
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	e200z6
Core Size	32-Bit Single-Core
Speed	132MHz
Connectivity	CANbus, EBI/EMI, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	256
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K × 8
Voltage - Supply (Vcc/Vdd)	1.35V ~ 1.65V
Data Converters	A/D 40x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	416-BBGA
Supplier Device Package	416-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc5554mzp132

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 Electrical Characteristics

This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications for the MCU.

3.1 Maximum Ratings

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	1.5 V core supply voltage ²	V _{DD}	-0.3	1.7	V
2	Flash program/erase voltage	V _{PP}	-0.3	6.5	V
4	Flash read voltage	V _{FLASH}	-0.3	4.6	V
5	SRAM standby voltage	V _{STBY}	-0.3	1.7	V
6	Clock synthesizer voltage	V _{DDSYN}	-0.3	4.6	V
7	3.3 V I/O buffer voltage	V _{DD33}	-0.3	4.6	V
8	Voltage regulator control input voltage	V _{RC33}	-0.3	4.6	V
9	Analog supply voltage (reference to V _{SSA})	V _{DDA}	-0.3	5.5	V
10	I/O supply voltage (fast I/O pads) ³	V _{DDE}	-0.3	4.6	V
11	I/O supply voltage (slow and medium I/O pads) 3	V _{DDEH}	-0.3	6.5	V
12	DC input voltage ⁴ V _{DDEH} powered I/O pads V _{DDE} powered I/O pads	V _{IN}	-1.0 ⁵ -1.0 ⁵	6.5 ⁶ 4.6 ⁷	v
13	Analog reference high voltage (reference to V _{RL})	V _{RH}	-0.3	5.5	V
14	V_{SS} to V_{SSA} differential voltage	$V_{SS} - V_{SSA}$	-0.1	0.1	V
15	V _{DD} to V _{DDA} differential voltage	$V_{DD} - V_{DDA}$	-V _{DDA}	V _{DD}	V
16	V _{REF} differential voltage	V _{RH} – V _{RL}	-0.3	5.5	V
17	V _{RH} to V _{DDA} differential voltage	V _{RH} – V _{DDA}	-5.5	5.5	V
18	V _{RL} to V _{SSA} differential voltage	V _{RL} – V _{SSA}	-0.3	0.3	V
19	V _{DDEH} to V _{DDA} differential voltage	V _{DDEH} – V _{DDA}	-V _{DDA}	V _{DDEH}	V
20	V_{DDF} to V_{DD} differential voltage	$V_{DDF} - V_{DD}$	-0.3	0.3	V
21	V_{RC33} to V_{DDSYN} differential voltage spec has been moved to	Table 9 DC Electric	al Specificatio	ons, Spec 43a	
22	V_{SSSYN} to V_{SS} differential voltage	$V_{\rm SSSYN} - V_{\rm SS}$	-0.1	0.1	V
23	V _{RCVSS} to V _{SS} differential voltage	$V_{RCVSS} - V_{SS}$	-0.1	0.1	V
24	Maximum DC digital input current ⁸ (per pin, applies to all digital pins) ⁴	I _{MAXD}	-2	2	mA
25	Maximum DC analog input current ⁹ (per pin, applies to all analog pins)	I _{MAXA}	-3	3	mA
26	Maximum operating temperature range ¹⁰ Die junction temperature	Т _Ј	ΤL	150.0	°C
27	Storage temperature range	T _{STG}	-55.0	150.0	°C

Table 2. Absolute Maximum Ratings ¹

3.5 ESD (Electromagnetic Static Discharge) Characteristics

Characteristic	Symbol	Value	Unit
ESD for human body model (HBM)		2000	V
	R1	1500	Ω
M circuit description	С	100	pF
ECD for field induced aborgo model (EDCM)		500 (all pins)	
ESD for field induced charge model (FDCM)	el (FDCM)	750 (corner pins)	V
Number of pulses per pin:			
Positive pulses (HBM)	_	1	_
Negative pulses (HBM)	—	1	—
Interval of pulses		1	second

Table 5. ESD Ratings ^{1, 2}

¹ All ESD testing conforms to CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² Device failure is defined as: 'If after exposure to ESD pulses, the device does not meet the device specification requirements, which includes the complete DC parametric and functional testing at room temperature and hot temperature.

3.6 Voltage Regulator Controller (V_{RC}) and Power-On Reset (POR) Electrical Specifications

The following table lists the V_{RC} and POR electrical specifications:

Spec	Charac	teristic	Symbol	Min.	Max.	Units
1	1.5 V (V _{DD}) POR ¹	Negated (ramp up) Asserted (ramp down)	V _{POR15}	1.1 1.1	1.35 1.35	V
2	3.3 V (V _{DDSYN}) POR ¹	Asserted (ramp up) Negated (ramp up) Asserted (ramp down) Negated (ramp down)	V _{POR33}	0.0 2.0 2.0 0.0	0.30 2.85 2.85 0.30	V
3	RESET pin supply (V _{DDEH6}) POR ^{1, 2}	Negated (ramp up) Asserted (ramp down)	V _{POR5}	2.0 2.0	2.85 2.85	V
4		Before V _{RC} allows the pass transistor to start turning on	V _{TRANS_START}	1.0	2.0	V
5	V _{RC33} voltage	When V _{RC} allows the pass transistor to completely turn on ^{3, 4}	V _{TRANS_ON}	2.0	2.85	V
6		When the voltage is greater than the voltage at which the V_{RC} keeps the 1.5 V supply in regulation ^{5, 6}	V _{VRC33REG}	3.0	_	v
		– 55° C ⁷		11.0	—	mA
	Current can be sourced	-40° C		11.0	—	mA
7	by V _{RCCTL} at Tj:	25° C	I _{VRCCTL} ⁸	9.0	—	mA
		150° C		7.5	—	mA

Table 6. V_{RC} and POR Electrical Specifications

3.7.1 Input Value of Pins During POR Dependent on V_{DD33}

When powering up the device, V_{DD33} must not lag the latest V_{DDSYN} or RESET power pin (V_{DDEH6}) by more than the V_{DD33} lag specification listed in Table 6, spec 8. This avoids accidentally selecting the bypass clock mode because the internal versions of PLLCFG[0:1] and RSTCFG are not powered and therefore cannot read the default state when POR negates. V_{DD33} can lag V_{DDSYN} or the RESET power pin (V_{DDEH6}), but cannot lag both by more than the V_{DD33} lag specification. This V_{DD33} lag specification applies during power up only. V_{DD33} has no lead or lag requirements when powering down.

3.7.2 Power-Up Sequence (V_{RC33} Grounded)

The 1.5 V V_{DD} power supply must rise to 1.35 V before the 3.3 V V_{DDSYN} power supply and the RESET power supply rises above 2.0 V. This ensures that digital logic in the PLL for the 1.5 V power supply does not begin to operate below the specified operation range lower limit of 1.35 V. Because the internal 1.5 V POR is disabled, the internal 3.3 V POR or the RESET power POR must hold the device in reset. Since they can negate as low as 2.0 V, V_{DD} must be within specification before the 3.3 V POR and the RESET POR negate.



Figure 3. Power-Up Sequence (V_{RC33} Grounded)

3.7.3 Power-Down Sequence (V_{RC33} Grounded)

The only requirement for the power-down sequence with V_{RC33} grounded is if V_{DD} decreases to less than its operating range, V_{DDSYN} or the RESET power must decrease to less than 2.0 V before the V_{DD} power increases to its operating range. This ensures that the digital 1.5 V logic, which is reset only by an ORed POR and can cause the 1.5 V supply to decrease less than its specification value, resets correctly. See Table 6, footnote 1.

Table 9. DC Electrical Sp	ecifications (T	$= T_1 \text{ to } T_{\mu}$) (continued)
		- ·L •• ·H/ (

Spec	Characteristic	Symbol	Min	Max.	Unit
27a	Operating Current 1.5 V Supplies @ 132 MHz: 6				
	$ V_{DD} \mbox{(including V_{DDF} max current)} @ 1.65 V \mbox{typical use} 7,8} \\ V_{DD} \mbox{(including V_{DDF} max current)} @ 1.4 V \mbox{typical use} 7,8} \\ V_{DD} \mbox{(including V_{DDF} max current)} @ 1.65 V \mbox{high use} 8,9} \\ V_{DD} \mbox{(including V_{DDF} max current)} @ 1.4 V \mbox{high use} 8,9} \\ $	I _{DD} I _{DD} I _{DD} I _{DD}	 	700 600 875 740	mA mA mA mA
27b	Operating Current 1.5 V Supplies @ 114 MHz: ⁶				
	$ \begin{array}{l} V_{DD} \mbox{ (including } V_{DDF} \mbox{ max current) } @ 1.65 \ V \mbox{ typical use } ^{7, 8} \\ V_{DD} \mbox{ (including } V_{DDF} \mbox{ max current) } @ 1.4 \ V \mbox{ typical use } ^{7, 8} \\ V_{DD} \mbox{ (including } V_{DDF} \mbox{ max current) } @ 1.65 \ V \mbox{ high use } ^{8, 9} \\ V_{DD} \mbox{ (including } V_{DDF} \mbox{ max current) } @ 1.4 \ V \mbox{ high use } ^{8, 9} \\ \end{array} $	I _{DD} I _{DD} I _{DD}	 	609 522 760 643	mA mA mA mA
27c	Operating Current 1.5 V Supplies @ 82 MHz: ⁶				
	V_{DD} (including V_{DDF} max current) @1.65 V typical use ^{7, 8} V_{DD} (including V_{DDF} max current) @1.40 V typical use ^{7, 8} V_{DD} (including V_{DDF} max current) @1.65 V high use ^{8, 9} V_{DD} (including V_{DDF} max current) @1.40 V high use ^{8, 9}	I _{DD} I _{DD} I _{DD}	 	446 384 555 471	mA mA mA mA
27d	RAM standby current. ¹⁰ I _{DD_STBY} @ 25 ^o C V _{STBY} @ 0.8 V V _{STBY} @ 1.0 V V _{STBY} @ 1.2 V	I _{DD_STBY} I _{DD_STBY} I _{DD_STBY}		20 30 50	μΑ μΑ μΑ
	I _{DD_STBY} @ 60 ^o C V _{STBY} @ 0.8 V V _{STBY} @ 1.0 V V _{STBY} @ 1.2 V	I _{DD_STBY} I _{DD_STBY} I _{DD_STBY}		70 100 200	μΑ μΑ μΑ
	I _{DD_STBY} @ 150 ^o C (Tj) V _{STBY} @ 0.8 V V _{STBY} @ 1.0 V V _{STBY} @ 1.2 V	I _{DD_STBY} I _{DD_STBY} I _{DD_STBY}		1200 1500 2000	μΑ μΑ μΑ
28	Operating current 3.3 V supplies @ f _{MAX} MHz V _{DD33} ¹¹	I _{DD_33}	_	2 + (values derived from procedure of footnote ¹¹)	mA
	V _{FLASH}	I _{VFLASH}	—	10	mA
	V _{DDSYN}	IDDSYN	—	15	mA
29	Operating current 5.0 V supplies (12 MHz ADCLK): V _{DDA} (V _{DDA0} + V _{DDA1}) Analog reference supply current (V _{RH} , V _{RL}) V _{PP}	I _{DD_A} I _{REF} I _{PP}		20.0 1.0 25.0	mA mA mA

Spec	Characteristic	Symbol	Min	Max.	Unit
30	Operating current V _{DDE} supplies: ¹² V _{DDEH1} V _{DDE2} V _{DDE3}	I _{DD1} I _{DD2} I _{DD3}	 	Refer to footnote ¹²	mA mA mA
	V _{DDEH4} V _{DDE5} V _{DDEH6} V _{DDE7} V _{DDEH8} V _{DDEH9}	I _{DD4} I _{DD5} I _{DD6} I _{DD7} I _{DD8} I _{DD9}	 		mA mA mA mA mA
31	Fast I/O weak pullup current ¹³ 1.62–1.98 V 2.25–2.75 V 3.00–3.60 V	I _{ACT_F}	10 20 20	110 130 170	μΑ μΑ μΑ
	Fast I/O weak pulldown current ¹³ 1.62–1.98 V 2.25–2.75 V 3.00–3.60 V	'ACT_F	10 20 20	100 130 170	μΑ μΑ μΑ
32	Slow and medium I/O weak pullup/down current ¹³ 3.0–3.6 V 4.5–5.5 V	I _{ACT_S}	10 20	150 170	μ Α μΑ
33	I/O input leakage current ¹⁴	I _{INACT_D}	-2.5	2.5	μΑ
34	DC injection current (per pin)	I _{IC}	-2.0	2.0	mA
35	Analog input current, channel off ¹⁵	I _{INACT_A}	-150	150	nA
35a	Analog input current, shared analog / digital pins (AN[12], AN[13], AN[14], AN[15])	I _{INACT_AD}	-2.5	2.5	μA
36	V_{SS} to V_{SSA} differential voltage ¹⁶	$V_{SS} - V_{SSA}$	-100	100	mV
37	Analog reference low voltage	V _{RL}	V _{SSA} – 0.1	V _{SSA} + 0.1	V
38	V _{RL} differential voltage	V _{RL} – V _{SSA}	-100	100	mV
39	Analog reference high voltage	V _{RH}	V _{DDA} – 0.1	V _{DDA} + 0.1	V
40	V _{REF} differential voltage	V _{RH} – V _{RL}	4.5	5.25	V
41	V _{SSSYN} to V _{SS} differential voltage	$V_{\rm SSSYN} - V_{\rm SS}$	-50	50	mV
42	V _{RCVSS} to V _{SS} differential voltage	$V_{RCVSS} - V_{SS}$	-50	50	mV
43	V _{DDF} to V _{DD} differential voltage	$V_{DDF} - V_{DD}$	-100	100	mV
43a	V _{RC33} to V _{DDSYN} differential voltage	$V_{RC33} - V_{DDSYN}$	-0.1	0.1 ¹⁷	V
44	Analog input differential signal range (with common mode 2.5 V)	V _{IDIFF}	-2.5	2.5	V
45	Operating temperature range, ambient (packaged)	$T_A = (T_L \text{ to } T_H)$	ΤL	т _н	°C
46	Slew rate on power-supply pins	—	_	50	V/ms

Table 9. DC Electrical Specifications ($T_A = T_L \text{ to } T_H$) (continued)

¹ V_{DDE2} and V_{DDE3} are limited to 2.25–3.6 V only if SIU_ECCR[EBTS] = 0; V_{DDE2} and V_{DDE3} have a range of 1.6–3.6 V if SIU_ECCR[EBTS] = 1.

- 2 | V_{DDA0} V_{DDA1} | must be < 0.1 V.
- 3 V_{PP} can drop to 3.0 V during read operations.
- ⁴ If standby operation is not required, connect V_{STBY} to ground.
- ⁵ Applies to CLKOUT, external bus pins, and Nexus pins.
- ⁶ Maximum average RMS DC current.
- ⁷ Average current measured on automotive benchmark.
- ⁸ Peak currents can be higher on specialized code.
- ⁹ High use current measured while running optimized SPE assembly code with all code and data 100% locked in cache (0% miss rate) with all channels of the eMIOS and eTPU running autonomously, plus the eDMA transferring data continuously from SRAM to SRAM. Higher currents are possible if an "idle" loop that crosses cache lines is run from cache. Write code that avoids this condition.
- ¹⁰ The current specification relates to average standby operation after SRAM has been loaded with data. For power up current see Section 3.7, "Power-Up/Down Sequencing", Figure 2.
- ¹¹ Power requirements for the V_{DD33} supply depend on the frequency of operation, load of all I/O pins, and the voltages on the I/O segments. Refer to Table 11 for values to calculate the power dissipation for a specific operation.
- ¹² Power requirements for each I/O segment are dependent on the frequency of operation and load of the I/O pins on a particular I/O segment, and the voltage of the I/O segment. Refer to Table 10 for values to calculate power dissipation for specific operation. The total power consumption of an I/O segment is the sum of the individual power consumptions for each pin on the segment.
- 13 Absolute value of current, measured at V_{IL} and $V_{IH}.$
- ¹⁴ Weak pullup/down inactive. Measured at $V_{DDE} = 3.6$ V and $V_{DDEH} = 5.25$ V. Applies to pad types: pad_fc, pad_sh, and pad_mh.
- ¹⁵ Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each 8 °C to 12 °C, in the ambient temperature range of 50 °C to 125 °C. Applies to pad types: pad_a and pad_ae.
- 16 V_{SSA} refers to both V_{SSA0} and V_{SSA1}. | V_{SSA0} V_{SSA1} | must be < 0.1 V.
- ¹⁷ Up to 0.6 V during power up and power down.

3.8.1 I/O Pad Current Specifications

The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The power consumption is the sum of all output pin currents for a segment. The output pin current can be calculated from Table 10 based on the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 10.

Spec	Pad Type	Symbol	Frequency (MHz)	Load ² (pF)	Voltage (V)	Drive Select / Slew Rate Control Setting	Current (mA)	
1			25	50	5.25	11	8.0	
2	Slow		10	50	5.25	01	3.2	
3	SIOW	I _{DRV_SH}	2	50	5.25	00	0.7	
4			2	200	5.25	00	2.4	
5			50	50	5.25	11	17.3	
6	Medium		20	50	5.25	01	6.5	
7	Medium	I _{DRV_MH}	3.33	50	5.25	00	1.1	
8			3.33	200	5.25	00	3.9	
9			66	10	3.6	00	2.8	
10			66	20	3.6	01	5.2	
11			66	30	3.6	10	8.5	
12				66	50	3.6	11	11.0
13			66	10	1.98	00	1.6	
14			66	20	1.98	01	2.9	
15			66	30	1.98	10	4.2	
16			66	50	1.98	11	6.7	
17			56	10	3.6	00	2.4	
18			56	20	3.6	01	4.4	
19			56	30	3.6	10	7.2	
20	Fast	I	56	50	3.6	11	9.3	
21	Tasi	I _{DRV_FC}	56	10	1.98	00	1.3	
22			56	20	1.98	01	2.5	
23			56	30	1.98	10	3.5	
24			56	50	1.98	11	5.7	
25			40	10	3.6	00	1.7	
26			40	20	3.6	01	3.1	
27			40	30	3.6	10	5.1	
28			40	50	3.6	11	6.6	
29			40	10	1.98	00	1.0	
30			40	20	1.98	01	1.8	
31			40	30	1.98	10	2.5	
32			40	50	1.98	11	4.0	

Table 10. I/O Pad Average DC Current	$(T_A = T_L \text{ to } T_H)^1$
--------------------------------------	---------------------------------

¹ These values are estimates from simulation and are not tested. Currents apply to output pins only.

² All loads are lumped.

3.8.2 I/O Pad V_{DD33} Current Specifications

The power consumption of the V_{DD33} supply dependents on the usage of the pins on all I/O segments. The power consumption is the sum of all input and output pin V_{DD33} currents for all I/O segments. The output pin V_{DD33} current can be calculated from Table 11 based on the voltage, frequency, and load on all fast (pad_fc) pins. The input pin V_{DD33} current can be calculated from Table 11 based on the voltage, frequency, and load on all pad_sh and pad_mh pins. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 11.

Spec	Pad Type	Symbol	Frequency	Load ²	V _{DD33}	V _{DDE}	Drive	Current
opoo		•,	(MHz)	(pF)	(V)	(V)	Select	(mA)
				Inputs	i			
1	Slow	I _{33_SH}	66	0.5	3.6	5.5	NA	0.003
2	Medium	I _{33_MH}	66	0.5	3.6	5.5	NA	0.003
Outputs								
3			66	10	3.6	3.6	00	0.35
4			66	20	3.6	3.6	01	0.53
5			66	30	3.6	3.6	10	0.62
6			66	50	3.6	3.6	11	0.79
7			66	10	3.6	1.98	00	0.35
8			66	20	3.6	1.98	01	0.44
9			66	30	3.6	1.98	10	0.53
10			66	50	3.6	1.98	11	0.70
11			56	10	3.6	3.6	00	0.30
12			56	20	3.6	3.6	01	0.45
13			56	30	3.6	3.6	10	0.52
14	Faat		56	50	3.6	3.6	11	0.67
15	Fast	I _{33_FC}	56	10	3.6	1.98	00	0.30
16	1		56	20	3.6	1.98	01	0.37
17	1		56	30	3.6	1.98	10	0.45
18	1		56	50	3.6	1.98	11	0.60
19			40	10	3.6	3.6	00	0.21
20			40	20	3.6	3.6	01	0.31
21			40	30	3.6	3.6	10	0.37
22			40	50	3.6	3.6	11	0.48
23			40	10	3.6	1.98	00	0.21
24			40	20	3.6	1.98	01	0.27
25			40	30	3.6	1.98	10	0.32
26			40	50	3.6	1.98	11	0.42

Table 11. V _{DD33}	Pad Average DC Curr	rent $(T_{\Delta} = T_{I} \text{ to } T_{H})^{1}$

¹ These values are estimated from simulation and not tested. Currents apply to output pins for the fast pads only and to input pins for the slow and medium pads only.

² All loads are lumped.

3.9 Oscillator and FMPLL Electrical Characteristics

Table 12. FMPLL Electrical Specifications

(V_{DDSYN} = 3.0–3.6 V; V_{SS} = V_{SSSYN} = 0.0 V; T_A = T_L to T_H)

Spec	Characteristic	Symbol	Minimum	Maximum	Unit
1	PLL reference frequency range: ¹ Crystal reference External reference Dual controller (1:1 mode)	f _{ref_crystal} f _{ref_ext} f _{ref_1:1}	8 8 24	20 20 f _{sys} ÷2	MHz
2	System frequency ²	f _{sys}	$f_{ICO(MIN)} \div 2^{RFD}$	f _{MAX} ³	MHz
3	System clock period	t _{CYC}	—	1 ÷ f _{sys}	ns
4	Loss of reference frequency ⁴	f _{LOR}	100	1000	kHz
5	Self-clocked mode (SCM) frequency ⁵	f _{SCM}	7.4	17.5	MHz
	EXTAL input high voltage crystal mode ⁶	V _{IHEXT}	V _{XTAL} + 0.4 V	—	V
6	All other modes [dual controller (1:1), bypass, external reference]	V _{IHEXT}	(V _{DDE5} ÷ 2) + 0.4 V	_	V
	EXTAL input low voltage crystal mode ⁷	V _{ILEXT}	_	V _{XTAL} – 0.4 V	V
7	All other modes [dual controller (1:1), bypass, external reference]	V _{ILEXT}	_	(V _{DDE5} ÷ 2) – 0.4 V	V
8	XTAL current ⁸	I _{XTAL}	0.8	3	mA
9	Total on-chip stray capacitance on XTAL	C _{S_XTAL}	—	1.5	pF
10	Total on-chip stray capacitance on EXTAL	C _{S_EXTAL}	—	1.5	pF
11	Crystal manufacturer's recommended capacitive load	CL	Refer to crystal specification	Refer to crystal specification	pF
12	Discrete load capacitance to connect to EXTAL	C _{L_EXTAL}	_	$(2 \times C_L) - C_{S_EXTAL} - C_{PCB_EXTAL}^9$	pF
13	Discrete load capacitance to connect to XTAL	C _{L_XTAL}	_	$\begin{array}{c} (2 \times C_L) - C_{\substack{S_XTAL}} \\ - C_{\substack{PCB_XTAL}} \end{array}$	pF
14	PLL lock time ¹⁰	t _{lpll}	—	750	μS
15	Dual controller (1:1) clock skew (between CLKOUT and EXTAL) ^{11, 12}	t _{skew}	-2	2	ns
16	Duty cycle of reference	t _{DC}	40	60	%
17	Frequency unLOCK range	f _{UL}	-4.0	4.0	% f _{SYS}
18	Frequency LOCK range	f _{LCK}	-2.0	2.0	% f _{SYS}

3.10 eQADC Electrical Characteristics

Spec	Characteristic	Symbol	Minimum	Maximum	Unit
1	ADC clock (ADCLK) frequency ¹	F _{ADCLK}	1	12	MHz
2	Conversion cycles Differential Single ended	CC	13 + 2 (15) 14 + 2 (16)	13 + 128 (141) 14 + 128 (142)	ADCLK cycles
3	Stop mode recovery time ²	T _{SR}	10	—	μS
4	Resolution ³	—	1.25		mV
5	INL: 6 MHz ADC clock	INL6	-4	4	Counts ³
6	INL: 12 MHz ADC clock	INL12	-8	8	Counts
7	DNL: 6 MHz ADC clock	DNL6	-3 ⁴	3 ⁴	Counts
8	DNL: 12 MHz ADC clock	DNL12	-6 ⁴	6 ⁴	Counts
9	Offset error with calibration	OFFWC	-4 ⁵	4 ⁵	Counts
10	Full-scale gain error with calibration	GAINWC	-8 ⁶	8 ⁶	Counts
11	Disruptive input injection current ^{7, 8, 9, 10}	I _{INJ}	-1	1	mA
12	Incremental error due to injection current. All channels are 10 k Ω < Rs <100 k Ω Channel under test has Rs = 10 k Ω , $I_{INJ} = I_{INJMAX}$, I_{INJMIN}	E _{INJ}	-4	4	Counts
13	Total unadjusted error (TUE) for single ended conversions with calibration ^{11, 12, 13, 14, 15}	TUE	-4	4	Counts

Table 13. eQADC Conversion Specifications ($T_A = T_L$ to T_H)

Conversion characteristics vary with F_{ADCLK} rate. Reduced conversion accuracy occurs at maximum F_{ADCLK} rate. The maximum value is based on 800 KS/s and the minimum value is based on 20 MHz oscillator clock frequency divided by a maximum 16 factor.

- ² Stop mode recovery time begins when the ADC control register enable bits are set until the ADC is ready to perform conversions.
- ³ At $V_{RH} V_{RL} = 5.12$ V, one least significant bit (LSB) = 1.25, mV = one count.
- ⁴ Guaranteed 10-bit mono tonicity.
- ⁵ The absolute value of the offset error without calibration \leq 100 counts.
- ⁶ The absolute value of the full scale gain error without calibration \leq 120 counts.
- ⁷ Below disruptive current conditions, the channel being stressed has conversion values of: 0x3FF for analog inputs greater than V_{RH} , and 0x000 for values less than V_{RL} . This assumes that $V_{RH} \le V_{DDA}$ and $V_{RL} \ge V_{SSA}$ due to the presence of the sample amplifier. Other channels are not affected by non-disruptive conditions.
- ⁸ Exceeding the limit can cause a conversion error on both stressed and unstressed channels. Transitions within the limit do not affect device reliability or cause permanent damage.
- ⁹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values using $V_{POSCLAMP} = V_{DDA} + 0.5$ V and $V_{NEGCLAMP} = -0.3$ V, then use the larger of the calculated values.
- ¹⁰ This condition applies to two adjacent pads on the internal pad.
- ¹¹ The TUE specification is always less than the sum of the INL, DNL, offset, and gain errors due to canceling errors.
- ¹² TUE does not apply to differential conversions.
- ¹³ Measured at 6 MHz ADC clock. TUE with a 12 MHz ADC clock is: -16 counts < TUE < 16 counts.
- ¹⁴ TUE includes all internal device errors such as internal reference variation (75% Ref, 25% Ref).
- ¹⁵ Depending on the input impedance, the analog input leakage current (Table 9. DC Electrical Specifications, spec 35a) can affect the actual TUE measured on analog channels AN[12], AN[13], AN[14], AN[15].

Nexus Timing 3.13.3

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	MCKO cycle time	t _{MCYC}	2 ²	8	t _{CYC}
2	MCKO duty cycle	t _{MDC}	40	60	%
3	MCKO low to MDO data valid ³	t _{MDOV}	-1.5	3.0	ns
4	MCKO low to MSEO data valid ³	t _{MSEOV}	-1.5	3.0	ns
5	MCKO low to EVTO data valid ³	t _{EVTOV}	-1.5	3.0	ns
6	EVTI pulse width	t _{EVTIPW}	4.0	_	t _{TCYC}
7	EVTO pulse width	t _{EVTOPW}	1		t _{MCYC}
8	TCK cycle time	t _{TCYC}	4 ⁴	_	t _{CYC}
9	TCK duty cycle	t _{TDC}	40	60	%
10	TDI, TMS data setup time	t _{NTDIS} , t _{NTMSS}	8		ns
11	TDI, TMS data hold time	t _{NTDIH} , t _{NTMSH}	5	_	ns
	TCK low to TDO data valid	t _{JOV}			
12	V _{DDE} = 2.25–3.0 V		0	12	ns
	V _{DDE} = 3.0–3.6 V		0	10	ns
13	RDY valid to MCKO ⁵	—		_	—

Table 21. Nexus Debug Port Timing ¹

1 JTAG specifications apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at $V_{DD} = 1.35-1.65$ V, $V_{DDE} = 2.25-3.6$ V, V_{DD33} and $V_{DDSYN} = 3.0-3.6$ V, $T_A = T_L$ to T_H , and CL = 30 pF with DSC = 0b10.

² The Nexus AUX port runs up to 82 MHz.

 $^3\,$ MDO, $\overline{\text{MSEO}},$ and $\overline{\text{EVTO}}$ data is held valid until the next MCKO low cycle occurs.

- ⁴ Limit the maximum frequency to approximately 16 MHz ($V_{DDE} = 2.25 3.0 \text{ V}$) or 20 MHz ($V_{DDE} = 3.0 3.6 \text{ V}$) to meet the timing specification for t_{JOV} of [0.2 x t_{JCYC}] as outlined in the IEEE-ISTO 5001-2003 specification.
- ⁵ The RDY pin timing is asynchronous to MCKO and is guaranteed by design to function correctly.

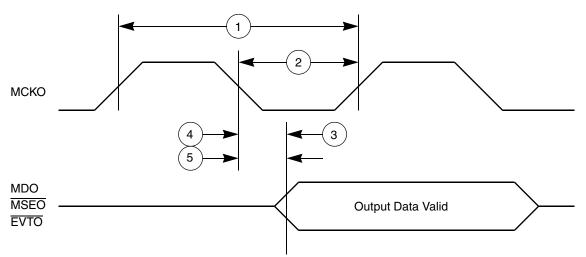


Figure 10. Nexus Output Timing

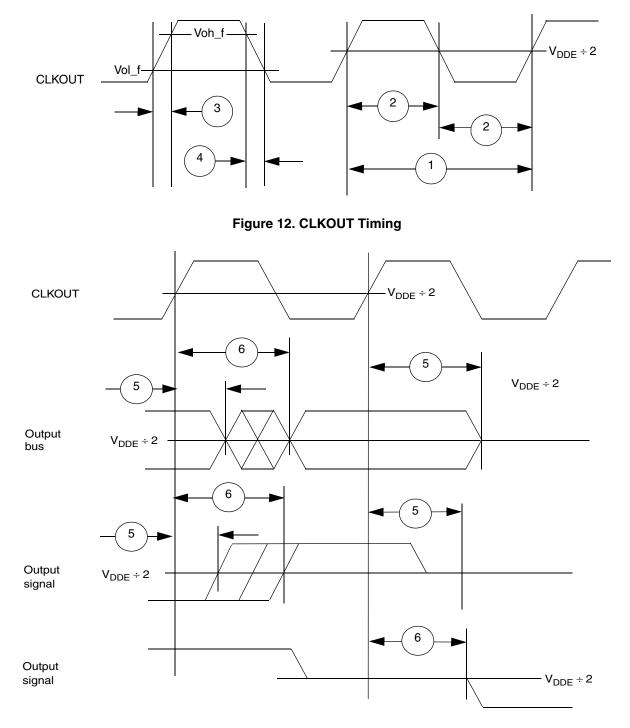


Figure 13. Synchronous Output Timing

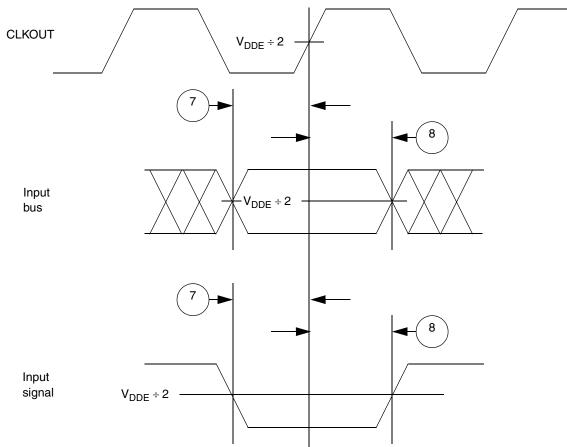


Figure 14. Synchronous Input Timing

3.13.5 **External Interrupt Timing (IRQ Signals)**

Table 23. External Interrupt Timing ¹

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	IRQ pulse-width low	t _{IPWL}	3	_	t _{CYC}
2	IRQ pulse-width high	T _{IPWH}	3	_	t _{CYC}
3	IRQ edge-to-edge time ²	t _{ICYC}	6	_	t _{CYC}

¹ IRQ timing specified at: $V_{DDEH} = 3.0-5.25$ V and $T_A = T_L$ to T_H . ² Applies when IRQ signals are configured for rising-edge or falling-edge events, but not both.

3.13.7 eMIOS Timing

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	eMIOS input pulse width	t _{MIPW}	4	_	t _{CYC}
2	eMIOS output pulse width	t _{MOPW}	1 ²		t _{CYC}

Table 25. eMIOS Timing ¹

¹ eMIOS timing specified at: $V_{DDEH} = 3.0-5.25$ V and $T_A = T_L$ to T_H .

² This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise and fall times defined in the slew rate control field (SRC) in the pad configuration register (PCR).

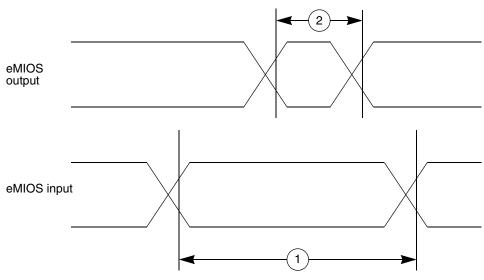


Figure 17. eMIOS Timing

3.13.8 DSPI Timing

Table 26. DSPI Timing^{1, 2}

Spec	Characteristic	Symbol	80 MHz		112 MHz		132 MHz		Unit
Spec			Min.	Max.	Min.	Max.	Min.	Max.	Unit
1	SCK cycle time ^{3, 4}	t _{SCK}	24.4 ns	2.9 ms	17.5 ns	2.1 ms	15.2 ns	1.7 ms	—
2	PCS to SCK delay ⁵	t _{CSC}	23	-	15	_	13	—	ns
3	After SCK delay ⁶	t _{ASC}	22	_	14	_	12	—	ns
4	SCK duty cycle	t _{SDC}	(t _{SCK} ÷ 2) – 2 ns	(t _{SCK} ÷ 2) + 2 ns	(t _{SCK} ÷ 2) – 2 ns	(t _{SCK} ÷ 2) + 2 ns	(t _{SCK} ÷ 2) – 2 ns	(t _{SCK} ÷ 2) + 2 ns	ns
5	Slave access time (SS active to SOUT driven)	t _A	_	25	_	25	_	25	ns
6	Slave SOUT disable time (SS inactive to SOUT Hi-Z, or invalid)	t _{DIS}	_	25	_	25	_	25	ns
7	PCS <i>x</i> to PCSS time	t _{PCSC}	4	_	4	_	4	—	ns
8	PCSS to PCS <i>x</i> time	t _{PASC}	5	_	5	_	5	—	ns

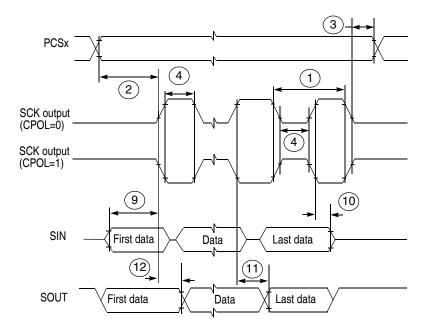


Figure 22. DSPI Modified Transfer Format Timing—Master, CPHA = 0

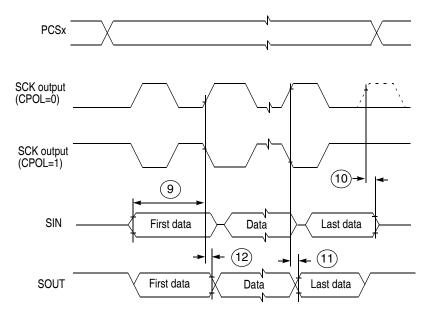
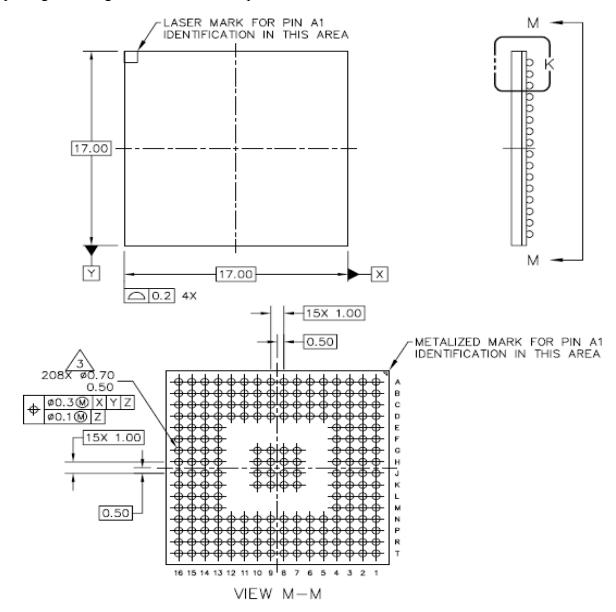



Figure 23. DSPI Modified Transfer Format Timing—Master, CPHA = 1

Mechanicals

The package drawings of the MPC55 208-pin MAP BGA are shown below.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICAL OUTLINE			PRINT VERSION NO	T TO SCALE
TITLE:	DOCUMENT NO	REV: D		
208 I/O MAP BGA, 17 X 17 PKG, 1-MM PITCH		CASE NUMBER	2: 1159A—01	02 AUG 2005
		STANDARD: JE	DEC MO-151 AAF-1	

Figure 32. 208-Pin Package

NOTES:

4

1. ALL DIMENSIONS IN MILLIMETERS.

2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

© FREE	ESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: 416 I/O, PBGA 27 X 27 PKG, 1 MM PITCH (OMPAC)		BGA	DOCUMENT NO): 98ARE10523D	REV: A
		KG,	CASE NUMBER	2: 1494–01	13 JUL 2005
		STANDARD: JE	DEC MS-034 AAL-1		

Figure 34. MPC5554 416 TEPBGA Package (continued)

Revision History for the MPC5554 Data Sheet

5 Revision History for the MPC5554 Data Sheet

The history of revisions made to this data sheet are described in this section.

5.1 Changes between Revision 3 and Revision 4

Location	Description of Changes
Section 3.7, "Power-Up/Down Sequencing"	Added the following paragraph in Section 3.7, "Power-Up/Down Sequencing": "During initial power ramp-up, when Vstby is 0.6v or above. a typical current of 1-3mA and maximum of 4mA may be seen until VDD is applied. This current will not reoccur until Vstby is lowered below Vstby min. specification".
	Moved Figure 2 (fISTBY Worst-case Specifications) "ISTBY Worst-case Specifications" to Section 3.7, "Power-Up/Down Sequencing".
	Removed the footnote "Figure 3 shows an illustration of the IDD_STBY values interpolated for these temperature values".
Section 3.8, "DC Electrical Specifications"	Changed the footnote attached to IDD_STBY" to "The current specification relates to average standby operation after SRAM has been loaded with data. For power up current see Section 3.7, "Power-Up/Down Sequencing", Figure 2 (fISTBY Worst-case Specifications)."
	In Table 9 (DC Electrical Specifications ($T_A = T_{L to} T_H$)) the Characteristic "Refer to Figure 3 for an interpolation of this data" changed to "RAM standby current".

5.2 Changes between Revision 2 and Revision 3

The substantive changes incorporated in MPC5554 Data Sheet Rev. 2.0 to produce Rev. 3.0 are listed in Table 28. The changes are listed in sequential page number order.

Location	Description of Changes
Throughout	
	Changed ' $T_A = T_L - T_H$ ' to ' $T_A = T_L$ to T_H .'
Title page:	
	Changed the Revision number from 2 to 3. Changed the date. Made the same change in the lower left corner of the back page.
Section 1, "	Overview"
	 Fourth paragraph, First sentence: Deleted 'of the MPC5500 family'; Second to last sentence: Deleted 'can'. Fifth paragraph, First sentence: Replaced 'MPC5500 family' with 'MPC5554'; Last sentence: Replaced 'can be' with 'is'. Sixth paragraph, First sentence: Replaced 'MPC5500 family' with 'MPC5554'; Second to last paragraph: Rewrote to read: The MCU has an on-chip enhanced queued dual analog-to-digital converter (eQADC). The 416 package has 40-channels.
Section 3.2	1, "General Notes for Specifications at Maximum Junction Temperature
	Updated the address of Semiconductor Equipment and Materials International 3081 Zanker Rd. San Jose, CA., 95134 (408) 943-6900

THIS PAGE IS INTENTIONALLY BLANK

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MPC5554 Rev. 4 5/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008,2012. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

