

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	
Core Size	-
Speed	-
Connectivity	-
Peripherals	
Number of I/O	
Program Memory Size	-
Program Memory Type	
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	
Data Converters	-
Oscillator Type	
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30291fcvhp-u3a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4. List of Abbreviations and Acronyms

Abbreviation	Full Form
ACIA	Asynchronous Communication Interface Adapter
bps	bits per second
CRC	Cyclic Redundancy Check
DMA	Direct Memory Access
DMAC	Direct Memory Access Controller
GSM	Global System for Mobile Communications
Hi-Z	High Impedance
IEBus	Inter Equipment bus
I/O	Input/Output
IrDA	Infrared Data Association
LSB	Least Significant Bit
MSB	Most Significant Bit
NC	Non-Connection
PLL	Phase Locked Loop
PWM	Pulse Width Modulation
SFR	Special Function Registers
SIM	Subscriber Identity Module
UART	Universal Asynchronous Receiver/Transmitter
VCO	Voltage Controlled Oscillator

All trademarks and registered trademarks are the property of their respective owners. IEBus is a registered trademark of NEC Electronics Corporation.

Table 4.8 SFR Information (8)

Address 030016	.8 SFR Information (8)		
030016	Register	Symbol	After reset
	Time measurement, Pulse generation register 0	G1TM0,G1PO0	XX16
030116		0.1TN14.04D04	XX16
030216	Time measurement, Pulse generation register 1	G1TM1,G1PO1	XX16
030316	Time measurement Bules generation register 2	G1TM2,G1PO2	XX16 XX16
030416	Time measurement, Pulse generation register 2	GTTNIZ,GTPOZ	XX16
030516 030616	Time measurement, Pulse generation register 3	G1TM3,G1PO3	XX16
030016	The measurement, I use generation register 5	GTTWIS,GTT OS	XX16
030816	Time measurement, Pulse generation register 4	G1TM4,G1PO4	XX16
030916		011101-,011-04	XX16
030A16	Time measurement, Pulse generation register 5	G1TM5,G1PO5	XX16
030B16			XX16
030C16	Time measurement, Pulse generation register 6	G1TM6,G1PO6	XX16
030D16			XX16
030E16	Time measurement, Pulse generation register 7	G1TM7,G1PO7	XX16
030F16			XX16
031016	Pulse generation control register 0	G1POCR0	0X00XX002
031116	Pulse generation control register 1	G1POCR1	0X00XX002
031216	Pulse generation control register 2	G1POCR2	0X00XX002
031316	Pulse generation control register 3	G1POCR3	0X00XX002
031416	Pulse generation control register 4	G1POCR4	0X00XX002
031516	Pulse generation control register 5	G1POCR5	0X00XX002
031616	Pulse generation control register 6	G1POCR6	0X00XX002
031716	Pulse generation control register 7	G1POCR7	0X00XX002
031816	Time measurement control register 0	G1TMCR0	0016
031916	Time measurement control register 1	G1TMCR1	0016
031A ₁₆	Time measurement control register 2	G1TMCR2 G1TMCR3	0016 0016
031B16	Time measurement control register 3 Time measurement control register 4	G1TMCR3	0016
031C ₁₆ 031D ₁₆	Time measurement control register 5	G1TMCR4	0018
031D16	Time measurement control register 6	G1TMCR6	0016
031E16	Time measurement control register 7	G1TMCR7	0016
032016	Base timer register	G1BT	XX16
032116		OIDI	XX16
032216	Base timer control register 0	G1BCR0	0016
032316	Base timer control register 1	G1BCR1	0016
032416	Time measurement prescale register 6	G1TPR6	0016
032516	Time measurement prescale register 7	G1TPR7	0016
032616	Function enable register	G1FE	0016
032716	Function select register	G1FS	0016
032816	Base timer reset register	G1BTRR	XX16
032916			XX16
032A ₁₆	Count source division register	G1DV	0016
032B ₁₆			
032C16			
032D ₁₆			
032E16			
032F ₁₆		0.415	
033016	Interrupt request register	G1IR	XX16
033116	Interrupt enable register 0	G1IE0	0016
033216	Interrupt enable register 1	G1IE1	0016
033316			
033416			
0334 ₁₆ 0335 ₁₆			
0334 ₁₆ 0335 ₁₆ 0336 ₁₆			
0334 ₁₆ 0335 ₁₆ 0336 ₁₆ 0337 ₁₆			
0334 ₁₆ 0335 ₁₆ 0336 ₁₆ 0337 ₁₆ 0338 ₁₆			
033416 033516 033616 033716 033816 033916			
033416 033516 033616 033716 033816 033916 033A16			
033416 033516 033616 033716 033816 033916 033A16 033B16			
033416 033516 033616 033716 033816 033916 033A16			
033416 033516 033616 033716 033816 033916 033A16 033B16 033C16	NMI digital debounce register	NDDR	FF16

Note 1: The blank areas are reserved and cannot be used by users.

X : Undefined

Table 4.10 SFR Information (10)

Address	Register	Symbol	After reset
038016	Count start flag	TABSR	0016
038116	Clock prescaler reset flag	CPSRF	0XXXXXX2
38216	One-shot start flag	ONSF	0016
38316	Trigger select register	TRGSR	0016
38416	Up-dowm flag	UDF	0016
38516			0010
38616	Timer A0 register	TA0	XX16
38716			XX16
38816	Timer A1 register	TA1	XX16
389 ₁₆			XX16 XX16
38A16	Timer A2 register	TA2	XX16
38B16		174	XX16
38C16	Timer A3 register	TA3	XX16 XX16
38D16		143	XX16
	Timer A4 register	TA4	XX16
38E16	Timer A4 register	184	XX16
38F16	Timer D0 register	ТВО	
39016	Timer B0 register	IBU	XX16
39116			XX16
39216	Timer B1 register	TB1	XX16
39316	Timera DO se sistes		XX16
39416	Timer B2 register	TB2	XX16
39516			XX16
39616	Timer A0 mode register	TAOMR	0016
39716	Timer A1 mode register	TA1MR	0016
39816	Timer A2 mode register	TA2MR	0016
39916	Timer A3 mode register	TA3MR	0016
39A16	Timer A4 mode register	TA4MR	0016
39B16	Timer B0 mode register	TB0MR	00XX00002
39C16	Timer B1 mode register	TB1MR	00XX00002
39D16	Timer B2 mode register	TB2MR	00XX00002
039E16	Timer B2 special mode register	TB2SC	X0000002
039F16			
03A016	UART0 transmit/receive mode register	U0MR	0016
3A1 16	UART0 bit rate register	U0BRG	XX16
3A216	UART0 transmit buffer register	U0TB	XX16
03A316			XX16
3A4 16	UART0 transmit/receive control register 0	U0C0	000010002
3A516	UART0 transmit/receive control register 1	U0C1	00000102
3A616	UART0 receive buffer register	UORB	XX16
3A7 16			XX16
3A816	UART1 transmit/receive mode register	U1MR	0016
3A916	UART1 bit rate register	U1BRG	XX16
3AA16	UART1 transmit buffer register	U1TB	XX16
3AB16		-	XX16
3AC16	UART1 transmit/receive control register 0	U1C0	000010002
3AD16	UART1 transmit/receive control register 1	U1C1	000000102
3AE16	UART1 receive buffer register	U1RB	XX16
3AF16			XX16
03B016	UART transmit/receive control register 2	UCON	X0000002
)3B116			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3B116 3B216			
3B216			
	CRC snoop address register	CRCSAR	XX16
3B416	CITO SHOOP AUGIESS IEGISIEI	URUSAR	00XXXXXX2
3B516	CPC mode register	CRCMR	0XXXXXX02
3B616	CRC mode register		07777702
3B716		DMOOL	00.40
03B816	DMA0 request cause select register	DM0SL	0016
3B916			
3BA16	DMA1 request cause select register	DM1SL	0016
3BB16			
3BC16	CRC data register	CRCD	XX16
3BD16			XX16
03BE16	CRC input register	CRCIN	XX16

Note 1: The blank areas are reserved and cannot be used by users.

X : Undefined

7.6.3 Stop Mode

In stop mode, all oscillator circuits are turned off, so are the CPU clock and the peripheral function clocks. Therefore, the CPU and the peripheral functions clocked by these clocks stop operating. The least amount of power is consumed in this mode. If the voltage applied to Vcc pin is VRAM or more, the internal RAM is retained. When applying 2.7 or less voltage to Vcc pin, make sure Vcc≥VRAM.

However, the peripheral functions clocked by external signals keep operating. The following interrupts can be used to exit stop mode.

- $\bullet \ \overline{\text{NMI}} \ \text{interrupt}$
- Key interrupt
- INT interrupt
- Timer A, Timer B interrupt (when counting external pulses in event counter mode)
- Serial I/O interrupt (when external clock is selected)
- Low voltage detection interrup (refer to "Low Voltage Detection Interrupt" for an operating condition)
- CAN0 Wake_up interrupt (in CAN sleep mode)

7.6.3.1 Entering Stop Mode

The MCU is placed into stop mode by setting the CM10 bit in the CM1 register to 1 (all clocks turned off). At the same time, the CM06 bit in the CM0 register is set to 1 (divide-by-8 mode) and the CM15 bit in the CM10 register is set to 1 (main clock oscillator circuit drive capability high).

Before entering stop mode, set the CM20 bit to 0 (oscillation stop, re-oscillation detection function disable).

Also, if the CM11 bit is 1 (PLL clock for the CPU clock source), set the CM11 bit to 0 (main clock for the CPU clock source) and the PLC07 bit to 0 (PLL turned off) before entering stop mode.

7.6.3.2 Pin Status during Stop Mode

The I/O pins retain their status held just prior to entering stop mode.

7.6.3.3 Exiting Stop Mode

The MCU is moved out of stop mode by a hardware reset, $\overline{\text{NMI}}$ interrupt or peripheral function interrupt. If the MCU is to be moved out of stop mode by a hardware reset or $\overline{\text{NMI}}$ interrupt, set the peripheral function interrupt priority bits ILVL2 to ILVL0 to 0002 (interrupts disable) before setting the CM10 bit to 1. If the MCU is to be moved out of stop mode by a peripheral function interrupt, set up the following before setting the CM10 bit to 1.

1. In bits ILVL2 to ILVL0 of the interrupt control register, set the interrupt priority level of the peripheral function interrupt to be used to exit stop mode.

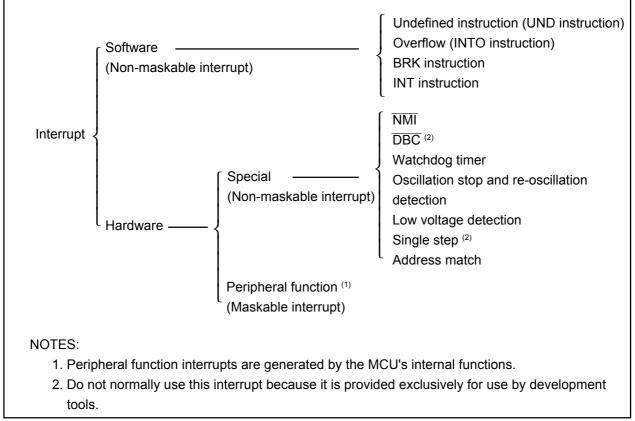
Also, for all of the peripheral function interrupts not used to exit stop mode, set bits ILVL2 to ILVL0 to 0002.

- 2. Set the I flag to 1.
- 3. Enable the peripheral function whose interrupt is to be used to exit stop mode.

In this case, when an interrupt request is generated and the CPU clock is thereby turned on, an interrupt service routine is executed.

Which CPU clock will be used after exiting stop mode by a peripheral function or $\overline{\text{NMI}}$ interrupt is determined by the CPU clock that was on when the MCU was placed into stop mode as follows: If the CPU clock before entering stop mode was derived from the sub clock: sub clock If the CPU clock before entering stop mode was derived from the main clock: main clock divide-by-8 If the CPU clock before entering stop mode was derived from the on-chip oscillator clock: on-chip oscillator clock:

lator clock divide-by-8


9. Interrupts

Note

The SI/O4 interrupt of peripheral function interrupts is not available in the 64-pin package. The low voltage detection function is not available in M16C/29 T-ver. and V-ver..

9.1 Type of Interrupts

Figure 9.1 shows types of interrupts.

Figure 9.1 Interrupts

- Maskable Interrupt: An interrupt which can be enabled (disabled) by the interrupt enable flag (I flag) or
 whose interrupt priority <u>can be changed</u> by priority level.
- Non-maskable Interrupt: An interrupt which cannot be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority <u>cannot be changed</u> by priority level.

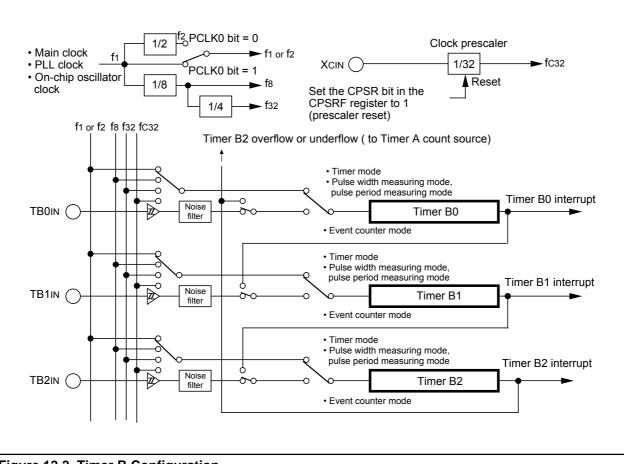


Figure 12.2. Timer B Configuration

(b15) b7	(b8) b0 b7	b0	Symbol TA1 TA2 TA4 TA11 ^(6,7) TA21 ^(6,7) TA41 ^(6,7)	Address 038916-038816 038B16-038A16 038F16-038E16 034316-034216 034516-034416 034716-034616	After reset Undefined Undefined Undefined Undefined Undefined Undefined	
			Function		Setting Range	RW
	! <u></u>		count source and tive and negative		000016 to FFFF16	wc
2. When the	he timer Ai regis	ccessed in 16 bit unit ster is set to 000016, o write to these regist	the counter does	not operate and a tim	ner Ai interrupt does	not o

Figure 12.29 TA1, TA2, TA4, TA11, TA21, and TA41 Registers

Time Measurement Control Register j (j=0 to 7) b6 b5 b4 b3 b2 b1 b0 b7 Symbol Address After Reset G1TMCR0 to G1TMCR3 031816, 031916, 031A16, 031B16 0016 G1TMCR4 to G1TMCR7 031C16, 031D16, 031E16, 031F16 0016 Bit RW Bit Name Function Symbol b1 b0 CTS0 RW 0 0: No time measurement Time measurement 0 1: Rising edge trigger select bit 1 0: Falling edge CTS1 RW 1 1: Both edges b3 b2 DF0 RW 0 0: No digital filter Digital filter function 0 1: Do not set to this value select bit 1 0: fbt1 DF1 RW 1 1: f1 or f2⁽¹⁾ Gate function 0: Gate function is not used GT RW select bit (2) 1: Gate function is used 0: Not cleared Gate function clear GOC 1: The gate is cleared when the base RW select bit (2, 3, 4) timer matches the G1POk register The gate is cleared by setting the Gate function clear GSC RW bit (2, 3) GSC bit to 1 Prescaler function 0: Not used PR RW select bit (2) 1: Used NOTES: 1. When the PCLK0 bit in the PCLKR register is set to 0, the count source is f2 cycles. And when the PCLK0 bit is set to 1, the count source is f1 cycles. 2. These bits are in registers G1TMCR6 and G1TMCR7. Set all bits 4 to 7 in registers G1TMCR0 to G1TMCR5 to 0. 3. These bits are enabled when the GT bit is set to 1. 4. The GOC bit is set to 0 after the gate function is cleared. See Figure 13.7 for details on the G1POk register (k=4 when j=6 and k=5 when j=7). Time Measurement Prescale Register j (j=6,7)⁽¹⁾ Symbol Address After Reset G1TPR6 to G1TPR7 032416, 032516 0016 Function Setting Range RW As the setting value is n, time is measured when-RW 0016 to FF16 ever a trigger input is counted by n+1 ⁽²⁾ NOTES: 1. The G1TPR6 to G1TPR7 registers reflect the base timer value, synchronizing with the count source fBT1 cycles. 2. The first prescaler, after the PR bit in the G1TMCRj register is changed from 0 (not used) to 1 (used), may be divided by n, rather than n+1. The subsequent prescaler is divided by n+1.

Figure 13.5 G1TMCR0 to G1TMCR7 Registers, and G1TPR6 to G1TPR7 Registers

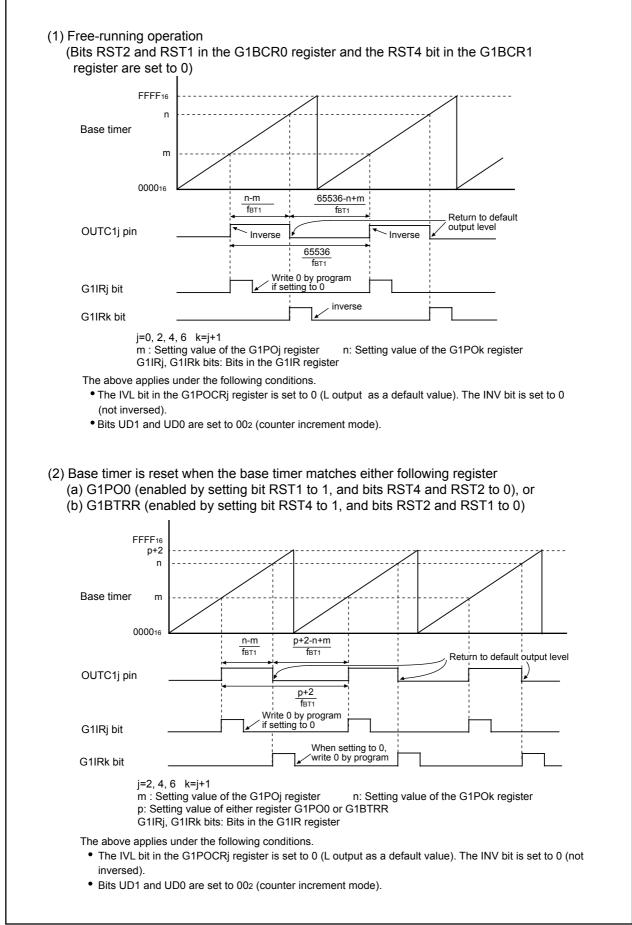


Figure 13.24 Set/Reset Waveform Output Mode

b7 b6 b5 b4 b3 b2 b1 b0		mbol Address C0 to U2C0 03A416, 03/	After Reset AC16, 037C16 000010002	
	Bit Symbol	Bit Name	Function	RW
	CLK0	BRG count source select bit ⁽⁷⁾	0 : f1sio or f2sio is selected 0 1 : f1sio is selected	RW
· · · · · · · · · · · · · · · · · · ·	CLK1		1 0 : f32510 is selected 1 1 : Do not set	RW
<u> </u>	CRS	CTS/RTS function select bit (3)	Effective when CRD is set to 0 0 : <u>CTS</u> function is selected ⁽¹⁾ 1 : RTS function is selected	RW
· · · · · · · · · · · · · · · · · · ·	TXEPT	Transmit register empty flag	 0 : Data present in transmit register (during transmission) 1 : No data present in transmit register (transmission completed) 	RO
· · · · · · · · · · · · · · · · · · ·	CRD	CTS/RTS disable bit	0 : CTS/RTS function enabled 1 : CTS/RTS function disabled (P60, P64 and P73 can be used as I/O ports) ⁽⁶⁾	RW
	NCH	Data output select bit ⁽⁵⁾	0 : TxD2/SDA2 and SCLi pins are CMOS output 1 : TxD2/SDA2 and SCLi pins are N-channel open-drain output $^{\!(4)}$	RW
·	CKPOL	CLK polarity select bit	 0 : Transmit data is output at falling edge of transfer clock and receive data is input at rising edge 1 : Transmit data is output at rising edge of transfer clock and receive data is input at falling edge 	RW
	UFORM	Transfer format select bit	0 : LSB first 1 : MSB first	RW

NOTES:

1. Set the corresponding port direction bit for each CTSi pin to 0 (input mode).

2. Effective when bits SMD2 to SMD0 in the UMR register to 0012 (clock synchronous serial I/O mode) or 0102 (UART mode transfer data 8 bits long). Set the UFORM bit to 1 when bits SMD2 to SMD0 are set to 1012 (I²C bus mode) and 0 when they are set to 1002.
 3. CTS1/RTS1 can be used when the CLKMD1 bit in the UCON register is set to 0 (only CLK1 output) and the RCSP bit in the UCON

register is set to 0 (CTSo/RTSo not separated).

4. SDA2 and SCL2 are effective when i = 2. 5. When bits SMD2 to SMD in the UiMR regiser are set to 0002 (serial I/O disable), do not set NCH bit to 1 (TxDi/SDA2 and SCL2 pins are N-channel open-drain output).

6. When the U1MAP bit in PACR register is 1 (P73 to P70), P70 functions as CTS/RTS pin in UART1. 7. When the CLK1 and CLK0 bit settings are changed, set the UiBRG register.

UART Transmit/receive Control Register 2

b7 b6 b5 b4 b3 b2 b1 b0		vmbol Address CON 03B016	After Reset X0000002	
	Bit Symbol	Bit Name	Function	RW
	U0IRS	UART0 transmit interrupt cause select bit	0 : Transmit buffer empty (TI = 1) 1 : Transmission completed (TXEPT = 1)	RW
,	U1IRS	UART1 transmit interrupt cause select	0 : Transmit buffer empty (TI = 1) 1 : Transmission completed (TXEPT = 1)	RW
	U0RRM	UART0 continuous receive mode enable bit	0 : Continuous receive mode disabled 1 : Continuous receive mode enable	RW
	U1RRM	UART1 continuous receive mode enable bit	0 : Continuous receive mode disabled 1 : Continuous receive mode enabled	RW
	CLKMD0	UART1 CLK/CLKS select bit 0	Effective when the CLKMD1 bit is set to 1 0 : Clock output from CLK1 1 : Clock output from CLKS1	RW
	CLKMD1	UART1 CLK/CLKS select bit 1 (1)	0 : Output from CLK1 only 1 : Transfer clock output from multiple pins function selected	RW
	RCSP	Separate UART0 CTS/RTS bit	0 : CTS/RTS shared pin ⁽²⁾ 1 : CTS/RTS separated (P64 pin functions as CTS0 pin)	RW
	(b7)	Nothing is assigned. If nea When read, the content is		—

NOTES

1. When using multiple transfer clock output pins, make sure the following conditions are met:set the CKDIR bit in the U1MR register to 0 (internal clock)

2. When the U1MAP bit in PACR register is set to 1 (P73 to P70), P70 pin functions as CTS0 pin.

Figure 14.6 U0C0 to U2C0 and UCON Registers

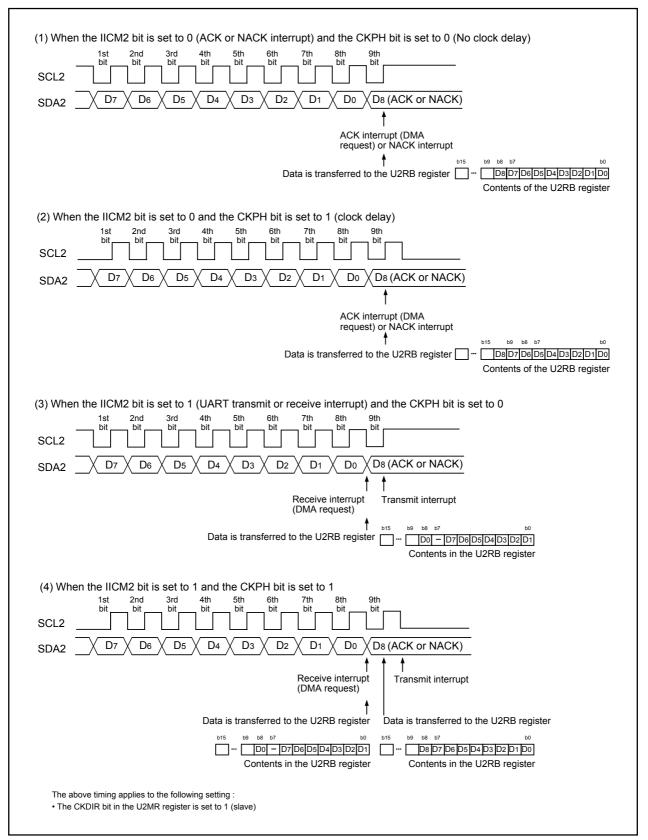


Figure 14.23 Transfer to U2RB Register and Interrupt Timing

	Symbol S1D0	Address 02E316	After Reset 0016	
	Bit Symbol	Bit Name	Function	RW
	BC0	Bit counter (Number of transmit/receive bits) ⁽¹⁾	b2 b1 b0 0 0 0: 8 0 0 1: 7	RW
	BC1		0 1 0: 6 0 1 1: 5 1 0 0: 4	RW
	BC2		1 0 1: 3 1 1 0: 2 1 1 1: 1	RW
	ES0	I ² C bus interface enable bit	0: Disabled 1: Enabled	RW
	ALS	Data format select bit	0: Addressing format 1: Free data format	RW
	(b5)	Reserved bit	Set to 0	RW
	- IHR	I ² C bus interface reset bit	0: Reset release (automatic) 1: Reset	RW
	- TISS	I ² C bus interface pin input level select bit	0: I ² C bus input 1: SMBUS input	RW

Figure 16.4 S1D0 Register

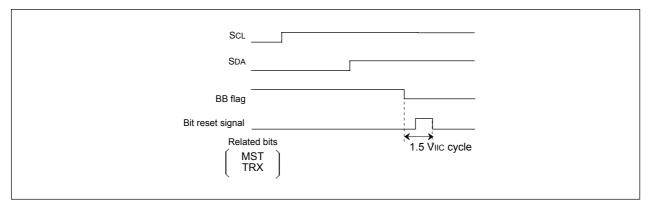


Figure 16.21 The bit reset timing (The STOP condition detection)

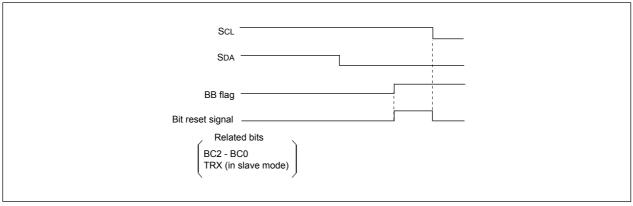


Figure 16.22 The bit reset timing (The START condition detection)

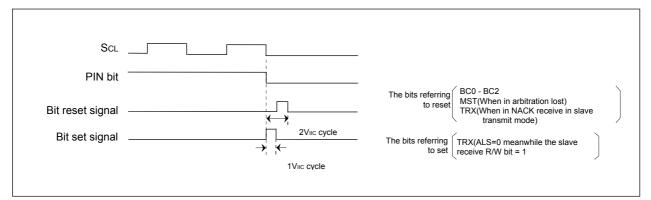


Figure 16.23 Bit set/reset timing (at the completion of data transfer)

17.1.3.5 COICR Register

Figure 17.10 shows the COICR register.

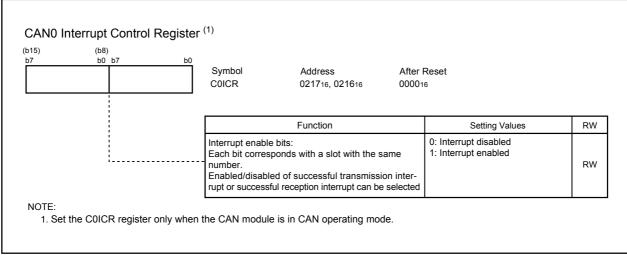


Figure 17.10 COICR Register

17.1.3.6 COIDR Register

Figure 17.11 shows the COIDR register.

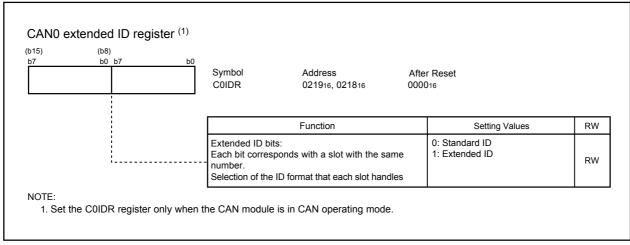


Figure 17.11 COIDR Register

17.2 Operating Modes

The CAN module has the following four operating modes.

- CAN Reset/Initialization Mode
- CAN Operating Mode
- CAN Sleep Mode
- CAN Interface Sleep Mode

Figure 17.17 shows transition between operating modes.

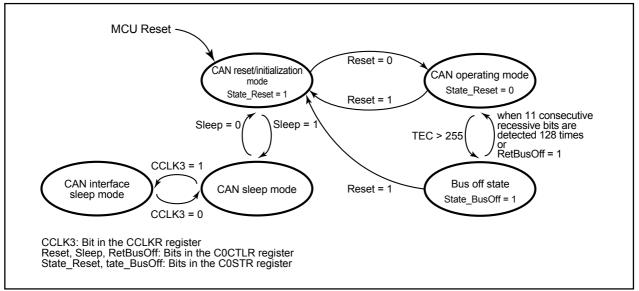


Figure 17.17 Transition Between Operating Modes

17.2.1 CAN Reset/Initialization Mode

The CAN reset/initialization mode is activated upon MCU reset or by setting the Reset bit in the C0CTLR register to 1. If the Reset bit is set to 1, check that the State_Reset bit in the C0STR register is set to 1. Entering the CAN reset/initialization mode initiates the following functions by the module:

- CAN communication is impossible.
- When the CAN reset/initialization mode is activated during an ongoing transmission in operation mode, the module suspends the mode transition until completion of the transmission (successful, arbitration loss, or error detection). Then, the State_Reset bit is set to 1, and the CAN reset/ initialization mode is activated.
- Registers COMCTLj (j = 0 to 15), COSTR, COICR, COIDR, CORECR, COTECR, and COTSR are initialized. All these registers are locked to prevent CPU modification.
- Registers C0CTLR, C0CONR, C0GMR, C0LMAR, and C0LMBR and the CAN0 message box retain their contents and are available for CPU access.

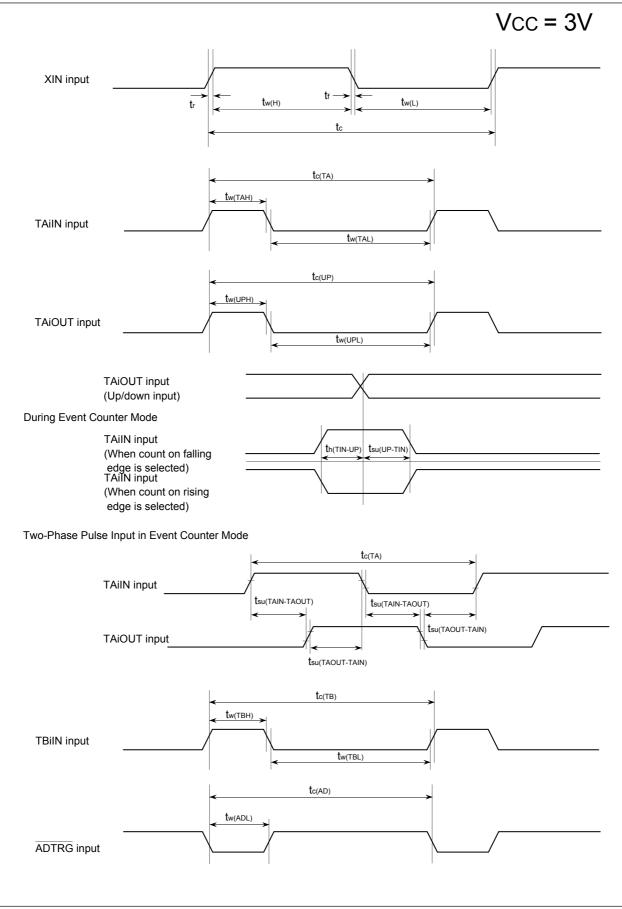
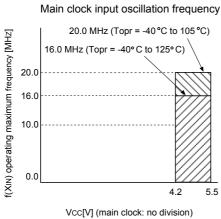


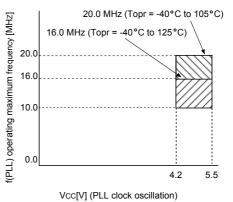
Figure 21.10 Timing Diagram (1)

Symbol	Parameter				Unit			
Symbol					Min.	Тур.	Max.	
Vcc	Supply Voltage						5.5	V
AVcc	Analog Supply Vo	oltage				Vcc		V
Vss	Supply Voltage					0		V
AVss	Analog Supply Vo	Itage				0		V
	Input High ("H")	P00 to P07, P10 t	o P17, P20 to P27, P3	Bo to P37, P60 to P67,	0.7 Vcc		Vcc	V
	Voltage	P7º to P77, P8º to P87, P9º to P93, P95 to P97, P10º to P107						
		XIN, RESET, CM	IVSS		0.8 Vcc		Vcc	V
			When I ² C bus input	level is selected	0.7 Vcc		Vcc	V
		SDAMM, SCLMM	When SMBUS inpu	t level is selected	1.4		Vcc	V
Vil	Input Low ("L")	P00 to P07, P10 t	o P17, P20 to P27, P3	Bo to P37, P60 to P67,	0		0.3Vcc	V
	Voltage	P70 to P77, P80 t	o P87, P90 to P93, P9	95 to P97, P100 to P107				
		XIN, RESET, CN	IVSS		0		0.2Vcc	V
		SDAMM, SCLMM	When I ² C bus input	level is selected	0		0.3Vcc	V
		SDAMM, SCLMM	When SMBUS inpu	t level is selected	0		0.6	V
OH(peak)	Peak Output High	P00 to P07, P10 t	o P17, P20 to P27, P3	Bo to P37, P60 to P67,			-10.0	mA
	("H") Current	P70 to P77, P80 t	o P87, P90 to P93, P9	95 to P97, P100 to P107				
OH(avg)	Average Output	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P60 to P67,				-5.0	mA	
	High ("H") Current	P70 to P77, P80 t	o P87, P90 to P93, P9	95 to P97, P100 to P107				
OL(peak)	Peak Output Low	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P60 to P67,					10.0	mA
	("L") Current	P70 to P77, P80 to P87, P90 to P93, P95 to P97, P100 to P107						
OL(avg)	Average Output	-		Bo to P37, P60 to P67,			5.0	mA
	Low ("L") Current			05 to P97, P100 to P107				
f(XIN) Main Clock Input C		Oscillation Freque	ency ⁽⁴⁾	Topr = -40 to 105 ° C	0		20	MHz
				Topr = -40 to 125 ° C	0		16	MHz
f(Xan)	Sub Clock Oscilla				0.5	32.768	50	kHz
f1(ROC)	On-chip Oscillator	On-chip Oscillator Frequency 1				1	2	MHz
f2(ROC)	On-chip Oscillator	n-chip Oscillator Frequency 2				2	4	MHz
f3(ROC)	On-chip Oscillator	cillator Frequency 3		8	16	26	MHz	
f(PLL)	PLL Clock Oscillat	LL Clock Oscillation Frequency ⁽⁴⁾ Topr = -40 to 105 ° (Topr = -40 to 105 ° C	10		20	MHz
				Topr = -40 to 125 ° C	10		16	MHz
f(BCLK)	CPU Operation Cl	lock Frequency		Topr = -40 to 105 ° C	0		20	MHz
				Topr = -40 to 125 ° C	0		16	MHz
tsu(PLL)	Wait Time to Stab	ilize PLL Frequer	ncv Svnthesizer	Vcc = 5.0 V			20	MHz

Table 21.79 Recommended Operating Conditions (1)


NOTES:

1. Referenced to V ∞ = 4.2 to 5.5 V at Topr = -40 to 125 ° C unless otherwise specified.


2. The mean output current is the mean value within 100ms.

3. The total IOL(peak) for all ports must be 80 mA or less. The total IOL(peak) for all ports must be -80 mA or less.

4. Relationship among main clock oscillation frequency, PLL clock oscillation frequency and supply voltage.

22. Usage Notes

22.1 SFRs

22.1.1 For 80-Pin Package

Set the IFSR20 bit in the IFSR2A register to 0 after reset and set bits PACR2 to PACR0 in the PACR register to 0112.

22.1.2 For 64-Pin Package

Set the IFSR20bit in the IFSR2A register to 0 after reset and set bits PACR2 to PACR0 in the PACR register to 0102.

22.1.3 Register Setting

Immediate values should be set in the registers containing write-only bits. When establishing a new value by modifying a previous value, write the previous value into RAM as well as the register. Change the contents of the RAM and then transfer the new value to the register.

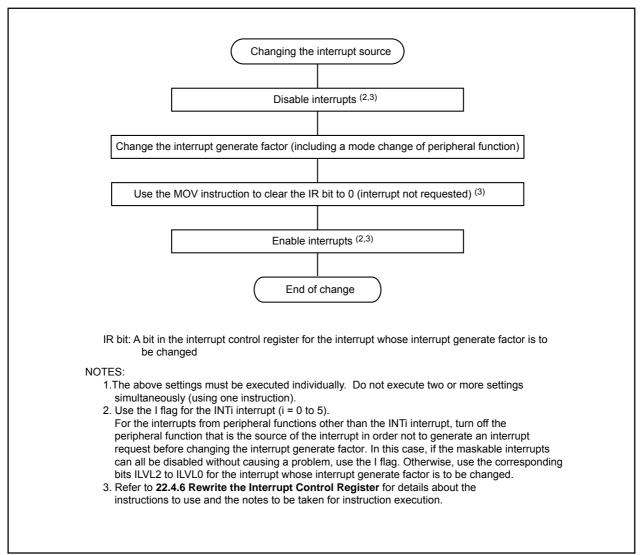


Figure 22.2 Procedure for Changing the Interrupt Generate Factor

22.4.5 INT Interrupt

- 1. Either an "L" level of at least tw(INH) or an "H" level of at least tw(INL) width is necessary for the signal input to pins INT0 through INT5 regardless of the CPU operation clock.
- 2. If the POL bit in registers INT0IC to INT5IC or bits IFSR7 to IFSR0 in the IFSR register are changed, the IR bit may inadvertently set to 1 (interrupt requested). Be sure to clear the IR bit to 0 (interrupt not requested) after changing any of those register bits.
- 3. When using the INT5 interrupt for exiting stop mode, set the P17DDR register to FF16 (disable digital debounce filter) before entering stop mode.

M16C/29 Group Hardware Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan