANi, AN0i, AN2i (i = 0 to 7), and AN3i pins (i = 0 to 2). **Table 15.1** shows the A/D converter performance. **Figure 15.1** shows the A/D converter block diagram and **Figures 15.2** to **15.4** show the A/D converter associated with registers.

Table 15.1 A/D Converter	Terrormanee
Item	Performance
A/D Conversion Method	Successive approximation (capacitive coupling amplifier)
Analog Input Voltage (1)	0V to AVcc (Vcc)
Operating Clock ϕ AD ⁽²⁾	fAD/divided-by-2 or fAD/divided-by-3 or fAD/divided-by-4 or fAD/divided-by-6
	or fAD/divided-by-12 or fAD
Resolution	8-bit or 10-bit (selectable)
Integral Nonlinearity Error	When AVcc = Vref = 5V
	With 8-bit resolution: ±2LSB
	With 10-bit resolution: ±3LSB
	When AVcc = Vref = 3.3V
	With 8-bit resolution: ±2LSB
	With 10-bit resolution: ±5LSB
Operating Modes	One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0, repeat
	sweep mode 1, simultaneous sample sweep mode and delayed trigger mode 0,1
Analog Input Pins	8 pins (AN0 to AN7) + 8 pins (AN00 to AN07) + 8 pins (AN20 to AN27) + 3 pins (AN30
	to AN32) (80-pin package)
	8 pins (AN0 to AN7) + 4 pins (AN00 to AN03) + 1 pin (AN24) + 3 pins (AN30 to AN32)
	(64-pin package)
Conversion Speed Per Pin	Without sample and hold function
	8-bit resolution: 49 (AD cycles, 10-bit resolution: 59 (AD cycles
	With sample and hold function
	8-bit resolution: 28 (AD cycles, 10-bit resolution: 33 (AD cycles

Table 15.1 A/D Converter Performance

NOTES:

- 1. Not dependent on use of sample and hold function.
- 2. Set the $\ensuremath{\varphi}AD$ frequency to 10 MHz or less.

Without sample-and-hold function, set the ϕ AD frequency to 250kHz or more.

With the sample and hold function, set the ϕ AD frequency to 1MHz or more.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol ADTRG	Address CON 03D216	After Reset 0016	
	Bit Symbol	Bit Name	Function	RW
	SSE	A/D operation mode select bit 2	Simultaneous sample sweep mode or delayed trigger mode 0, 1	RW
· · · · ·	DTE	A/D operation mode select bit 3	Delayed trigger mode 0, 1	RW
	HPTRG0	AN0 trigger select bit	See Table 15.13	RW
	HPTRG1	AN1 trigger select bit	See Table 15.13	RW
	(b7-b4)	Nothing is assigned. If nec When read, the content is 0		-

Figure 15.28 ADTRGCON Register in Delayed Trigger Mode 1

Table 15.13 Trigger Select Bit Setting in Delayed Trigger Mode 1

TRG	TRG1	HPTRG0	HPTRG1	Trigger
0	1	0	0	ADTRG

16.13.2 Example of Slave Receive

For example, a slave receives data as shown below when following conditions are met: high-speed clock mode, SCL frequency of 400 kHz, ACK clock added and addressing format.

- 1) Set a slave address in the 7 high-order bits in the S0D0 register
- 2) Set A516 to the S20 register, 0002 to bits ICK4 to ICK2 in the S4D0 register, and 0016 to the S3D0 register to generate an ACK clock and set SCL clock frequency at 400kHz (f1 = 8 MHz, filc = f1)
- 3) Set 0016 to the S10 register to reset transmit/receive mode
- 4) Set 0816 to the S1D0 register to enable data communication
- 5) When a START condition is received, addresses are compared
- 6) •When the transmitted addresses are all 0 (general call), the ADR0 bit in the S10 register is set to 1 and an I²C bus interface interrupt request signal is generated.

•When the transmitted addresses match with the address set in 1), the ASS bit in the S10 register is set to 1 and an I^2C bus interface interrupt request signal is generated.

•In other cases, bits ADR0 and AAS are set to 0 and I²C bus interface interrupt request signal is not generated.

- 7) Write dummy data to the S00 register.
- After receiving 1-byte data, an ACK-CLK bit is automatically returned and an I²C bus interface interrupt request signal is generated.
- 9) To determine whether the ACK should be returned depending on contents in the received data, set dummy data to the S00 register to receive data after setting the WIT bit in te S3D0 register to 1 (enable the I²C bus interface interrupt of data receive completion). Because the I²C bus interface interrupt is generated when the 1-byte data is received, set the ACKBIT bit to 1 or 0 to output a signal from the ACKBIT bit.
- 10) When receiving more than 1-byte control data, repeat steps 7) and 8) or 7) and 9).
- 11) When a STOP condition is detected, the communication is ended.

bit 0 bit 7 SID10 SID9 SID8 SID7 SID6 SID4 SID SID3 SID₂ SID1 SID₀ EID₁₄ EID₁₇ EID₁₆ EID₁₅ EID13 EID12 EID11 EID10 EID9 EID8 EID7 EID6 FID4 EID2 EID5 EID3 EID1 EID₀ DLC3 DLC2 DLC1 DLC₀ Data Byte 0 Data Byte 1 Data Byte 7 Time Stamp high-order byte Time Stamp low-order byte **CAN Data Frame:** SID 10 to 6 SID5 to 0 EID17 to 14 EID13 to 6 EID5 to 0 DLC3 to 0 Data Byte 0 Data Byte 1 -----Data Byte 7 NOTE: 1. When |X| is read, the value is the one written upon the transmission slot configuration. The value is 0 when read on the reception slot configuration.

Figures 17.2 and **17.3** show the bit mapping in each slot in byte access and word access. The content of each slot remains unchanged unless transmission or reception of a new message is performed.

Figure 17.2 Bit Mapping in Byte Access

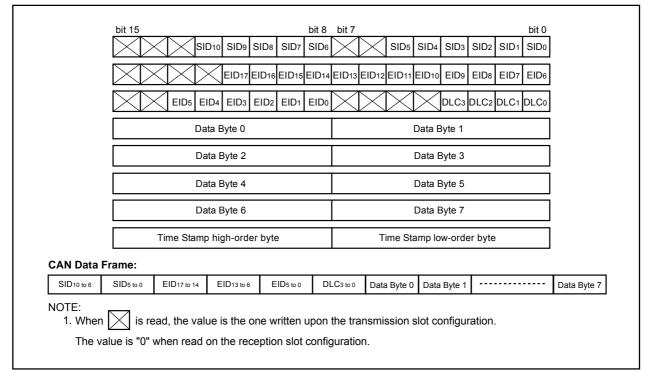
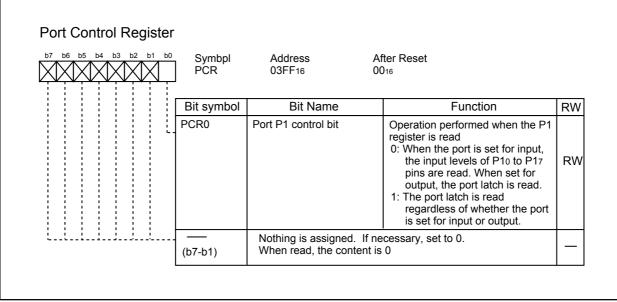



Figure 17.3 Bit Mapping in Word Access

RENESAS

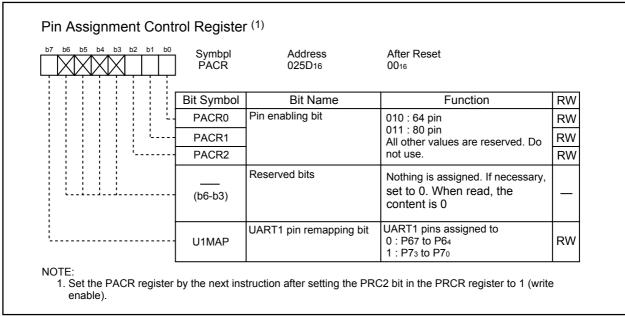


Figure 19.10 PACR Register

b7 b6 b5 b4 b3 b2 b1 b0	Symbol ROMCP	Address 0FFFFF16	Factory Setting FF16 ⁽⁴⁾	
	Bit Symbol	Bit Name	Function	RW
	(b5-b0)	Reserved Bit	Set to 1	RW
	ROMCP1	ROM Code Protect Level 1 Set Bit (1, 2, 3, 4)	00: 01: Enables protect	RW
			10: J Linables protect	RW

- 1. When the ROM code protect is active by the ROMCP1 bit setting, the flash memory is protected against reading or rewriting in parallel I/O mode.
- 2. Set the bit 5 to bit 0 to 1111112 when the ROMCP1 bit is set to a value other than 112. When the bit 5 to bit 0 are set to values other than 1111112, the ROM code protection may not become active by setting the ROMCP1 bit to a value other than 112.
- 3. To make the ROM code protection inactive, erase a block including the ROMCP address in standard serial I/O mode or CPU rewrite mode.
- 4. The ROMCP address is set to FF16 when a block, including the ROMCP address, is erased.
- 5. When a value of the ROMCP address is 0016 or FF16, the ROM code protect function is disabled.

Figure 20.4 ROMCP Address

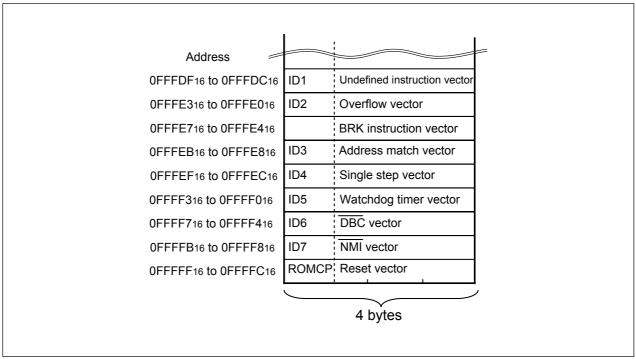


Figure 20.5 Address for ID Code Stored

20.11 CAN I/O Mode

Note

The CAN I/O mode is not available in M16C/29 T-ver./V-ver.

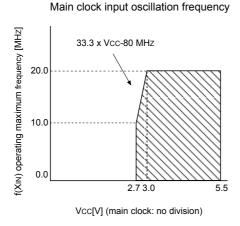
In CAN I/O mode, the user ROM area can be rewritten while the MCU is mounted on-board by using a CAN programmer which is applicable for the M16C/29 group. For more information about CAN programmers, contact the manufacturer of your CAN programmer. For details on how to use, refer to the user's manual included with your CAN programmer.

Table 20.9 lists pin functions for CAN I/O mode. Figures 20.19 and 20.20 show pin connections for CAN I/O mode.

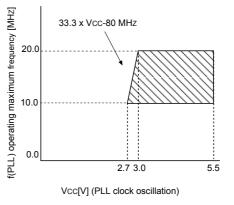
20.11.1 ID code check function

This function determines whether the ID codes sent from the CAN programmer and those written in the flash memory match.(Refer to **20.3 Functions To Prevent Flash Memory from Rewriting**.)

Symbol		Parameter				Stand	lard	Unit
Symbol		F	arameter		Min.	Тур.	Max.	
Vcc	Supply Voltage				2.7		5.5	V
AVcc	Analog Supply Vo	tage				Vcc		V
Vss	Supply Voltage					0		V
AVss	Analog Supply Vo	ltage	age			0		V
Vih	Input High ("H")	P00 to P07, P10 t	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P60 to P67,		0.7Vcc		Vcc	V
	Voltage	P70 to P77, P80 t	o P87, P90 to P93, P	95 to P97, P100 to P107				
		XIN, RESET, CI	IVSS		0.8Vcc		Vcc	V
			When I ² C bus input	t level is selected	0.7Vcc		Vcc	V
	SDAMM, SCLMM	When SMBUS inpu	It level is selected	1.4		Vcc	V	
VIL	Input Low ("L")	P00 to P07, P10 t	o P17, P20 to P27, P	30 to P37, P60 to P67,	0		0.3Vcc	V
	Voltage	P70 to P77, P80 t	o P87, P90 to P93, P	95 to P97, P100 to P107				
	XIN, RESET, CN	IVSS		0		0.2Vcc	V	
		When I ² C bus input	t level is selected	0		0.3Vcc	V	
		SDAMM, SCLMM	When SMBUS inpu	It level is selected	0		0.6	V
OH(peak)	Peak Output High	High P00 to P07, P10 to P17, P20 to P27, P30 to P37, P60 to P67,				-10.0	mA	
	("H") Current	P70 to P77, P80 to P87, P90 to P93, P95 to P97, P100 to P107						
OH(avg)	Average Output			30 to P37, P60 to P67,			-5.0	mA
	High ("H") Current	P70 to P77, P80 t	o P87, P90 to P93, P	95 to P97, P100 to P107				
OL(peak)	Peak Output Low	P00 to P07, P10 t	o P17, P20 to P27, P	30 to P37, P60 to P67,			10.0	mA
	("L") Current			95 to P97, P100 to P107				
OL(avg)	Average Output			30 to P37, P60 to P67,			5.0	mA
	Low ("L") Current			95 to P97, P100 to P107				
f(XiN)	Main Clock Input	Oscillation Freque	ency ⁽⁴⁾	Vcc=3.0 to 5.5V	0		20	MHz
				Vcc=2.7 to 3.0V	0		33 X Vcc-80	MHz
f(Xcin)	Sub Clock Oscilla					32.768	50	kHz
f1(ROC)	On-chip Oscillator	Frequency 1			0.5	1	2	MHz
f2(ROC)	On-chip Oscillator	Frequency 2			1	2	4	MHz
f3(ROC)	On-chip Oscillator	Frequency 3			8	16	26	MHz
f(PLL)	PLL Clock Oscilla	tion Frequency ⁽⁴⁾		Vcc=3.0 to 5.5V	10		20	MHz
				Vcc=2.7 to 3.0V	10		33 X Vcc-80	MHz
f(BCLK)	CPU Operation C	lock Frequency		1	0		20	MHz
tsu(PLL)	Wait Time to Stab	ilize PLL Frequer	ncy Synthesizer	Vcc=5.0V			20	ms
				Vcc=3.0V			50	ms


Table 21.2 Recommended Operating Conditions (Note 1)

NOTES:


1. Referenced to V ∞ = 2.7 to 5.5V at Topr = -20 to 85 ° C / -40 to 85 ° C unless otherwise specified. 2. The mean output current is the mean value within 100ms.

3. The total IOL(peak) for all ports must be 80mA or less. The total IOH(peak) for all ports must be -80mA or less.

4. Relationship among main clock oscillation frequency, PLL clock oscillation frequency and supply voltage.

Timing Requirements

Vcc = 5V

(VCC = 5V, VSS = 0V, at Topr = - 20 to 85°C / - 40 to 85°C unless otherwise specified)

Table 21.10 External Clock Input (XIN input)

Symbol	Parameter		Standard		
Symbol	Falantelei	Min.	Max.	Unit	
tc	External Clock Input Cycle Time	50		ns	
tw(H)	External Clock Input High ("H") Width	20		ns	
tw(L)	External Clock Input Low ("L") Width	20		ns	
tr	External Clock Rise Time		9	ns	
tf	External Clock Fall Time		9	ns	

Timing Requirements

Vcc = 3V

(VCC = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

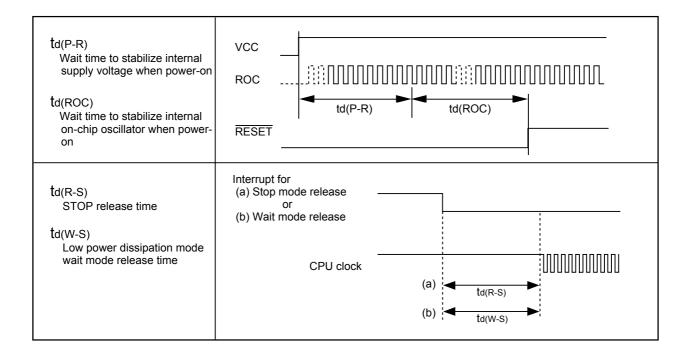

0		Standard clock mode		High-speed clock mode		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tBUF	Bus free time	4.7		1.3		μs
tHD;STA	The hold time in start condition	4.0		0.6		μs
tLOW	The hold time in SCL clock 0 status	4.7		1.3		μs
tR	SCL, SDA signals' rising time		1000	20+0.1Cb	300	ns
tHD;DAT	Data hold time	0		0	0.9	μs
tHIGH	The hold time in SCL clock 1 status	4.0		0.6		μs
tF	SCL, SDA signals' falling time		300	20+0.1Cb	300	ns
tsu;DAT	Data setup time	250		100		ns
tsu;STA	The setup time in restart condition	4.7		0.6		μs
tsu;STO	Stop condition setup time	4.0		0.6		μs

Table 21.39 Multi-master I²C bus Line

Table 21.45 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Measurement Condition	Standard			Unit
			Min.	Тур.	Max.	
td(P-R)	Wait Time to Stabilize Internal Supply Voltage when Power-on				2	ms
td(ROC)	Wait Time to Stabilize Internal On-chip Oscillator when Power-on	Vcc = 3.0 to 5.5V			40	μs
td(R-S)	STOP Release Time ⁽¹⁾				150	μs
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				150	μs

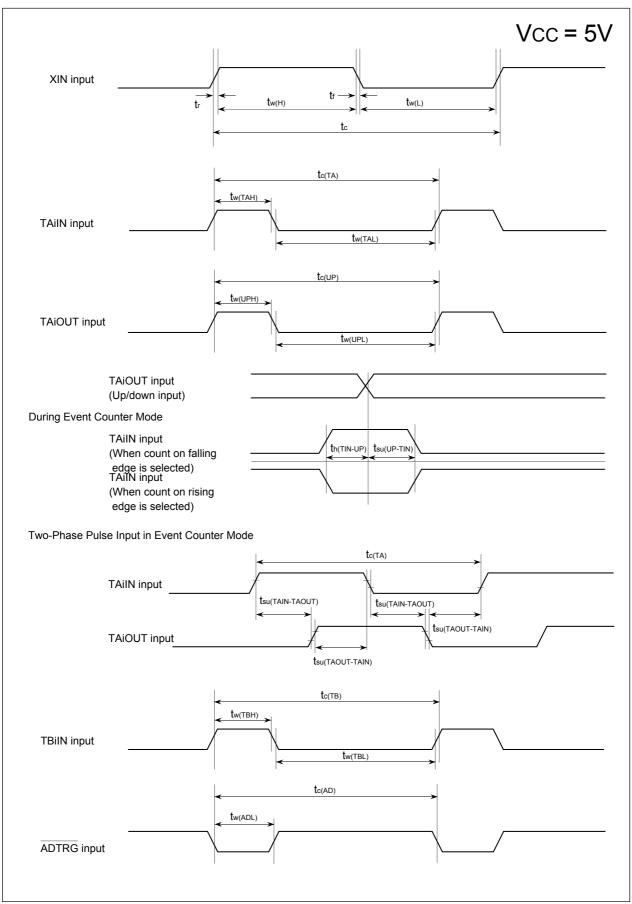


Figure 21.7 Timing Diagram (1)

REVISION HISTORY

M16C/29 Hardware Manual

Rev.	Date		Description	
		Page Summary		
		360	Table 21.1 is partly revised.	
		368	Section "21.4.2 EW1 Mode" is partly revised.	
0.80	Sep/03/Y04	2,3	Table 1.2.1 and Table 1.2.2 are partly revised.	
		6,7	Table 1.4.1 to Table 1.4.3 are partly revised.	
		7	Figure 1.4.1 is partly revised.	
		8,9	Figure 1.5.1 and Figure 1.5.2 are partly revised.	
		21	Figure 4.7 is partly revised.	
		24	Figure 4.10 is partly revised.	
		26	Section "5.1.2 Hardware Reset 2" is partly revised.	
		29 to 34	Section "5.5 Voltage Detection Circuit" is revised.	
		80	Section "10.2 Cold start / Warm start" is added.	
		322	Table 20.2 is partly revised.	
		323	Table 20.3 is partly revised.	
		325	Table 20.6 and Table 20.7 are partly revised.	
		327	Table 20.9 is partly revised.	
		331	Title of Table 20.23 is partly revised.	
		335	Table 20.25 is partly revised.	
		339	Title of Table 20.39 is partly revised.	
		343	Table 20.41 is partly revised.	
		344	Table 20.42 is partly revised.	
		346	"Low Voltage Detection Circuit Electrical Characteristics" is deleted.	
			Talbe 20.45 is partly revised.	
		348	Table 20.47 is partly revised.	
		352	Title of Table 20.61 is partly revised.	
		356	Talbe 20.63 is partly revised.	
		360	Title of Table 20.77 is partly revised.	
		398	64P6Q-A package is revised.	
1.00	Nov/01/Y04	All pages	Words standardized (on-chip oscillator, A/D)	
		2, 3	Table1.2.1 and Table 1.2.2 are partly revised.	
		8, 9	Table 1.4.4 to 1.4.6 and figure 1.4.2 to 1.4.6 are added.	
		28	"5.1.2 Hardware Reset 2" is partly revised.	
		29	"5.4 Oscillation Stop Detection Reset" is partly revised.	
		38	Table 7.1 is partly revised.	
		41	Note 6 in Figure 7.3 is partly revised. b7 to b4 bit in Figure 7.4 is revised.	
		42	Figure 7.5 is partly revised.	
		43	"PCLKR register" in Figure 7.6 is partly revised.	
		50	"7.6.1 Normal Operation Mode" is partly revised.	
		51	Note 1 in Table 7.6.1.1 is partly revised.	
		57	"7.8 Oscillation Stop and Re-oscillation Detect Function" is partly revised.	

REVISION HISTORY

M16C/29 Hardware Manual

Rev.	Date		Description		
		Page	Summary		
		9	Tables 1.6 to 1.8 Product Codes modified		
		19, 20	Table 1.14 Pin Description pin description on I/O ports modified		
			Reset		
		37	Figure 5.2 Reset Sequence Vcc and ROC timings modified		
			Processor Mode		
		45	• Figure 6.2 PM2 Register Description on notes 5 and 6 modified		
			Clock Generation Circuit		
		52	Figure 7.6 PM2 Register Description on notes 5 and 6 modified		
		64	Figure 7.12 State Transition in Normal Mode note 2 modified		
			Protection		
		69	Description on protection modified		
			Figure 8.1 PRCR Register note 1 modified		
			Interrupts		
		88	Table 9.6 PC Value Saved in Stack Area When Address Match Interrupt		
			Request I Acknowledged instruction modified		
			Watchdog Timer		
		90	Figure10.2 WDTS Register modified		
			10.1 Count Source Protective Mode description modified		
			Timer		
		129	Figure 12.28 ICTB2 Register modified		
			Multi-Master I ² C bus Interface		
		256	• Figure 16.1 Block Diagram of Multi-Master I ² C bus Interface modified		
		005	Flash Memory Version		
		335	• 20.3.1 ROM Code Protect Function register name modified		
		340	• 20.5.2 Flash Memory Control Register 1 description on FMR17 bit modified		
		341	Figure 20.6 FMR1 Register note 2 modified		
		343	Figure 20.9 Setting and Resetting of EW Mode 1 modified Electrical Characteristics		
		369			
		309	• Table 21.5 Flash Memory Version Electrical Characteristics note 10 modi-		
		370	fied		
		370	 Timing figure for td(P-R) and td(ROC) modified Table 21.9 Electrical Characteristics parameter and measurement condition 		
		572	modified, note 5 deleted		
		380	• Table 21.25 Electrical Characteristics measurement condition modified, note		
		500	5 deleted		
		390	• Tables 21.43 and 44 Flash Memory Version Electrical Characteristics note		
		000	10 modified		
		391	Timing figure for td(P-R) and td(ROC) modified		
		393	• Table 21.47 Electrical Characteristics parameter and condition modified, note		
		293	- Table 21.47 Electrical characteristics parameter and condition modified, note		